Закон сохранения электрического заряда

Содержание

Практическое использование закона Кулона

Исследования Кулона для электростатики имеют большое значение, так как применяются во многих изобретениях и устройствах. В качестве примера можно привести громоотвод.

Он применяется для защиты зданий и электроустановок от гроз, что также позволяет предупредить возникновение пожара и поломку техники.

Когда на улице дождливая погода сопровождается грозой, то на земле возникают направленные разряды, притягивающиеся к облакам. В результате на земле образуются электрические поля большой величины.

Рядом с острой частью громоотвода это поле обладает наибольшей величиной, поэтому от этой части образуется возгорание самостоятельного газового разряда (земля -> громоотвод ->облака).

В то время, когда электричество от земли притягиваются к противоположным величинам облаков, начинает действовать закон Кулона.

Происходит намагничивание воздуха и уменьшение напряженности электростатического поля рядом с громоотводом. В результате оба заряда не будет накапливаться на зданиях и тогда риск возникновения молний будет ниже.

В том случае если молния всё-таки ударит по зданию, тогда по громоотводу образуемая энергия будет уходить в землю.

Для более важных исследований используют устройство, с помощью которого получают заряженные частицы высокой энергии. В этом устройстве поле, создаваемое при помощи электрических разрядов, создаёт действия, которые увеличивают энергию частиц.

При рассмотрении этих процессов с позиции действия на небольшие разряды группами, то в этом случае все зависимости закона Кулона становятся правдивыми.

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности – одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F21 и R21.

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Кратные и дольные единицы

Образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Кл декакулон даКл daC 10−1 Кл децикулон дКл dC
102 Кл гектокулон гКл hC 10−2 Кл сантикулон сКл cC
103 Кл килокулон кКл kC 10−3 Кл милликулон мКл mC
106 Кл мегакулон МКл MC 10−6 Кл микрокулон мкКл µC
109 Кл гигакулон ГКл GC 10−9 Кл нанокулон нКл nC
1012 Кл теракулон ТКл TC 10−12 Кл пикокулон пКл pC
1015 Кл петакулон ПКл PC 10−15 Кл фемтокулон фКл fC
1018 Кл эксакулон ЭКл EC 10−18 Кл аттокулон аКл aC
1021 Кл зеттакулон ЗКл ZC 10−21 Кл зептокулон зКл zC
1024 Кл иоттакулон ИКл YC 10−24 Кл иоктокулон иКл yC
применять не рекомендуется

Закон сохранения зарядов

Закон сохранения зарядов

гласит, что заряды не появляются из неоткуда и не исчезают в никуда, а просто переходят от одного к другому или, выражаясь более научным языком – для замкнутой системы алгебраическая сумма зарядов всегда остается постоянной.

Скорее всего, Вам будет интересно:

  • Плотность тока проводимости, смещения, насыщения: определение и формулы
  • Уравнение состояния идеального газа Менделеева-Клапейрона с выводом
  • Основные положения молекулярно-кинетической теории (МКТ), формулы МКТ
  • Основное уравнение молекулярно-кинетической теории (МКТ) с выводом
  • Средняя линия трапеции: чему равна, свойства, доказательство теоремы
  • Свойства прямоугольной трапеции
  • Как найти область определения функции онлайн
  • Влияние человека на природу, воздействие общества на природу
  • Состав служебного программного обеспечения
  • Свойства вписанной в треугольник окружности

Решение практических задач

Два одинаковых шара, один из которых имеет электрический заряд, приводятся в соприкосновение. Расстояние между предметами становится равным 15 см. Известно, что заряженное тело воздействует на незаряженный шар с отталкивающей силой F = 1 мН. Требуется определить первоначальный заряд активного шарика.

При контакте шаров электрический заряд разделяется пополам. По данной величине силы отталкивания определяется заряженность обоих предметов. Преобразование формулы Кулона даёт математическое выражение q2= (F ∙ r2) ∕ k.

Не может не внушать глубокого уважения жизнь, посвящённая служению Отечеству. Но особое восхищение вызывает труд, направленный на углубление знания человечества о законах природы. На I Международном электрическом конгрессе, который проходил 1881 году в Париже, единицам электротехнических измерений присвоили фамилии учёных, открывших их. Кулон возглавляет список.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряжен­ных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов. Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

.

где |q1| и |q2| — модули зарядов; r — расстояние между ними; k — коэффициент пропорциональнос­ти, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединя­ющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока — 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока 1 А за 1 с.

Заряд в 1 Кл очень велик. Сила взаимодействия двух точечных зарядов по 1 Кл каждый, расположенных на расстоянии 1 км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой 1 т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в 1 А — вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент k в законе Кулона при его записи в СИ выражается в Н · м 2 /Кл 2 . Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

k = 9 · 10 9 Н·м 2 /Кл 2 .

Часто его записывают в виде , где ɛ =8,85 · 10 — 12 Kл 2 H·м 2 — электрическая постоянная. В среде с диэлектрической проницаемостью ɛ закон Кулона имеет вид:

.

Опыт Кулона

Необходимость проведения экспериментов Кулона была вызвана тем, что в середине XVIII в. накопилось много качественных данных об электрических явлениях. Возникла потребность дать им количественную интерпретацию. Поскольку силы электрического взаимодействия были относительно невелики, возникла серьезная проблема в создании метода, который позволил бы произвести замеры и получить необходимый количественный материал.

Французский инженер и ученый Ш. Кулон предложил метод измерения малых сил, который основывался на следующем экспериментальном факте, обнаруженном самим ученым: сила, возникающая при упругой деформации металлической проволоки, прямо пропорциональна углу закручивания, четвертой степени диаметра проволоки и обратно пропорциональна ее длине:

\(~F_{ynp} = k \cdot \dfrac{d^4}{l} \cdot \varphi\) ,

где d – диаметр, l – длина проволоки, φ – угол закручивания. В приведенном математическом выражении коэффициент пропорциональности k находился опытным путем и зависел от природы материала, из которого изготавливалась проволока.

Данная закономерность была использована в так называемых крутильных весах. Созданные весы позволили измерить ничтожно малые силы порядка 5·10-8 Н.

Рис. 3

Крутильные весы (рис. 3, а) состояли из легкого стеклянного коромысла 9 длиной 10,83 см, подвешенного на серебряной проволоке 5 длиной около 75 см, диаметром 0,22 см. На одном конце коромысла располагался позолоченный бузиновый шарик 8, а на другом – противовес 6 – бумажный кружок, смоченный в скипидаре. Верхний конец проволоки прикреплялся к головке прибора 1. Здесь же имелся указатель 2, с помощью которого отсчитывался угол закручивания нити по круговой шкале 3. Шкала была проградуирована. Вся эта система размещалась в стеклянных цилиндрах 4 и 11. В верхней крышке нижнего цилиндра имелось отверстие, в которое вставлялась стеклянная палочка с шариком 7 на конце. В опытах применялись шарики с диаметрами в пределах 0,45 – 0,68 см.

Перед началом эксперимента указатель головки устанавливался на нулевой отметке. Затем шарик 7 заряжался от предварительно наэлектризованного шарика 12. При соприкосновении шарика 7 с подвижным шариком 8 происходило перераспределение заряда. Однако из-за того, что диаметры шариков были одинаковыми, одинаковыми были и заряды на шариках 7 и 8.

Вследствие электростатического отталкивания шариков (рис. 3, б) коромысло 9 поворачивалось на некоторый угол γ (по шкале 10). С помощью головки 1 это коромысло возвращалось в исходное положение. По шкале 3 указатель 2 позволял определять угол α закручивания нити. Общий угол закручивания нити φ = γ + α. Сила же взаимодействия шариков была пропорциональна φ, т. е. по углу закручивания можно судить о величине этой силы.

При неизменном расстоянии между шариками (оно фиксировалось по шкале 10 в градусной мере) исследовалась зависимость силы электрического взаимодействия точечных тел от величины заряда на них.

Для определения зависимости силы от заряда шариков Кулон нашел простой и остроумный способ изменения заряда одного из шариков. Для этого он соединял заряженный шарик (шарики 7 или 8) с таким же по размерам незаряженным (шарик 12 на изолирующей ручке). Заряд при этом распределялся поровну между шариками, что и уменьшало исследуемый заряд в 2, 4 и т. д. раз. Новое значение силы при новом значении заряда опять определялось экспериментально. При этом выяснилось, что сила прямо пропорциональна произведению зарядов шариков:

\(~F \sim q_1 \cdot q_2\) .

Зависимость силы электрического взаимодействия от расстояния была обнаружена следующим образом. После сообщения шарикам заряда (он был у них одинаковый) коромысло отклонялось на некоторый угол γ. Затем поворотом головки 1 уменьшался этот угол до γ1. Общий угол закручивания φ1 = α1 + (γγ1)(α1 – угол поворота головки). При уменьшении углового расстояния шариков до γ2 общий угол закручивания φ2 = α2 + (γγ2) . Было замечено, что, если γ1 = 2γ2, ТО φ2 = 4φ1, т. е. при уменьшении расстояния в 2 раза сила взаимодействия возрастала в 4 раза. Во столько же раз увеличился момент силы, так как при деформации кручения момент силы прямо пропорционален углу закручивания, а значит, и сила (плечо силы оставалось неизменным). Отсюда вытекает вывод: сила взаимодействия двух заряженных шариков обратно пропорциональна квадрату расстояния между ними:

\(~F \sim \dfrac{1}{r^2}\) .

Формула заряда конденсатора

Для выполнения зарядки, конденсатор должен быть подключен к цепи постоянного тока. С этой целью может использоваться генератор. У каждого генератора имеется внутреннее сопротивление. При замыкании цепи происходит зарядка конденсатора. Между его обкладками появляется напряжение, равное электродвижущей силе генератора: Uc = E.

Обкладка, подключенная к положительному полюсу генератора, заряжается положительно (+q), а другая обкладка получает равнозначный заряд с отрицательной величиной (- q). Величина заряда q находится в прямой пропорциональной зависимости с емкостью конденсатора С и напряжением на обкладках Uc. Эта зависимость выражается формулой: q = C x Uc.

В процессе зарядки одна из обкладок конденсатора приобретает, а другая теряет определенное количество электронов. Они переносятся по внешней цепи под влиянием электродвижущей силы генератора. Такое перемещение является электрическим током, известным еще как зарядный емкостной ток (Iзар).

Открытие закона Кулона (закон взаимодействия заряженных тел)

Закон взаимодействия заряженных тел был открыт французским физиком Шарлем Огюстеном Кулоном в 1785 году. Он провел прямое измерение силы взаимодействия двух заряженных тел с помощью крутиль­ных весов (рис. 4.50).

Закон Кулона касается непод­вижных точечных тел, имеющих электрические заряды.

Главной частью крутильных весов яв­ляется легкое коромысло, изготовленное из диэлектрика и подвешенное на тонкой ме­таллической проволоке. На одном конце коромысла укреплен позолоченный шарик a из сердцевины веточки бузины. На втором конце коромысла размещен противовес c, который уравновешивает шарик.

Верхний конец проволоки закреплен в центре головки B, которая может повора­чиваться. Поворачивая головку на опреде­ленный угол, значение которого отсчиты­вается на специальной шкале, можно изме­нять положения коромысла A. Коромысло с проволокой находится в стеклянном кор­пусе, который защищает коромысло и про­волоку от действия движущегося воздуха.

В крышке сосуда есть отверстие, через которое внутрь вводится шарик b, равный по размеру шарику a и размещен на изо­ляционной ручке. Шкала, нанесенная на боковую поверхность стеклянного корпуса, позволяет определять угловое расстояние меж­ду шариками, которое легко перевести в линейное расстояние.

Рис. 4.50. Крутильные весы, с помощью которых Ш. Кулон открыл закон вза­имодействия электрически заряженных тел

В ходе опыта сначала отмечают поло­жения обоих шариков в незаряженном со­стоянии. После этого вынимают шарик b и сообщают ему некоторый электрический за­ряд. Введя шарик в отверстие на крышке, касаются им шарика a на коромысле. По­скольку шарик a приобрел заряд, одно­именный с зарядом шарика b, то он нач­нет двигаться, поворачивая коромысло. По­ворачивая головку B, возвращают коромысло в исходное положение. По углу поворота головки и свойствам упругости проволоки рассчитывают силу, которая действует на шарик a. Чтобы установить, как эта сила зависит от значения зарядов шариков, вы­нимали шарик b, снимали с него электри­ческий заряд и снова касались им шарика a. Получали заряды вдвое меньше, чем в пер­вом случае. Таким образом получали заря­ды, значения которых не были выражены определенным числом, но были известны их соотношения:

q1 : q2 : q3 = 1 : ½ : ¼ …

Соответственно отношения сил, изме­ренных для каждого случая, были следу­ющими: Материал с сайта https://worldofschool.ru

F1 : F2 : F3 = 1 : ¼ : 1/16.

Если значение каждого из зарядов умень­шалось в 2 раза, то сила взаимодействия соответственно уменьшалась в 4 раза. От­сюда был сделан вывод, что сила пропор­циональна произведению значений зарядов.

Изменяя расстояние между шариками, Кулон установил, что при неизменных за­рядах на них сила взаимодействия между ними обратно пропорциональна квадрату расстояния между центрами шариков.

Закон Кулона — фундаменталь­ный закон природы.

На этой странице материал по темам:

Вопросы по этому материалу:

История открытия

Эксперименты с заряженными частицами проводили много физиков:

  • Г. В. Рихман;
  • профессор физики Ф. Эпинус;
  • Д. Бернулли;
  • Пристли;
  • Джон Робисон и многие другие.

Все эти учёные очень близко подошли к открытию закона, но никому из них не удалось математически обосновать свои догадки. Несомненно, они наблюдали взаимодействие заряженных шариков, но установить закономерность в этом процессе было непросто.

Кулон проводил тщательные измерения сил взаимодействия. Для этого он даже сконструировал уникальный прибор – крутильные весы (см. Рис. 2).


Рис. 2. Крутильные весы

У придуманных Кулоном весов была чрезвычайно высокая чувствительность. Прибор реагировал на силы порядка 10-9 Н. Коромысло весов, под действием этой крошечной силы, поворачивалось на 1º. Экспериментатор мог измерять угол поворота, а значит и приложенную силу, пользуясь точной шкалой.

Благодаря гениальной догадке учёного, идея которой состояла в том, что при соприкосновении заряженного и незаряженного шариков, электрический заряд делился между ними поровну. На это сразу реагировали крутильные весы, коромысло которых поворачивалось на определённый угол. Заземляя неподвижный шарик, Кулон мог нейтрализовать на нём полученный заряд.

Таким образом, учёный смог уменьшать первоначальный заряд подвижного шарика кратное число раз. Измеряя угол отклонения после каждого деления заряда, Кулон увидел закономерность в действии отталкивающей силы, что помогло ему сформулировать свой знаменитый закон.

Как формулируется закон Кулона

Однако данная формулировка понятна не всем. Если объяснить по-простому, то закон Кулона будет звучать так: чем больше величина разряда тел и насколько рядом они располагаются, тем величина силы будет выше.

Либо по-другому: увеличивая промежуток между двумя заряженными телами – значение силы будет уменьшаться.

Описываемый закон может быть записан следующим образом:

Что означает каждая из величин в формуле: q — заряд, r — промежуток от одного заряда до другого, k — множитель, зависящий от того, какая система СИ была выбрана.

Заряд q обладает условно положительным либо условно отрицательным значением. Такое разделение может быть условным, т.е. если тела будут соприкасаться, то это значение способно перемещаться от тела к телу.

В результате у одного и того же объекта разряд может отличаться по своему значению и знаку. Заряд с маленьким размером в сравнении с тем, на каком расстоянии они взаимодействуют, носит название точечного заряда.

Кроме того, необходимо принимать во внимание тот факт, что условия, в которых находится разряд, оказывают влияние на взаимодействующие силы (F). Эта сила как в воздушном пространстве, так и в безвоздушном пространстве (вакууме) обладает практически одинаковыми величинами, поэтому этот закон применим исключительно в этих средах

И это является одним из правил использования выше написанной формулы. Единицей измерения зарядов является Кулон (Кл).

Кулоном называют заряды, проходящие за 1 сек через тело, в котором сила тока равна 1 амперу. И может быть представлена как производная от основополагающих единиц измерения СИ.

1Кл = 1А*1с

Известно, что отталкиваясь, тела плохо удерживаются на маленьком объекте, несмотря на то, что сила тока равная 1 амперу–не велика.

К примеру, ток с силой в 0,5 ампер на каждые 100Вт протекает по простым лампочкам, но в том же электрическом нагревателе сила тока составляет величину более 10 ампер.

Таким образом, сила, действующая на объект с весом в 1 тонну с позиции Земли, обладает приблизительно одним и тем же значением.

Можно отметить тот факт, что выше представленное уравнение фактически имеет такую же форму, как и при гравитационных взаимодействиях.

И в случае когда в классической механике первостепенной является масса, тогда как при электростатическом взаимодействии фигурирует заряд.

Свойства зарядов

Количественно энергию, переносимую частицами, принято измерять в кулонах (Кл). Заряд — это некая фундаментальная величина природы. Сказать, что это такое, физики не могут. Зато они научились объяснять их взаимодействия и смогли выяснить свойства явления. Они установили, что заряд вокруг себя создаёт электрическое поле. Когда под его действие попадает другая частица, она начинает испытывать на себе его воздействие. Если убрать второй заряд, сила взаимодействия мгновенно не поменяется.

Эта теория была выдвинута экспериментатором Майклом Фарадеем и названа им правилом близкодействия. Оказалось, что носитель испытывает действие электрического поля, даже если рядом нет другой заряженной частицы, то есть воспринимает электромагнитные волны.

Кроме этого, учёные смогли обнаружить следующие свойства, присущие заряду:

  1. Существует только 2 вида заряженных частиц — положительные и отрицательные.
  2. В природе нет преобладания плюсовых или минусовых зарядов, а их суммарное число одинаковое.
  3. При электризации процесс сопровождается не появлением новых носителей, а их разделением.
  4. Размер минимального положительного заряда (протона), который удалось открыть, составляет 1,6021892 * 10-19 Кл. Это значение по модулю равно электрону.
  5. Он инвариантен, то есть его значение не зависит от выбранной системы отсчёта.
  6. Энергия, которой обладает заряженная частица, может принимать любые дискретные значения.

Последнее свойство было доказано советским физиком Иоффе в начале XX века. Он взял 2 металлические пластины. Одну из них он зарядил отрицательно, а другую положительно. Между ними помещал пылинки цинка. В результате физик наблюдал их взаимодействие с прообразом плоского конденсатора. Под действием электрического поля и ультрафиолетового излучения, из цинка вылетали электроны, и скорость пылинок изменялась.

Измеряя её, он увидел, что заряд цинковых пылинок менялся на строгую величину. Но измерить её он не смог из-за сложной формы пыли. Рассчитать значение элементарной энергии получилось у Роберта Милликена. Вместо цинка, он использовал капельки масла. Учёный смог вычислить силу сопротивления воздуха, а затем определить, величину элементарного заряда. Она составила: 4,803242±0,000014×10-10 единиц (если значение будет измеряться в СГСЭ).

Это наименьшее значение, которое можно получить в природе. Остальные величины образуются квантованием, то есть общий заряд всегда равен целому числу элементарных.

Границы применимости закона Кулона

Для того чтобы объяснить грамотно и максимально приближенно к истине поведение зарядов, находящихся в вакууме и являющихся точечными, используют закон Кулона. Тем не менее для реальных тел следует учесть следующие параметры:

  • объем и размеры рассматриваемых тел;
  • характеристики среды, в которой рассматривают заряженные тела;

Некоторые испытатели в экспериментах наблюдали, что если тело, которое несет небольшой заряд, поместить в электрическое поле другого тела с зарядом большим по значению, оно начинает притягиваться к последнему. В таком случае можно говорить о том, что кулоновское правило неприменимо, так как одноименные заряды должны отталкиваться, а не наоборот. То есть можно сказать, что в вышеописанном эксперименте не работают законы Кулона и сохранения электрического заряда. Скорее всего, физикам еще предстоит узнать, как именно и с помощью чего можно объяснить это явление.


Границы применимости закона Кулона

Также на очень маленьких расстояниях, порядка 10–18 м, появляются электрослабые эффекты. Кулоновские силы взаимодействия не работают. Но если внести небольшие поправки, то можно использовать закон Кулона. В сильных электромагнитных полях, к примеру около магнетронов, он также нарушается.

Единица измерения заряда — Кулон

За единицу заряда приняли кулон (1 Кл) в честь Шарля Кулона. Так как существует известная величина единичного элементарного заряда заряда электрона (протона), то можно было принять величину заряда, равной ей.

Но это слишком маленькая величина, и она не подходит для многих бытовых и промышленных расчетов, так как расчеты могли бы стать слишком громоздкими и неудобными. Такая величина принята и пригодна в ядерной физике.

Для классической же физики требовалось ввести иную величину. Поэтому, исходя из уже известных и используемых величин, приняли величину заряда в 1 Кл, равную заряду, проходящему через поперечное сечение проводника за 1 с при силе тока в 1 А.

Заряд в 1 Кл очень большая величина. В случае, когда два точечных заряда обладают каждый таким зарядом, сила их взаимодействия будет примерно равна силе, с которой Земля притягивает груз весом в 1 т.

Поэтому придать такой заряд маленькому телу невозможно, так как по закону Кулона одноименные заряды будут отталкивать кулоновскими силами.

Однако в проводнике протекание такого заряда возможно. Например, через спираль лампочки мощностью 60 Вт за 1 с проходит заряд чуть меньший 1 Кл.

Поэтому всегда следует помнить, что электричество это не шутка, а мощная сила, и относиться с предосторожностями к электроприборам под напряжением

ЕГЭ Закон Кулона. ЗАДАЧИ с решениями

Формулы, используемые на уроках «Задачи на взаимодействие зарядов и закон Кулона».

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
 Два шарика, расположенных на расстоянии г = 20 см друг от друга, имеют одинаковые по модулю заряды и взаимодействуют в воздухе с силой F = 0,3 мН. Найти число нескомпенсированных электронов N на каждом шарике.

Задача № 2.
 С какой силой взаимодействовали бы в воздухе две капли воды массами по m = 1 г, расположенные на расстоянии г = 50 см друг от друга, если бы одной из них передали 10% всех электронов, содержащихся в другой капле?

Задача № 3.
 Два одинаковых шарика зарядили так, что заряд одного из них оказался по модулю в п раз больше другого. Шарики привели в соприкосновение и развели на вдвое большее, чем прежде, расстояние. Во сколько раз изменилась сила их кулоновского взаимодействия, если их заряды до соприкосновения были разноименными?

Задача № 4.
 Два маленьких заряженных шарика взаимодействуют в вакууме с некоторой силой, находясь на расстоянии r1 друг от друга. На каком расстоянии r2 друг от друга они будут взаимодействовать в среде с диэлектрической проницаемостью ε2, если сила их взаимодействия останется прежней?

Задача № 5.
 Маленьким шариком с зарядом q коснулись внутренней поверхности очень большого незаряженного металлического шара, в результате чего на большом шаре поверхностная плотность зарядов стала равна σ. Найти объем V большого шара. Среда — воздух.

Задача № 6.
 Два металлических шарика имеют массу m = 10 г каждый. Какое число электронов N надо удалить с каждого шарика, чтобы сила их кулоновского отталкивания стала равна силе их гравитационного тяготения друг к другу?

Задача № 7.
 Между двумя одноименными точечными зарядами q1 = 1 • 10–8 Кл и q2 = 4 • 10–8 Кл, расстояние между которыми r = 9 см, помещают третий заряд q так, что все три заряда оказываются в равновесии. Чему равен этот третий заряд q и каков его знак? На каком расстоянии r1 от заряда q1 он располагается?

Задача № 8.
 Заряды q1 = 20 нКл и q2 = –30 нКл расположены на некотором расстоянии друг от друга (рис. 1-10). Заряд q помещают сначала в точку 1, расположенную слева от заряда q1 на расстоянии r/2 от него, а затем в точку 2, расположенную между зарядами q1 и q2. Найти отношение силы F1, с которой заряды q1 и q2 действуют на заряд q в точке 1, к силе F2, с которой они действуют на него в точке 2.

Задача № 9.
 В вершинах равностороннего треугольника находятся одинаковые заряды q = 2 нКл (рис. 1-11). Какой заряд q надо поместить в центр треугольника С, чтобы система всех этих зарядов оказалась в равновесии? Будет ли равновесие устойчивым? 

Задача № 10.
 В вершинах квадрата расположены заряды q (рис. 1-12). Какой заряд q и где надо поместить, чтобы вся система зарядов оказалась в равновесии? Будет ли равновесие устойчивым? 

Задача № 11.
 В трех соседних вершинах правильного шестиугольника со стороной а расположены положительные заряды q, а в трех других — равные им по модулю, но отрицательные заряды. С какой силой F эти шесть зарядов будут действовать на заряд q, помещенный в центр шестиугольника (рис. 1-13)? 

Задача № 12.
 Два одинаковых маленьких шарика массами по m = 10 г каждый заряжены одинаково и подвешены на непроводящих и невесомых нитях так, как показано на рис. 1-14. Какой заряд q должен быть на каждом шарике, чтобы нити испытывали одинаковое натяжение? Среда — воздух, длина каждой нити l = 30 см. 

Задача № 13.
 На изолирующей нити подвешен маленький шарик массой m = 1 г, имеющий заряд q1 = 1 нКл. К нему снизу подносят на расстояние г = 2 см другой заряженный маленький шарик, и при этом сила натяжения нити уменьшается вдвое. Чему равен заряд q2 другого шарика? Среда — воздух.

Задача № 14.
 Два одинаковых маленьких шарика подвешены на невесомых нитях длиной I каждая в одной точке. Когда им сообщили одинаковые заряды q, шарики разошлись на угол а (рис 1-16). Найти силу натяжения Fн каждой нити. Среда — воздух. 

Задача № 15.
 Два одинаково заряженных шарика, подвешенных на нитях равной длины, разошлись на некоторый угол (рис. 1-17, а). Чему равна плотность материала шариков р, если после погружения их в керосин угол между нитями не изменился (рис. 1-17, б)? Относительная диэлектрическая проницаемость воздуха ε1 = 1, относительная диэлектрическая проницаемость керосина ε2 = 2. Плотность керосина р = 800 кг/м3. 

(с) В учебных целях использованы цитаты из учебного пособия «Новый репетитор по физике для подготовки к ЕГЭ : задачи и методы их решения / И.Л. Касаткина; под ред. Т.В. Шкиль. — Ростов н /Д : Феникс».

Это конспект по теме «ЕГЭ Закон Кулона. ЗАДАЧИ с решениями». Выберите дальнейшие действия:

  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.