Геотермальная энергетика. геотермальные электростанции и тепловые насосы

Содержание

Основные сферы применения энергии

Геотермальная энергетика применяется все шире, хоть и не является ключевым для всей энергетики. В силу специфики добычи геотермальная энергия используется в следующих случаях.

Использование в промышленности

Промышленность — это та сфера, которой необходим такой источник энергии, который не будет зависеть от внешних факторов, таких как время суток. Это способна обеспечить геотермальная энергетика, поэтому промышленность является одним из главных потребителей этого вида энергии. В крупных масштабах добыча производится в Исландии, Новой Зеландии, России, Соединенных Штатах Америки и так далее.

Применение в сельском хозяйстве

В хозяйстве геотермальная энергия может использоваться для обогрева растений в оранжерее или теплице, для полива культур, а также для обеспечения отопления комплексов, ответственных за содержание животных и птиц. Однако эксплуатация также зависит от состава воды. Применение этого вида энергетики в сельском хозяйстве наблюдается в Греции, Мексике, Кении, Израиле, Гватемале.

Для отопления домов

Добывать геотермальную энергию в небольших объемах можно самостоятельно и организовывать в качестве централизованного или частного отопления. Например, в частных домах такие системы действуют автономно.

Реализуется принцип работы как у кондиционера, настроенного на обогрев помещения. Но кондиционер перестает работать, если температура за окном ниже 5 градусов Цельсия, но это не является преградой для геотермальной системы.

В недрах нужно установить коллекторы, по ним будет течь антифриз, поглощающий теплоту и возвращающий в отапливоемое помещение. Расходы при этом составляют только монтаж и само оборудование.

История

В 1817 году граф Франсуа де Лардерель разработал технологию сбора пара из естественных геотермальных источников. В 20-м веке спрос на электроэнергию привёл к появлению проектов создания электростанций, использующих внутреннее тепло Земли. Человеком, который провёл испытания первого геотермального генератора, был Пьеро Джинори Конти. Это произошло 4 июля 1904 года в итальянском городе Лардерелло. Генератор смог успешно зажечь четыре электрических лампочки. Позже, в 1911 году, была построена первая в мире геотермальная электростанция в том же населённом пункте, она работает до сих пор. В 1920-х годах экспериментальные генераторы были построены в Беппу (Япония) и калифорнийских гейзерах, но Италия была единственным в мире промышленным производителем геотермальной электроэнергии до 1958 года.

Пять стран-лидеров по производству геотермальной энергии, 1980–2012 (US EIA)

Рост мощности ГеоЭС по годам

В 1958 году, когда была введена в эксплуатацию электростанция Вайракей, Новая Зеландия стала вторым крупным промышленным производителем геотермальной электроэнергии. Вайракей была первой станцией непрямого типа. В 1960 году «Pacific Gas and Electric» начала эксплуатацию первой успешной геотермальной электростанции в США на гейзерах в Калифорнии. Первая геотермальная электростанция бинарного типа была впервые продемонстрирована в 1967 году в Советском Союзе, а затем представлена в США в 1981 году, после энергетического кризиса 1970-х годов и значительных изменений в политике регулирования. Эта технология позволяет использовать гораздо более низкую температуру для производства электроэнергии, чем ранее. В 2006 году в Чина-Хот-Спрингс, штат Аляска, заработала станция бинарного цикла, производящая электричество с рекордно низкой температурой жидкости 57 °C. До недавнего времени геотермальные электростанции строились исключительно там, где вблизи поверхности имелись высокотемпературные геотермальные источники. Появление электростанций с бинарным циклом и совершенствование технологии бурения и добычи могут способствовать появлению геотермальных электростанций в значительно большем географическом диапазоне. Демонстрационные электростанции находятся в германском городе Ландау-ин-дер-Пфальц и французском городе Сульц-су-Форе, в то время как ранее работы в Базеле, Швейцария, были закрыты после того, как это вызвало землетрясения. Другие демонстрационные проекты находятся в стадии разработки в Австралии, Соединенном Королевстве и Соединенных Штатах Америки.

Тепловой КПД геотермальных электростанций невысок — около 7–10%, поскольку геотермальные жидкости имеют более низкую температуру, чем пар из котлов. По законам термодинамики эта низкая температура ограничивает эффективность тепловых двигателей в извлечении полезной энергии при выработке электроэнергии. Отработанное тепло тратится впустую, если только его нельзя использовать непосредственно, например, в теплицах или централизованном отоплении. Эффективность системы не влияет на эксплуатационные расходы, как это было бы для угольной или другой станции ископаемого топлива, но это фактор жизнеспособности станции. Для производства большего количества энергии, чем потребляют насосы, для выработки электроэнергии требуются высокотемпературные геотермальные источники и специализированные тепловые циклы. Поскольку геотермальная энергия постоянна во времени, в отличие, например, от энергии ветра или Солнца, ее коэффициент мощности может быть довольно большим — до 96%.

Интересное Сбор, хранение и утилизация мед. отходов в соответствии с нормативными требованиями

Экономика

Геотермальная энергия не требует топлива; поэтому он невосприимчив к колебаниям стоимости топлива. Однако капитальные затраты обычно высоки. На бурение приходится более половины затрат, а разведка глубоких ресурсов сопряжена со значительными рисками. Типичная двойная скважина в Неваде может обеспечивать выработку электроэнергии 4,5 мегаватт (МВт) и стоит около 10 миллионов долларов на бурение с 20% -ной интенсивностью отказов. В целом, строительство электростанции и бурение скважин обходятся примерно в 2–5 миллионов евро на МВт электрической мощности, в то время как нормированная стоимость энергии составляет 0,04–0,10 евро за кВт · ч. Усовершенствованные геотермальные системы, как правило, находятся на верхней стороне этих диапазонов, с капитальными затратами выше 4 миллионов долларов на МВт и нормированными затратами выше 0,054 доллара на кВт · ч в 2007 году.

Геотермальная энергия обладает высокой масштабируемостью: небольшая электростанция может снабжать сельскую деревню, хотя первоначальные капитальные затраты могут быть высокими.

Наиболее развитое геотермальное поле — Гейзеры в Калифорнии. В 2008 году это месторождение поддерживало 15 станций, все принадлежащие Calpine , с общей генерирующей мощностью 725 МВт.

Геотермальные электростанции

Температура тем выше, чем глубже буровая скважина. Однако в сейсмически опасных зонах температура при погружении в скважину поднимается быстрее в силу разрыва тектонических плит. Высокое значение геотермического градиента удешевляет добычу энергию, так как приходится бурить не так глубоко. Лучший вариант — гейзеры, у которых воды на поверхности и так достигают необходимой температуры.

Устройство и конструкция

Схему электростанции можно представить так: воду закачивают в недры Земли, жидкость, просачиваясь в трещины, нагревается до появления водяного пара, а после поднимается по второй скважине, расположенной параллельно.

Нагревшуюся воду доставляют на станцию, энергию перерабатывают в элетрическую с помощью генератора и турбин.

По устройству эти электростанции бывают:

  • на парогидротермах — для добычи энергии эксплуатируют нагретую еще в природе воду;
  • двухконтурная на водяном паре — специальный парогенератор создает дополнительный пар.

Принцип работы

В геотермальной энергетике используется несколько способов работы.

  • Прямой способ. Для этого метода берут сухой пар, который поступает через турбину;
  • Непрямой способ. Метод подразумевает работу с водяным паром при температуре выше 180 градусов Цельсия. Вызываемое давление заставляет воду течь через скважину, а последующее его уменьшение приводит к образованию пара в турбине. Остатки водного ресурса стекает обратно в скважину;
  • Бинарный (смешанный) способ. Воды применяют с дополнительной жидкостью, к примеру, хладагентом.

Геотермальные электростанции или что такое геотермальная энергия?

Горячий гейзер – природный геотермальный источник. Их на Земле немного. Пар научились добывать из глубин бурением скважин. Каждые 36 метров температура геологических отложений повышается на один градус. В 60 странах, расположенных в районе тихоокеанского вулканического кольца и на Дальнем Востоке, уже используют термальную энергию.

Авторское право на создание первой электростанции подобного рода принадлежит Пьеро Джинори Конти. Он в 1904 году провел испытания генератора: подключил к нему 4 лампочки. В 1911 году в городе Лардерелло итальянской провинции Пиза начала работать станция, которая сейчас производит 10% мирового объема геотермального электричества.

Характеристика альтернативной энергетики

Практически все источники альтернативной энергии выгодно отличаются финансовой доступностью и экологической чистотой. По сути, в данном случае происходит замена перерабатываемого ресурса (нефти, газа, угля и т. д.) на природную энергию. Это может быть солнечный свет, потоки ветра, тепло земли и другие естественные источники энергии за исключением гидрологических ресурсов, которые сегодня рассматриваются как традиционные. Концепции альтернативной энергетики существуют давно, однако по сей день они занимают небольшую долю в общем мировом энергообеспечении. Задержки в развитии данных отраслей связаны с проблемами технологической организации процессов выработки электричества.

Но чем обусловлено активное развитие альтернативной энергетики в наши дни? В немалой степени необходимостью снижения темпов загрязнения окружающей среды и в целом проблемами экологии. Также в скором будущем человечество может столкнуться с истощением традиционных ресурсов, используемых в производстве энергии. Поэтому, даже несмотря на организационные и экономические препятствия, все больше внимания уделяется проектам развития альтернативных форм энергетики.

Как выбрать место

Несмотря на многочисленные риски, в разных странах строят геотермальные электростанции. Преимущества и недостатки есть у любого способа получения энергии. Вопрос состоит в том, насколько доступны иные ресурсы. В конце концов, энергетическая независимость является одной из основ государственного суверенитета. Страна может не обладать запасами полезных ископаемых, но иметь множество вулканов, как Исландия, например.

Следует учитывать, что наличие геологически активных зон – непременное условие для развития геотермальной отрасли энергетики. Но при принятии решения о строительстве подобного объекта необходимо брать в расчет и вопросы безопасности, поэтому, как правило, в густонаселенных районах геотермальные электростанции не возводят.

Следующий важный момент – наличие условий для охлаждения рабочей жидкости (воды). В качестве места для ГТЭС вполне подойдет океанское или морское побережье.

Воздействие на окружающую среду

120- МВт э Nesjavellir электростанция на юго — западе Исландии

Жидкости, забираемые из недр земли, несут смесь газов, в частности, двуокиси углерода ( CO2), сероводород ( H2S ), метан ( CH4), аммиак ( NH3) и радон ( Rn ). В случае выброса эти загрязнители способствуют глобальному потеплению , кислотным дождям , радиации и ядовитым запахам.

Существующие геотермальные электростанции, которые попадают в 50-й процентиль всех исследований выбросов в течение жизненного цикла, рассмотренных МГЭИК , производят в среднем 45 кг CO.2эквивалентные выбросы на мегаватт-час произведенной электроэнергии (кг CO2экв / МВт · ч ). Для сравнения: угольная электростанция выбрасывает 1001 кг CO.2эквивалент на мегаватт-час без учета улавливания и хранения углерода (CCS).

Станции, на которых наблюдается высокий уровень кислот и летучих химикатов, обычно оснащены системами контроля выбросов для уменьшения выбросов. Геотермальные станции также могут закачивать эти газы обратно в землю в форме улавливания и хранения углерода, как, например, в проекте CarbFix в Исландии.

Другие станции, такие как геотермальная электростанция Кызылдере , демонстрируют способность использовать геотермальные жидкости для переработки углекислого газа в сухой лед на двух близлежащих заводах, что приводит к очень небольшому воздействию на окружающую среду.

Помимо растворенных газов, горячая вода из геотермальных источников может содержать в растворе следовые количества токсичных химикатов, таких как ртуть , мышьяк , бор , сурьма и соль. Эти химические вещества выделяются из раствора при охлаждении воды и могут нанести вред окружающей среде в случае выброса. Современная практика закачки геотермальных жидкостей обратно в Землю для стимулирования добычи имеет побочную выгоду, заключающуюся в снижении этого экологического риска.

Строительство станции может отрицательно сказаться на устойчивости земли. Проседание произошло на месторождении Вайракей в Новой Зеландии. Усовершенствованные геотермальные системы могут вызывать землетрясения из-за закачки воды. Проект в Базеле , Швейцария, был приостановлен, потому что за первые 6 дней закачки воды произошло более 10 000 сейсмических событий силой до 3,4 баллов по шкале Рихтера . Риск геотермального бурения, ведущего к поднятию , был испытан в Штауфен-им-Брайсгау .

Геотермальная энергия имеет минимальные потребности в земле и пресной воде. Геотермальные станции используют 404 квадратных метра на  ГВт · ч против 3 632 и 1335 квадратных метров для угольных предприятий и ветряных электростанций соответственно. Они используют 20 литров пресной воды на МВт · ч по сравнению с более чем 1000 литров на МВт · ч для атомной энергетики, угля или нефти.

Геотермальные электростанции также могут нарушать естественный цикл гейзеров. Например, гейзеры Беоваве, штат Невада , которые представляли собой незаполненные геотермальные скважины, прекратили извергаться из-за разработки станции с двойным испарением.

Охлаждение местного климата возможно в результате работы геотермальных циркуляционных систем. Однако, по оценке Ленинградского горного института в 1980-х годах, возможное похолодание будет незначительным по сравнению с естественными колебаниями климата.

Общие сведения о геотермальных электростанциях

Геотермальные электростанции предназначены для получения электрической энергии из природного тепла нашей планеты. О возможностях геотермальной энергетики было известно более ста лет назад. Еще в начале 20 века в итальянском городе Лардерелло провели первый эксперимент по получению электричества из пара. Спустя несколько лет в этом же городе начала работу первая электростанция такого рода, функционирующая и по сей день.

Принцип работы такой станции основан на закачивании воды под землю через специальную скважину, которая называется входной или нагнетающей. Нагретые магмой слои земли превращают воду в пар, который сквозь вторую скважину, называемую рабочей или эксплуатационной, попадает на лопасти турбины, соединенной с осью генератора.

Возобновляемость и устойчивость

Геотермальная энергия считается возобновляемой, потому что любой прогнозируемый отбор тепла невелик по сравнению с теплосодержанием Земли. Земля имеет внутреннее теплосодержание 10 31  джоулей (3 · 10 15  ТВт · ч ), что примерно в 100 миллиардов раз превышает годовое потребление энергии в мире в 2010 году. Около 20% из них — остаточное тепло от планетной аккреции ; остальное объясняется в прошлом и текущем радиоактивного распада в естественных изотопов . Например, в скважине глубиной 5275 м в проекте United Downs Deep Geothermal Power Project в Корнуолле , Англия, был обнаружен гранит с очень высоким содержанием тория , радиоактивный распад которого, как полагают, приводит к высокой температуре породы.

Естественные тепловые потоки не находятся в равновесии, и планета медленно остывает в геологических масштабах времени. Экстракция человека улавливает незначительную часть естественного оттока, часто не ускоряя его. Согласно большинству официальных описаний использования геотермальной энергии, в настоящее время она называется возобновляемой и устойчивой, потому что она возвращает равный объем воды в область, в которой происходит отбор тепла, но при несколько более низкой температуре. Например, температура воды, выходящей из земли, составляет 300 градусов, а возврат воды составляет 200 градусов, полученная энергия является разницей в извлеченном тепле. Текущие исследовательские оценки воздействия на потери тепла из ядра Земли основаны на исследованиях, проведенных до 2012 года. Однако, если бытовое и промышленное использование этого источника энергии резко расширилось в ближайшие годы, исходя из сокращения предложения ископаемого топлива и Если население мира растет и быстро индустриализируется, требуя дополнительных источников энергии, то оценки воздействия на скорость охлаждения Земли необходимо будет пересмотреть.

Геотермальная энергия также считается устойчивой благодаря своей способности поддерживать сложные экосистемы Земли. Используя геотермальные источники энергии, нынешние поколения людей не поставят под угрозу способность будущих поколений использовать свои собственные ресурсы в том же объеме, в каком эти источники энергии используются в настоящее время. Кроме того, считается, что из-за низкого уровня выбросов геотермальная энергия имеет отличный потенциал для смягчения последствий глобального потепления.


Производство электроэнергии в Поихипи, Новая Зеландия


Производство электроэнергии в Охааки, Новая Зеландия


Производство электроэнергии в Вайракей, Новая Зеландия

Несмотря на то, что геотермальная энергия является устойчивой в глобальном масштабе, добычу все же необходимо контролировать, чтобы избежать местного истощения. В течение десятилетий отдельные скважины снижают температуру и уровень воды до тех пор, пока не будет достигнуто новое равновесие с естественными стоками. На трех самых старых участках, в Лардерелло , Вайракей и Гейзерах, объем добычи снизился из-за местного истощения. Тепло и вода в неопределенных пропорциях извлекались быстрее, чем пополнялись. Если добыча сократится и вода будет закачана повторно, эти скважины теоретически могут полностью восстановить свой потенциал. Такие стратегии смягчения последствий уже реализованы на некоторых объектах. Долгосрочная устойчивость геотермальной энергии была продемонстрирована на месторождении Лардарелло в Италии с 1913 года, на месторождении Вайракей в Новой Зеландии с 1958 года и на месторождении Гейзерс в Калифорнии с 1960 года.

Падение выработки электроэнергии может быть увеличено за счет бурения дополнительных скважин для снабжения, как, например, на месторождениях Поихипи и Охааки . Вайракей электростанция уже работает намного дольше, с первым блоком введен в эксплуатацию в ноябре 1958 года, и он достиг своего пика генерации 173 в 1965 году, но уже подача пара высокого давления был прерывистым, в 1982 году будучи снижается до промежуточного давления и станция мощностью 157 МВт. Примерно в начале 21 века она управляла мощностью около 150 МВт, затем в 2005 году были добавлены две изопентановые системы мощностью 8 МВт, что увеличило мощность станции примерно на 14 МВт. Детальных данных нет, они утеряны из-за реорганизации. Одна из таких реорганизаций в 1996 г. привела к отсутствию ранних данных по Поихипи (начат в 1996 г.) и к пробелу в 1996/7 г. для Вайракей и Охаки; Получасовые данные за первые несколько месяцев работы Ohaaki также отсутствуют, как и за большую часть истории Wairakei.

История

В 1817 году граф Франсуа де Лардерель разработал технологию сбора пара из естественных геотермальных источников. В 20-м веке спрос на электроэнергию привёл к появлению проектов создания электростанций, использующих внутреннее тепло Земли. Человеком, который провёл испытания первого геотермального генератора, был Пьеро Джинори Конти. Это произошло 4 июля 1904 года в итальянском городе Лардерелло. Генератор смог успешно зажечь четыре электрических лампочки. Позже, в 1911 году, была построена первая в мире геотермальная электростанция в том же населённом пункте, она работает до сих пор. В 1920-х годах экспериментальные генераторы были построены в Беппу (Япония) и калифорнийских гейзерах, но Италия была единственным в мире промышленным производителем геотермальной электроэнергии до 1958 года.

Пять стран-лидеров по производству геотермальной энергии, 1980–2012 (US EIA)

Рост мощности ГеоЭС по годам

В 1958 году, когда была введена в эксплуатацию электростанция Вайракей, Новая Зеландия стала вторым крупным промышленным производителем геотермальной электроэнергии. Вайракей была первой станцией непрямого типа. В 1960 году «Pacific Gas and Electric» начала эксплуатацию первой успешной геотермальной электростанции в США на гейзерах в Калифорнии. Первая геотермальная электростанция бинарного типа была впервые продемонстрирована в 1967 году в Советском Союзе, а затем представлена в США в 1981 году, после энергетического кризиса 1970-х годов и значительных изменений в политике регулирования. Эта технология позволяет использовать гораздо более низкую температуру для производства электроэнергии, чем ранее. В 2006 году в Чина-Хот-Спрингс, штат Аляска, заработала станция бинарного цикла, производящая электричество с рекордно низкой температурой жидкости 57 °C. До недавнего времени геотермальные электростанции строились исключительно там, где вблизи поверхности имелись высокотемпературные геотермальные источники. Появление электростанций с бинарным циклом и совершенствование технологии бурения и добычи могут способствовать появлению геотермальных электростанций в значительно большем географическом диапазоне. Демонстрационные электростанции находятся в германском городе Ландау-ин-дер-Пфальц и французском городе Сульц-су-Форе, в то время как ранее работы в Базеле, Швейцария, были закрыты после того, как это вызвало землетрясения. Другие демонстрационные проекты находятся в стадии разработки в Австралии, Соединенном Королевстве и Соединенных Штатах Америки.

Тепловой КПД геотермальных электростанций невысок — около 7–10%, поскольку геотермальные жидкости имеют более низкую температуру, чем пар из котлов. По законам термодинамики эта низкая температура ограничивает эффективность тепловых двигателей в извлечении полезной энергии при выработке электроэнергии. Отработанное тепло тратится впустую, если только его нельзя использовать непосредственно, например, в теплицах или централизованном отоплении. Эффективность системы не влияет на эксплуатационные расходы, как это было бы для угольной или другой станции ископаемого топлива, но это фактор жизнеспособности станции. Для производства большего количества энергии, чем потребляют насосы, для выработки электроэнергии требуются высокотемпературные геотермальные источники и специализированные тепловые циклы. Поскольку геотермальная энергия постоянна во времени, в отличие, например, от энергии ветра или Солнца, ее коэффициент мощности может быть довольно большим — до 96%.

Интересное Отходы как вторичное сырье для производства товаров и энергии

Крупнейшие производители геотермальной энергии

В использовании геотермальная энергия по объемам уступает другим разрабатываемым восполняемым энергетическим ресурсам. Но там, где иные полезные ископаемые отсутствуют или нет возможности их использовать, при поддержке государственных программ она получила основное развитие.

Геотермальная энергетика распространена в странах Юго-Восточной Азии, Восточной Африки и Центральной Америки.

Однако страны, использующие геотермальную энергию, есть в разных частях света.

  • В Европе – Исландия, Италия, Франция, Литва.
  • В Америке – США, Мексика, Никарагуа, Коста-Рика.
  • В Азии – Япония, Китай, Филиппины, Индонезия, Таджикистан.
  • В Африке – Кения.
  • В Австралии – Новая Зеландия.

Энергию горячих источников дают вулканизированные территории Земли. Это Камчатка и Курилы, Японские и Филиппинские острова, горные системы Кордильер и Анд.

Крупнейший на сегодня страна-производитель, которая обладает запасами геотермальной энергии, это Соединенные Штаты Америки. В Штатах построено 77 ГеоТЭС. За короткое время с момента разработок и начала эксплуатации страна стала экспортером энергии и самих технологий.

В Филиппинах треть электроэнергетики подземная. 3 позиция в мире принадлежит Мексике.

Освоение перспективных технологий в этом разделе энергетичекой отрасли связывают с Исландией. На ее территории почти 3 десятка действующих и потухших вулканов, что и обуславливает специализацию энергопроизводства.

Геотермальная энергия в Исландии составляет 25-30% от производимой. Энергетика страны пользуется горячими гейзерными источниками, которые здесь представлены в изобилии. Так главный город государства Рейкьявик обслуживается электростанцией такого принципа действия, а всего их в государстве пять.

Исландия – эталон экологического устройства жизни на планете, так как основную часть энергии берет из Земли, а в остальном использует возобновляемую энергию воды.

Кроме этого прирученное тепло земли помогло Исландии за короткое время из экономически отсталой страны превратиться в стабильное процветающее государство.

Как выбрать место

Несмотря на многочисленные риски, в разных странах строят геотермальные электростанции. Преимущества и недостатки есть у любого способа получения энергии. Вопрос состоит в том, насколько доступны иные ресурсы. В конце концов, энергетическая независимость является одной из основ государственного суверенитета. Страна может не обладать запасами полезных ископаемых, но иметь множество вулканов, как Исландия, например.

Следует учитывать, что наличие геологически активных зон — непременное условие для развития геотермальной отрасли энергетики. Но при принятии решения о строительстве подобного объекта необходимо брать в расчет и вопросы безопасности, поэтому, как правило, в густонаселенных районах геотермальные электростанции не возводят.

Следующий важный момент — наличие условий для охлаждения рабочей жидкости (воды). В качестве места для ГТЭС вполне подойдет океанское или морское побережье.

Курилы

Сахалинская область также пригодна для строительства геотермальных энергопроизводящих предприятий. Здесь их два: Менделеевская и Океанская ГТЭС.

Менделеевская ГТЭС предназначена для решения проблемы энергоснабжения острова Кунашир, на котором расположен поселок городского типа Южно-Курильск. Название свое станция получила не в честь великого русского химика: так называется островной вулкан. Строительство началось в 1993-м, через девять лет предприятие введено в строй. Первоначально мощность составляла 1,8 МВт, но после модернизации и запуска следующих двух очередей достигла пяти.

На Курилах, на острове Итуруп, в том же 1993 году была заложена еще одна ГТЭС, получившая название «Океанская». Заработала она в 2006-м, через год вышла на проектную мощность в 2,5 МВт.

Виды геотермальных вод:

– по температуре: слаботермальные – до +40 °C, термальные – от +40 до +60 °C, высокотермальные – от +60 до +100 °C, перегретые – более +100 °C;

– по минерализации: ультрапресные – до 0,1 г сухого остатка на 1 л, пресные – 0,1-1,0 г/л, слабосолоноватые – 1,0-3,0 г/л, сильносолоноватые – 3,0-10,0 г/л, солёные – 10,0-35,0 г/л, рассольные – более 35,0 г/л;

– по общей жёсткости: очень мягкие, мягкие, средние, жёсткие, очень жёсткие;

– по кислотности: сильнокислые – до 3,5 рН, кислые – 3,5-5,5 рН, слабокислые – 5,5-6,8, нейтральные – 6,8-7,2 рН, слабощелочные – 7,2-8,5 рН, щелочные – более 8,5 рН;

– по газовому составу: сероводородные, сероводородно-углекислые, углекислые, азотно-углекислые, метановые, азотно-метановые и азотные;

– по газонасыщенности: слабые – до 100 мг/л, средние – 100-1000 мг/л, высокие – более 1000 мг/л.