Обозначение постоянного и переменного тока: значок напряжения

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Пара слов о «полярности» переменного напряжения

Комплексные числа полезны для анализа цепей переменного тока, поскольку они предоставляют удобный метод символьной записи сдвига фаз между параметрами переменного тока, такими как напряжение и ток.
Однако большинству людей нелегко понять эквивалентность абстрактных векторов и реальных параметров схемы. Ранее в данной главе мы видели, как источники переменного напряжения задаются значениями напряжения в комплексной форме (амплитуда и угол фазы), а также обозначением полярности.

Поскольку у переменного тока нет параметра «полярности», как у постоянного тока, эти обозначения полярности и их связь с углом фазы могут вводить в заблуждение. Данный раздел написан с целью, прояснить некоторые из этих вопросов.

Напряжение, по своей сути, – относительная величина. Когда мы измеряем напряжение, у нас есть выбор, как подключить вольтметр или другой измерительный прибор к источнику напряжения, поскольку есть две точки, между которыми существует разность потенциалов, и два измерительных щупа у прибора, которые необходимо подключить.

В цепях постоянного тока мы явно обозначаем полярность источников напряжения и падений напряжения, используя символы «+» и «-«, а также используем измерительные щупы с цветовой маркировкой (красный и черный). Если цифровой вольтметр показывает отрицательное постоянное напряжение, мы знаем, что его измерительные щупы подключены «обратно» напряжению (красный провод подключен к «-«, а черный провод – к «+»).

Полярность батарей обозначается специфичными для них символами: короткая линия батареи всегда является отрицательной (-) клеммой, а длинная линия – всегда положительной (+):

Рисунок 1 – Общепринятое обозначение полярности батареи

Хотя было бы математически правильно представить напряжение батареи в виде отрицательного значения с обозначением обратной полярности, но это было бы явно необычно:

Рисунок 2 – Совершенно нестандартное обозначение полярности

Интерпретация таких обозначений могла бы быть проще, если бы обозначения полярности «+» и «-» рассматривались как контрольные точки для измерительных щупов воль означал бы «красный», а «-» означал бы «черный». Вольтметр, подключенный к указанной выше батарее красным щупом к нижней клемме и черным щупом к верхней клемме, действительно будет указывать отрицательное напряжение (-6 вольт).

На самом деле, эта форма обозначения и интерпретации не так уж необычна, как вы могли подумать: она часто встречается в задачах анализа цепей постоянного тока, где знаки полярности «+» и «-» сначала рисуются согласно обоснованному предположению, а затем интерпретируются как правильные или «обратные» в соответствии с математическим знаком рассчитанного значения.

Однако в цепях переменного тока мы не имеем дело с «отрицательными» значениями напряжения. Вместо этого мы описываем, в какой степени одно напряжение совпадает или не совпадает с другим по фазе: т.е. по сдвигу по времени между двумя сигналами. Мы никогда не описываем переменное напряжение как отрицательное по знаку, потому что возможность полярной записи позволяет векторам указывать в противоположных направлениях.

Если одно переменное напряжение прямо противоположно другому переменному напряжению, мы просто говорим, что одно напряжение на 180° не совпадает по фазе с другим.

Тем не менее, напряжение между двумя точками является относительным, и у нас есть выбор, как подключить прибор для измерения напряжения между этими двумя точками. Математический знак показаний вольтметра постоянного напряжения имеет значение только в контексте подключений его измерительных щупов: к какой клемме подключен красный щуп, а к какой клемме подключен черный щуп.

Кроме того, угол фазы переменного напряжения имеет значение только в контексте знания, какая из этих двух точек считаются «опорной». Поэтому, чтобы дать заявленному углу фазы точку отсчета, на схемах часто указываются обозначения полярности «+» и «-» на клеммах переменного напряжения.

Что такое источник тока

Чтобы поддерживать ток в электрических цепях долгое время необходимо удерживать стабильное значение электрического поля. Именно в этом заключается роль источников электрического тока.

Во всех источниках происходит работа по разделению отрицательно и положительно заряженных частиц. Частицы с зарядами разных знаков скапливаются у полюсов источника тока (“плюса” и “минуса”), которые обозначены специальными клеммами. Между полюсами возникает разность потенциалов и электрическое поле, которое после подключения источника проводниками к электрической цепи, порождает электрический ток.

Первый вариант работающей батареи сконструировал итальянский ученый Алессандро Вольта в 1798 г. А в 1859 г. французский физик Гастон Планте свинцово-кислотные клетки — ключевой элемент аккумулятора для автомобиля. Кстати, автомобиль появился только через 26 лет.

Таким образом, внутри источника тока совершается работа по разделению электрических зарядов, без использования силового действия электрического поля. Силы, совершающие работу по сортировке (разделению) зарядов, по определению называются сторонними силами. Перечислим некоторые примеры сторонних сил:

Механические силы

Простейший пример — это электрофорная машина, диски которой приводятся во вращение рукой. Современные генераторы электрического тока преобразуют механическую энергию вращения вала от двигателей внутреннего сгорания или от паровых и гидротурбин;

Рис. 1. Электрофорная машина:.

Тепловое воздействие

Такие источники называют термоэлементами. Примером может служить так называемая термопара, то есть когда берутся две проволоки из разных металлов, делаются два спая, один из которых нагревают, а другой охлаждают. В результате появляется напряжение. Величина напряжения таких источников мала, но в они используются в качестве термодатчиков. Геотермальные станции, работающие в местах, где имеются природные источники горячей воды, также относятся к этому виду источников. ;

Фотоэффект

Энергия фотонов света переходит в электрическую энергию, когда твердое тело обладает свойствами полупроводника. К таким веществам относятся, например, кремний, германий, арсенид галлия. Солнечные батареи, которые были в первую очередь разработаны для космических кораблей, сейчас используются повсеместно;

Химические реакции

Набор определенных химических веществ может вступать в реакции, в результате которых внутренняя энергия переходит в электрическую. Такие источники тока называются гальваническими элементами в честь итальянского ученого Луиджи Гальвани. Батарейки для современных гаджетов, телевизионных пультов, все это — гальванические элементы. Батарейки используются один раз, так как после окончания химического процесса электроды теряют способность к накоплению зарядов;

Рис. 2. Гальванический элемент:.

Аккумуляторы

Данные источники тока выделены в отдельный класс, хотя механизм получения электрической энергии у них тоже основан на химических реакциях. В этих источниках электроды не расходуются. После подзарядки от электрической сети, источники снова возобновляют механизм химического воспроизводства электрической энергии.

Рис. 3. Примеры аккумуляторов:.

Конструкция и устройство трансформатора тока

Итак, если говорить о конструкции трансформатора тока, то следует начать с его внешнего вида.

Прежде всего, обратим внимание на шину, сердечник и диэлектрический корпус, а точнее, на его наличие. Для кого-то это покажется странным, но без него в конструкции трансформатора не обойтись

При этом этот корпус по форме может отличаться: он может быть представлен и в цилиндрическом виде, и в прямоугольном, и в квадратном.

В середине корпуса располагается небольшой промежуток, служащий охвату проводов, которые выступают в качестве первичной обмотки.

Раз уж мы коснулись обмотки, то нельзя не сказать о внутреннем устройстве трансформатора и двух видах обмотки (смотреть рисунок).

Разветвленная электрическая цепь

Самой простой электрической цепью является цепь, состоящая из двух двухполюсных элементов, соединенных «кольцом» с помощью проводников – одного источника тока и одного потребителя. Такая цепь работает, например, в карманном фонарике. Источником тока в ней является батарейка, потребителем – лампочка. В простой елочной гирлянде источником тока является бытовая электросеть, а все лампочки-потребители соединены последовательно, «кольцом», и работают вместе.

Чтобы цепь работала правильно, все электрические характеристики элементов должны быть заранее рассчитаны. Напряжение, подаваемое из бытовой сети, должно быть таким, чтобы в полную силу (но без перекала) зажечь все лампочки гирлянды.

Однако, такие простые цепи – это, скорее, исключение, чем правило. Практически любая современная электрическая цепь состоит из тысяч и даже миллионов элементов. И, хотя, источник тока в такой цепи чаще всего только один, остальные звенья соединены в сложную сеть, которая скорее напоминает «кружево», а не «кольцо». Такая цепь называется разветвленной.

Ток, идущий по любому звену разветвленной цепи, может быть как постоянным, так и переменным, при этом в цепи возможны переходные процессы. Однако, основным режимом является установившийся, и для расчета установившегося режима электрических цепей любой сложности хватает трех формул законов постоянного тока (правила Кирхгофа иногда называют законами):

  • правила Кирхгофа для узлов (первое);
  • правила Кирхгофа для контуров (второе);
  • Закона Ома для участка цепи.

Рассмотрим их.

Строение атома

Думаю, вы все в курсе, что абсолютно все вещества состоят из маленьких крупинок – атомов. В свою очередь атом состоит из ядра и электронов. В каких-то веществах электронов может быть очень много, а в каких-то всего один (атом водорода).

Давайте поиграем в ассоциации. Пусть ядро – это пастух, а электроны – овцы.

Этих пастухов в веществах миллиарды, и у каждого пастуха есть свои овцы. В каком-то веществе на пастуха приходится одна овца, а в каких-то веществах даже по двести с лишним овец! Например, водород имеет лишь один электрон, тогда как металлы имеют множество электронов.

Если вы когда-нибудь пастушили коров, коз или овец, то, наверное, в курсе, что чем дальше от пастуха этот рогатый скот, тем больше он может наворотить дел, так как пастух не успевает усмотреть за всеми овцами. Некоторые овцы умудряются убегать из стада, бежать на пашню или в огороды и лакомится там различными вкусняшками.

Как создать длительный ток и что для этого необходимо

Положительный заряд – это недостаток электронов, а отрицательный – это их избыток. В момент соединения тел проводником, отрицательные электроны устремились к положительно заряженному телу.

А в конце ток прекратился потому, что заряды тел скомпенсировались и тела превратились в электрически нейтральные. Нам известно, что нейтральные тела электрическое поле не создают.

Значит, ток существует до тех пор, пока существует электрическое поле. Поэтому, нужно каким-либо образом поддерживать электрическое поле. А для этого нужно, чтобы одно из тел обладало избыточным отрицательным зарядом. То есть, нужно поддерживать на одном из тел отрицательный, а на другом – положительный заряд. Пока заряды тел будут поддерживаться, ток будет существовать.

Чтобы на теле с положительным зарядом поддерживать этот заряд, нужно убирать с этого тела прибежавшие туда электроны и отправлять их обратно на отрицательно заряженное тело.

Такая схема по своему устройству напоминает фонтан, в котором насос поддерживает разность давлений. В нагнетающей воду трубе давление больше, чем в трубе, через которую вода поступает обратно в насос.

Рис. 18. Поток воды циркулирует благодаря насосу, поддерживающему разность давлений

Именно благодаря этой разности, из одной трубы вода выплескивается вверх, а собранная в чашу вода попадает обратно в насос. При этом, по контуру циркулирует одно и то же количество воды, то есть, водяной контур замкнут. А ток воды в этом контуре поддерживается специальным устройством – насосом. Он совершает работу против силы тяжести.

Рис. 19. Водяной насос в фонтане совершает работу против силы тяжести

Сторонние силы — что это такое

Подобно своеобразному насосу устроен источник тока. Внутри источника действуют сторонние силы. Они возвращают электроны на «-» контакт.

На заряды в электрическом поле будет действовать сила. Она называется силой Кулона и имеет электрическую природу. Электроны будут притягиваться к телу, имеющему положительный заряд.

Сила Кулона будет мешать возвращать электроны на отрицательное тело. Подобно силе тяжести, которая мешает воде в фонтане двигаться вверх.

Чтобы вернуть электроны на отрицательно («-») заряженное тело, нужно совершить против силы Кулона. Значит, должна присутствовать какая-то внешняя сила, возвращающая электроны на отрицательно («-») заряженное тело. Эта сила имеет неэлектрическую природу, она называется сторонней силой.

Рис. 20. Источник тока совершает работу против электрической силы Кулона

Теперь можно ответить на вопрос: Что такое источник тока?

Во время существования электрического тока сами электроны не расходуются. Они, как вода в фонтане, циркулируют по замкнутой траектории.

Чтобы ток существовал постоянно, нужно, чтобы между заряженными противоположно телами электрическое поле существовало непрерывно.

Примечание: В качестве заряженных противоположно тел можно рассматривать контакты источника тока.

Для этого электроны нужно пропустить по замкнутому контуру, т. е. непрерывной электрической цепи. Поэтому, еще одно условие существования постоянного тока – это замкнутая электрическая цепь. Как только замыкается цепь, в направленное движение приходят все заряженные частицы, находящиеся в этой цепи.

Рис. 21. Электрический ток источник может создать только в замкнутой цепи

В такой цепи заряды циркулируют по замкнутой траектории. То есть, заряд, вышедший из источника и совершивший полный оборот, попадет обратно в источник тока. Там он будет подхвачен сторонними силами и через противоположный вывод источника тока попадает обратно в цепь. Затем, будет двигаться далее и, совершит следующий круг. Поэтому, во время протекания электрического тока сами заряды не расходуются.

Нам известно, если на заряд действует сила и, под действием этой силы заряд перемещается, то эта сила совершает работу.

Это значит, что сторонние силы в источнике совершают работу. Подробнее о работе сторонних сил (ссылка).

Что такое мощность и плотность тока?

Ну вот, мы выяснили, что такое ток постоянный, а что такое переменный. Но у вас наверняка осталось еще масса вопросов. Их-то мы и постараемся рассмотреть в этом разделе нашей статьи.

Из этого видео Вы подробнее сможете узнать о том, что же такое мощность.

И первым из этих вопросов будет: что такое напряжение электрического тока? Напряжением называется разность потенциалов между двумя точками.

Что является электрическим напряжением

Сразу возникает вопрос, а что такое потенциал? Сейчас меня вновь будут хаять профессионалы, но скажем так: это избыток заряженных частиц. То есть, имеется одна точка, в которой избыток заряженных частиц — и есть вторая точка, где этих заряженных частиц или больше, или меньше. Вот эта разница и называется напряжением. Измеряется она в вольтах (В).

Напряжение в розетке

  • В качестве примера возьмем обычную розетку. Все вы наверняка знаете, что ее напряжение составляет 220В. В розетке у нас имеется два провода, и напряжение в 220В обозначает, что потенциал одного провода больше чем потенциал второго провода как раз на эти 220В.
  • Понимание понятия напряжения нам необходимо для того, чтоб понять, что такое мощность электрического тока. Хотя с профессиональной точки зрения, это высказывание не совсем верное. Электрический ток не обладает мощностью, но является ее производной.

Плотность электрического тока в проводнике

  • Дабы понять этот момент, давайте вновь вернемся к нашей аналогии с водяной трубой. Как вы помните сечение этой трубы — это напряжение, а скорость потока в трубе — это ток. Так вот: мощность — это то количество воды, которое протекает через эту трубу.
  • Логично предположить, что при равных сечениях, то есть напряжениях — чем сильнее поток, то есть электрический ток, тем больший поток воды переместиться через трубу. Соответственно, тем большая мощность передастся потребителю.
  • Но если в аналогии с водой мы через трубу определенного сечения можем передать строго определенное количество воды, так как вода не сжимается, то с электрическим током все не так. Через любой проводник мы теоретически можем передать любой ток. Но практически, проводник небольшого сечения при высокой плотности тока просто перегорит.

Формула плотности тока

  • В связи с этим, нам необходимо разобраться с тем, что такое плотность тока. Грубо говоря — это то количество электронов, которое перемещается через определенное сечение проводника за единицу времени.
  • Это число должно быть оптимальным. Ведь если мы возьмем проводник большого сечения, и будем передавать через него небольшой ток, то цена такой электроустановки будет велика. В то же время, если мы возьмем проводник небольшого сечения, то из-за высокой плотности тока он будет перегреваться и быстро перегорит.
  • В связи с этим, в ПУЭ есть соответствующий раздел, который позволяет выбрать проводники исходя из экономической плотности тока.

Таблица выбора проводников по экономической плотности тока

Но вернемся к понятию, что такое мощность тока? Как мы поняли по нашей аналогии, при одинаковом сечении трубы передаваемая мощность зависит только от силы тока. Но если сечение нашей трубы увеличить, то есть увеличить напряжение, в этом случае, при одинаковых значениях скорости потока, будут передаваться совершенно разные объемы воды. То же самое и в электрике.

Передача мощностей через лини разных напряжений и видов электрического тока

Чем выше напряжение, тем меньший ток необходим для передачи одинаковой мощности. Именно поэтому, для передачи на большие расстояния больших мощностей используют высоковольтные линии электропередач.

Ведь линия сечением провода в 120 мм2 на напряжение в 330кВ, способна передать в разы большую мощность в сравнении с линией такого же сечения, но напряжением в 35кВ. Хотя то, что называется силой тока, в них будет одинаковой.

Электрический ток в различных средах

В металлах

Носителями тока в металлических проводниках являются свободные электроны, которые из-за слабых электрических связей хаотично блуждают внутри кристаллических решёток (рис. 3). Как только в проводнике появляется ЭДС, электроны начинают упорядочено дрейфовать в сторону позитивного полюса источника питания.


Рис. 3. Электрический ток в металлах

В результате прохождения тока возникает сопротивление проводников, которое препятствует потоку электронов и приводит нагреванию. При коротком замыкании выделение тепла настолько сильное, разрушает проводник.

В полупроводниках

В обычном состоянии у полупроводника нет свободных носителей зарядов. Но если соединить два разных типа полупроводников, то при прямом подключении они превращаются в проводник. Происходит это потому, что у одного типа есть положительно заряженные ионы (дырки), а у другого – отрицательные ионы (атомы с лишним электроном).

Под напряжением электроны из одного полупроводника устремляются для замещения (рекомбинации) дырок в другом. Возникает упорядоченное движение свободных зарядов. Такую проводимость называют электронно-дырочной.

В вакууме и газе

Электрический ток возможен и в ионизированном газе. Заряд переносится положительными и отрицательными ионами. Ионизация газов возможна под действием излучения или вследствие сильного нагревания. Под действием этих факторов возбуждаются атомы, которые превращаются в ионы (рис. 4).


Рис 4. Электрический ток в газах

В вакууме электрические заряды не встречают сопротивления, поэтому. заряженные частицы движутся с околосветовыми скоростями. Носителями зарядов являются электроны. Для возникновения тока в вакууме необходимо создать источник электронов и достаточно большой положительный потенциал на электроде.

Примером может служить работа вакуумной лампы или электронно-лучевая трубка.

В жидкостях

Оговоримся сразу – не все жидкости являются проводниками. Электрический ток возможен в кислотных, щёлочных и соляных растворах. Иначе говоря – в средах, где имеются заряженные ионы.

Если опустить в раствор два электрода и подключить их к полюсам источника, то между ними будет протекать электрический ток (рис. 5). Под действием ЭДС катионы устремятся к катоду (минусу), а анионы к аноду. При этом будет происходить химическое воздействие на электроды – на них будут оседать атомы растворённых веществ. Такое явление называют электролизом.


Рис. 5. Электроток в жидкостях

Для лучшего понимания свойств электротока в разных средах, предлагаю рассмотреть картинку на рисунке 6

Обратите внимание на вольтамперные характеристики (4 столбец)


Рис. 6. Электрический ток в средах

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод – это шланг. Тонкий провод – это тонкий в диаметре шланг, толстый провод – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Сила тока – это количество электронов, прошедших через площадь поперечного сечения проводника за какое-либо определенное время.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, “разрезал” его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Какой ток опасней для жизни человека

Переменный ток в промышленности и быту используется значительно чаще. К этому давно привыкли и мало кто знает, что в 19 веке Никола Тесла и Томас Эдисон развернули настоящую «токовую войну», итоги которой определяли дальнейший путь развития промышленности.

Советуем изучить Освещение светодиодное в квартире и элементы отделки интерьера

Проводник электричества

Одним из аргументов, приводимых Эдисоном в защиту постоянного тока, была его меньшая опасность для человека по сравнению с переменным. При одинаковых условиях (до 500 В) сила воздействия переменного тока на организм выше в 2-4 раза.

В итоге победила концепция переменного тока. Он значительно легче и с меньшими потерями передаётся на дальние расстояния, легко преобразуется, удобнее для работы электродвигателей.

Воздействие электротока на человеческое тело:

  • Термическое (до 60%) — нагрев кожи и внутренних тканей вплоть до ожогов;
  • Электролитическое — разложение и нарушение физико-химического состава органических жидкостей (крови, лимфы);
  • Механическое — расслоение и разрыв внутренних органов под воздействием электродинамического удара;
  • Биологическое — судорожные сокращения мышечной и нервной ткани.

Внимание! Потеря сознания, а также нарушение работы сердца и лёгких происходит при совпадении частоты электрического потока и сердечных сокращений

Переменный

Электроток, который с течением времени изменяется по величине и направлению. Поток электронов постоянно колеблется с определённой частотой.

Синусоида движения электронов

Почему для жизни человека переменный ток более опасен, чем постоянный:

  • В силу своей природы вызывает возбуждение нервной системы, сокращение и расслабление мышц, что повышает вероятность фибрилляции предсердий, приводящей к остановке сердца;
  • Частота проходящего импульса снижает сопротивление человеческого тела;
  • Электропроводник с переменным током обладает высокой силой притяжения.

На заметку! Верхняя граница силы переменного тока, не приводящая к поражению и тяжким последствиям — 1,2 мА.

Постоянный

Электроток — движение заряженных частиц от минуса к плюсу, полярность и напряжение которого постоянны. Поток электронов идёт строго по прямой линии без колебаний. Тяжесть поражения прямо пропорциональна величине подведённого напряжения.

Генератор постоянного тока

Причины меньшей опасности постоянного тока по сравнению с переменным:

  • Вызывает спазм мускулатуры, но не приводит к нарушениям сердечных сокращений;
  • Сопротивление человеческого тела выше при частоте колебаний электронов равной нулю;
  • Одиночный удар позволяет быстрее прекратить прямой контакт с электропроводником, отбрасывает человека, уменьшая длительность воздействия поражающих факторов на организм.

Внимание! Верхняя граница безопасного воздействия постоянного тока значительно выше — 7 мА. Сравнение воздействия на организм переменного и постоянного электротоков, чтобы выяснить, какой ток опаснее. Сравнение воздействия на организм переменного и постоянного электротоков, чтобы выяснить, какой ток опаснее

Сравнение воздействия на организм переменного и постоянного электротоков, чтобы выяснить, какой ток опаснее.

Сила электротока (мА) Переменный ток Постоянный ток
0,6–1,5 Лёгкое покалывание Нет ощущений
2–3 Лёгкие судороги -«-
5–7 Сильные судороги Лёгкое покалывание, небольшое ощущение тепла
8–10 Выраженные болевые ощущения, верхний порог возможности самостоятельно разжать руки Возрастают симптомы покалывания кожи и нагрева
20–25 Паралич конечностей, невозможность отпустить источник тока Слабые судороги, сильный нагрев кожных покровов
50–80 Нарушение сердечной деятельности, паралич дыхательного центра Затруднённое дыхание, сильные судорожные спазмы
90–100 Остановка дыхания, вероятность фибрилляции предсердий Паралич органов дыхания, вероятность отброса пострадавшего, получения физической травмы
200–300 При воздействии более 0,1 с остановка сердца, разрушение тканей Термическое разрушение тканей

Обратите внимание! Важно знать, какой ток опасен для жизни — 50–100 мА, более 100 мА — смертелен. Оказание помощи при электротравме

Оказание помощи при электротравме

Оказание помощи при электротравме

Опасность электрического тока

Помимо полезных свойств, ток – это также достаточно опасное для человеческого здоровья и жизни явление. Так, при соприкосновении с оголенным проводником, в котором величина силы тока свыше 0,1 Аи напряжения – 100 В, возможны серьезные электротравмы, повреждения внутренних органов и даже остановка сердца. Поэтому перед началом работ на не обесточенном по каким-либо причинам участке цепи характеристики протекающего по нему электротока должны в обязательном порядке измеряться, чтобы разумно оценивать последствия поражения током при контакте с токопроводящей поверхностью.

На заметку. При работе на электроустановках необходимо знать, как называются предупреждающие знаки электрической безопасности. Это нужно для того, чтобы ориентироваться в том, насколько опасна работа на том или ином участке цепи в случае его вынужденного или случайного нахождения под напряжением.

Таким образом, знание природы и сути такого явления, как электрический ток (сокращенно эл ток это), позволяет не только понять, как он протекает по тем или иным веществам, но и осознать опасность данного явления для человеческого здоровья при неаккуратном обращении с находящимися под напряжением проводниками, вышедшими из строя электроприборами.

Как работает электричество, электризация

Положительный и отрицательный ионы

Как уже было отмечено, по умолчанию, атом электрически нейтрален: положительный и отрицательный заряды равны. Они компенсируют другу друга. Но, если, вдруг, представить себе, что хотя-бы один электрон покинет сове место в атоме, то суммарный положительный электрический заряд протонов превысит отрицательный заряд всех оставшихся электронов. Поэтому такой атом в целом имеет свойства положительного заряда и называется положительный ион.

Электризация

Атом, получивший дополнительный электрон, будет иметь в преобладающей степени отрицательный заряд. В этом случае атом называется отрицательный ион.

Следует заметить, что не только атом будет иметь положительный или отрицательный заряд, но и молекула, а соответственно и вещество, которое содержит данный атом.

Электризация

Электризацией называют процесс получения дополнительного электрона, либо наоборот его потерю. Если какое-либо тело имеет избыток или нехватку электронов, то есть явно выраженный заряд какого либо знака, то говорят, что тело наэлектризовано.

Опытным путем установлено, что заряды одного знака отталкиваются, а разных знаков притягиваются. Подобный опыт можно повторить следующим очень известным образом: подвесить на нити два металлических шарика, которые изначально имеют нейтральный заряд. Далее придать одному шарику положительный заряд, а второму отрицательный. В результате шарики притянутся друг к другу. Если двум шарикам сообщить заряд одного знака, то они будут отталкиваться.

Электризация трением

А вот, при натирании стеклянной палочки шелком, все происходит наоборот. Электроны поверхностного слоя стекла покидают палочку. В этом случае стеклянная палочка приобретает положительный заряд за счет перевеса суммарного заряда протонов.

Электризация металла

Если мы возьмем хорошо проводящий материал, например кусок металла, то при натирании его о диэлектрик, образовавшийся на поверхности металла заряд, мгновенно уйдет в землю через наше тело и другие предметы. Поскольку в отличии от рассматриваемых диэлектриков наше тело обладает относительно хорошей проводимостью и по нему сравнительно легко перемещаются заряды.

Опыт электризации трением не получится оценить и в том случае, когда мы возьмём два металлических предмета даже с хорошо изолированными рукоятками. При взаимном трении металл об металл, как и в предыдущих опытах возникнут свободные электроны. Однако вследствие наличия неизбежной шероховатости поверхностей, не получится одновременно по всей поверхности отделить оба металлических предмета. Так, в последней точке соприкосновения двух поверхностей электроны перетекут через так называемый «мостик» пока их количество снова не станет таким же, как и до натирания.

Статическое электричество

Итак, теперь нам известно, что при натирании рассмотренных предметов, некоторые электроны получают избыточную энергию. Затем они покидают атомы одного тела, которое становится положительно заряженным. Эти электроны занимают места на орбитах атомов другого вещества. Которое, в свою очередь, приобретает свойства отрицательного заряда. При этом одноименные заряды отталкиваются друг от друга, а разноименные – притягиваются. Силы, порождаемые зарядами, называются электрическими. А сам факт наличия электрических зарядов и их взаимодействие называют электричество.

В рассмотренных примерах получают так называемое статическое электричество.

Электрическая сила

В процессе электризации к заряженной пластмассовой палочке будут сами собой притягиваться кусочки бумаги. Почему это происходит?

Попробуем раскрыть тайну физического процесса. Она заключается в следующем. При поднесении заряженного тела к незаряженному телу под действием электрических сил происходит перемещение электронов к одному из краев тела. И этот край тела ввиду избытка электронов становится отрицательно заряженным. А противоположный край, соответственно, положительно заряженным. Средняя часть тела будет нейтрально заряженной. Таким образом, заряды смещаются по краям данного тела.

Ближе к поднесенному заряженному телу будут стремиться заряды противоположного знака. Например, если палочка заряжена положительно, то к ней притянется бумага. Той поверхностью, на которой скопились отрицательные заряды. И наоборот.

Формула закона Кулона

Заключение

Почему стоит обратить внимание на новую популярную сеть TikTok? Ответ очевиден – это интересно, просто, удобно и интригующе. На сегодняшний день нет ни одного другого приложения, которое стало бы настолько вирусным по всей планете (в хорошем смысле) и включало бы в себя настолько большой функционал

Пользователи ТикТок все как один говорят, что попав на эту развлекательную платформу однажды, не сможешь больше игнорировать ее. Данное приложение является чем-то новым и абсолютно уникальным, так что как минимум стоит уделить ей внимание, и как максимум попробовать себя реализовать в ней.

Дорогой читатель, очень надеюсь, что данная статья была полезна для тебя и дала ответы на многие вопросы, связанные с TikTok. Если тебе было интересно, то не забывай поделиться статьей со своими друзьями и знакомыми. Сделай её репост – соверши доброе дело! Также не забывай подписываться на блог, впереди тебя ждет еще много всего интересного и познавательного.

До новых встреч, любимый читатель!