Поперечное сечение проводника. как рассчитать поперечное сечение проводника

Содержание

Способы и этапы расчета площади воздуховодов

Размер короба вентиляции зависит от объема нагнетаемого потока, скорости передвижения и давления на внутренние стенки.

Расчет параметров вентиляционной магистрали проводится в несколько этапов:

  • определяется кратность воздухообмена в соответствии с техническими требованиями, строительными и санитарными нормативами;
  • делается аэродинамический подбор трубопроводного сечения;
  • определяется уровень создаваемого шума (акустический расчет);
  • вычерчивается на бумаге схема прокладки с привязкой к планировке;
  • чертеж согласовывается с заказчиком, вносятся изменения;
  • составляются расчетные документы по электроснабжению;
  • вычерчиваются отдельные узлы воздухопровода с деталировкой.

Вентиляционное оборудование подбирается только после технического расчета воздуховодов и фасонных частей, приобретаются калориферы, приточные и вытяжные установки, автоматические приборы.

Расчет сечения

Шумовые эффекты снижаются при расширении каналов, но на практике увеличение сечения не всегда оправдывается

Этому могут препятствовать ограниченные размеры комнаты по высоте, поэтому расчету периметра уделяется внимание

Делается расчет поперечной площади воздуховодов по формуле Sc = L · 2.788 / V, где:

  • Sc — расчетная площадь короба (см2);
  • L — объем потока, проходящего по каналу за час (м3/ч);
  • V — скорость воздуха в магистрали (м/с);
  • 2,788 — коэффициент перевода единиц.

Площадь получается в квадратных сантиметрах, такие единицы наиболее удобны для анализа. Скорость потока в канале принимается на уровне 3 – 4 м/с для жилых помещений. Уменьшить диаметр круглой трубы можно, заменив ее прямоугольной, которая имеет аналогичную площадь в поперечнике.

Расчет квадратных метров воздуховодов делается для каждого участка отдельно, начиная с центрального канала, где скорость достигает 6 – 8 м/с. Поперечник основного воздуховода часто бывает больше, чем диаметр отводов, при этом каналы соединяются переходниками.

Определение

Если плоскость пересекает твердое тело (трехмерный объект), то область, общая для плоскости и твердого тела, называется поперечным сечением твердого тела. Плоскость, содержащая поперечное сечение твердого тела, может называться секущей плоскостью .

Форма поперечного сечения твердого тела может зависеть от ориентации режущей плоскости по отношению к твердому телу. Например, в то время как все поперечные сечения шара представляют собой диски, поперечные сечения куба зависят от того, как плоскость сечения связана с кубом. Если секущая плоскость перпендикулярна линии, соединяющей центры двух противоположных граней куба, поперечное сечение будет квадратом, однако, если секущая плоскость перпендикулярна диагонали куба, соединяющей противоположные вершины, поперечное сечение сечение может быть точкой, треугольником или шестиугольником.

Плоские секции

Связанное с этим понятие — это понятие плоского сечения , которое представляет собой кривую пересечения плоскости с поверхностью . Таким образом, плоское сечение — это граница сечения твердого тела в плоскости сечения.

Если поверхность в трехмерном пространстве определяется функцией двух переменных, т. Е. Z = f ( x , y ) , плоские сечения срезаются плоскостями, параллельными координатной плоскости (плоскость, определяемая двумя координатными осями ) называются линиями уровня или изолиниями . В частности, плоскости сечения с уравнениями вида z = k (плоскости, параллельные плоскости xy ) создают плоские сечения, которые в областях применения часто называют контурными линиями .

Параллельное соединение проводов электропроводки

Бывают безвыходные ситуации, когда срочно нужно проложить проводку, а провода требуемого сечения в наличии нет. В таком случае, если есть провод меньшего, чем необходимо, сечения, то можно проводку сделать из двух и более проводов, соединив их параллельно. Главное, чтобы сумма сечений каждого из них была не меньше расчетной.

Например, есть три провода сечением 2, 3 и 5 мм², а нужен по расчетам 10 мм². Соединяете их все параллельно, и проводка будет выдерживать ток до 50 ампер. Да Вы и сами многократно видели параллельное соединение большего количества тонких проводников для передачи больших токов. Например, для сварки используется ток до 150 А и для того, чтобы сварщик мог управлять электродом, нужен гибкий провод. Его и делают из сотен параллельно соединенных тонких медных проволочек.

В автомобиле аккумулятор к бортовой сети тоже подключают с помощью такого же гибкого многожильного провода, так как во время пуска двигателя стартер потребляет от аккумулятора ток до 100 А. А при установке и снятии аккумулятора необходимо провода отводить в сторону, то есть провод должен быть достаточно гибким.

Способ увеличения сечения электропровода путем параллельного соединения нескольких проводов разного диаметра можно использовать только в крайнем случае. При прокладке домашней электропроводки допустимо соединять параллельно только провода одинакового сечения, взятые из одной бухты.

Источники

  • https://electric-220.ru/sechenie-provoda-kabelja-po-diametru-formula-tablica
  • https://proprovoda.ru/provodka/provoda-i-kabelya/poperechnoe-sechenie-provodnika.html
  • https://www.boncom.by/papers/raschet-secheniya-kabelya
  • https://220.guru/electroprovodka/provoda-kabeli/kak-uznat-sechenie.html

Как определить сечение кабеля по диаметру, формула, таблица

Самым главным при монтаже электропроводки — это подобрать качественный кабель, ведь всегда с легкостью можно заменить розетку, или выключатель, а заменить прогоревший кабель будет затруднительно, не говоря уже о том, какие могут быть последствия от этого. Очень часто сечение кабеля отличается от заявленного производителем, ведь уменьшение сечения позволяет недобросовестным производителям экономить на самой дорогой составляющей — меди. Чтоб не стать жертвой обмана желательно перед покупкой кабеля измерить его сечение самому, а как определить сечение кабеля по диаметру тремя простыми способами мы расскажем в этой статье.

Способ №1 — с помощью штангенциркуля или микрометра

С помощью штангенциркуля или микрометра замеряется диаметр зачищенной от изоляции токопроводящей жилы кабеля. Замер желательно произвести на нескольких участках жилы, а также на всех жилах кабеля, и записать наименьшие показатели. Если производить замеры с помощью микрометра, то замер нужно производить на ровном участке жилы, так показатели будут более точными.

  • Как известно из школьного курса математики площадь круга (а в нашем случае это будет площадь сечения кабеля) исчисляется по формуле S=πR² и если эту формулу упростить делением числа π на 4, то в результате получим формулу по которой можно определить сечение кабеля по диаметру:
  • По этой формуле можно с легкостью посчитать сечение токопроводящей жилы, например: при измерении диаметра токопроводящей жилы мы получили значение 1,6 мм, умножаем 0,785*1,6*1,6=4,009466 мм², получается это кабель сечением 4 квадрата.

Способ №2 — с помощью линейки

Что делать если под рукой нет ни штангенциркуля, или, том более микрометра, как определить сечение кабеля по диаметру без этих инструментов? На помощь придет старый и проверенный способ измерения с помощью линейки и карандаша.

Принцип измерения с помощью данного способа состоит в следующем: очищенная жила наматывается на карандаш, как показано на рисунке ниже. Минимальное количество витков должно быть 15-20, но тут тоже нужно исходить из толщины проводника, если он слишком тонкий то желательно намотать витков побольше.

Чтоб уменьшить погрешность измерения, витки нужно наматывать как можно плотнее. Далее с помощью линейки измеряем длину намотанного провода и разделяем на количество витков, получаем диаметр жилы, все просто.

С помощью известной уже нам формулы определяем сечение кабеля по диаметру. Для наглядности приведем пример: допустим мы намотали 20 витков провода, и получили результат 19,6 мм, делим это число на количество витков 20, и получаем диаметр 0,98 мм. С помощью формулы рассчитываем: 0,785*0,98*0,98=0,753914 мм², округляем, и получаем 0,75 квадратов.

Недостаток данного способа определения сечение кабеля по диаметру в том, что с его помощью будет затруднительно намотать провод с большим сечением, а вот для малых сечений этот метод наоборот даст более точный результат. К тому же нужно будет наверняка купить для проверки кусок провода, ведь никакой продавец не позволит проводить у себя такие эксперименты.

Способ №3 — с помощью таблицы

Самый простой способ определить сечение кабеля по диаметру, но все таки потребуется измерительный инструмент штангенциркуль, или микрометр. Измеряем толщину диаметра жилы, и с помощью таблицы определяем сечение.

Диаметр проводника, мм Сечение кабеля, мм.кв.
0,80 0,5
0,98 0,75
1,13 1,0
1,38 1,5
1,60 2,0
1,78 2,5
2,26 4,0
2,76 6,0
3,57 10,0
4,51 16,0
5,64 25,0
6,68 35,0
7,98 50,0
9,44 70,0
11,00 95,0
12,36 120,0
13,82 150,0
15,35 185,0
17,48 240,0
19,54 300,0
22,57 400,0

В заключении нужно сказать, что важно также обращать внимание на состав токопроводящей жилы, чаще всего подделывают провода и кабеля с медной жилой. Покупайте кабельную продукцию у проверенного продавца

Наш магазин реализует только качественную, сертифицированную продукцию проверенных отечественных производителей

Наш магазин реализует только качественную, сертифицированную продукцию проверенных отечественных производителей.

Если хотите задать вопрос связанный с вопросом выбора кабельной продукции, то Вы всегда можете проконсультироваться с нашими консультантами, достаточно всего лишь связаться с нами через форму обратной связи, либо заказать обратный звонок.

Поперечное сечение в зависимости от температуры

В термодинамическом равновесии атомы и молекулы вещества имеют низкую кинетическую энергию по сравнению с частицами при данной температуре. В тепловом реакторе нейтрон достигает «температуры» среды за очень короткое время (порядка микросекунд), в основном за счет упругого рассеяния на протоне молекулы воды. Тогда поперечное сечение больше будет зависеть не только от скорости частицы, но и от относительной скорости атомного ядра и частицы. Поперечное сечение становится зависимым от температуры, и говорят о зависящем от температуры поперечном сечении или о зависящем от температуры макроскопическом поперечном сечении .

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод – это шланг. Тонкий провод – это тонкий в диаметре шланг, толстый провод – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Сила тока – это количество электронов, прошедших через площадь поперечного сечения проводника за какое-либо определенное время.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, “разрезал” его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Как вычислить площадь сечения

19.03.2018

Определение вспомогательных данных:

Внутренняя ширина

…идет расчет внутренней ширины полого прямоугольника… мм;

Внутренняя высота

…идет расчет внутренней высоты полого прямоугольника… мм.

Решение:

Площадь сечения

…идет расчет площади сечения полого прямоугольника… мм2;

Осевые моменты инерции относительно центральных осей

…идет расчет момента инерции полого прямоугольника относительно оси ОХ… мм4;

…идет расчет момента инерции полого прямоугольника относительно оси ОY… мм4;

Моменты сопротивления изгибу

…идет расчет момента сопротивления изгибу полого прямоугольника относительно оси ОХ… мм3;

…идет расчет момента сопротивления изгибу полого прямоугольника относительно оси ОY… мм3;

Радиусы инерции сечения

…идет расчет радиуса инерции полого прямоугольника относительно оси ОХ… мм;

…идет расчет радиуса инерции полого прямоугольника относительно оси ОY… мм.

Примечание: Использование данного онлайн калькулятора позволяет вычислить геометрические характеристики плоского сечения в виде полого прямоугольника (площадь, моменты инерции, моменты сопротивления изгибу, радиусы инерции) по известным линейным размерам. Блок исходных данных выделен желтым цветом, блок вспомогательных данных — синим, блок решения — зеленым.

Вы можете использовать сервис определения геометрических характеристик плоского сечения онлайн абсолютно бесплатно.

Порядок действий при расчете характеристик полого прямоугольного сечения:1. Для проведения расчета требуется ввести ширину сечения b, высоту сечения h и соответствующие толщины стенок Sh и Sb.

2.

По введенным данным программа автоматически вычисляет внутреннюю ширину сечения b1 и высоту сечения h1. 3.

Результаты расчета площади, моментов сопротивления изгибу, моментов и радиусов инерции полого прямоугольного сечения выводятся автоматически.

4. На рисунке справа приведены необходимые размеры элементов сечения.

Социальные кнопки для Joomla

Площадь треугольника, площадь прямоугольника, площадь трапеции, площадь квадрата, площадь круга, площадь полукруга и сектора, площадь параллелограмма.

Справочно: число пи

Пример 1

Прямоугольный поднос имеет длину 900 мм и ширину 350 мм. Определить его площадь в а) мм2, б) в см2, в) в м2

Решение:

а) Площадь =длина*ширина=900*350=315000 мм2

б) 1 см2=100 мм2, следовательно,

315000 мм2=315000/100=3150 см2

1 м2=10000 см2, следовательно,

3150 см2=3150/10000=0.315 м2

Пример 2

Определить площадь поперечного сечения балки, изображенной на рисунке.

Сечение балки можно разделить на три отдельных прямоугольника, как показано на рисунке

Sa=3*50=150 мм2

Sb=(65-5-3)*4=228 мм2

Sc=60*5=300 мм2

Общая площадь балки 150+228+300=678 мм2=6.78 см2.

Пример 3

Определить площадь дорожки, показанной на рисунке.

Решение:

Площадь дорожки = площадь большого прямоугольника — площадь малого прямоугольника

S=35*15-29*11=206 м2

Пример 4

Определить площадь параллелограмма, показанного на рисунке (размеры приведены в миллиметрах).

Тогда

202=(36-30)2+h2

h2=202-62=164

h=14,3 (приблизительно)

Следовательно, Sabcd=30*14.3=429 мм2

Пример 5

Показана боковая сторона здания. Определить площадь кирпичной кладки на боковой стороне.

Боковая сторона состоит из прямоугольника и треугольника.

Sпрям.=6*10=60 м2

S треуг. =1/2*основание*высота

CD=5 м, AD=6 м, следовательно, AC=3 м (по т. Пифагора). Следовательно,

S треуг. =1/2*10*3=15 м2.

Общая площадь кирпичной кладки есть 60+15=75 м2

Пример 6

S=πr2 или πd2/4.

а) S=πr2=π(3)2=9π=28.26 см2

б) S=πd2/4=π(10)2/4=100π/4=78.5 мм2

в) Длина окружности с=2πr, следовательно,

r=c/2π=60/2π=30/π

S=πr2=π(30/π)2=286.62 мм2

Пример 7

Вычислить площадь правильного восьмиугольника со стороной 5 см и поперечником 10 см.

Восьмиугольник — это многоугольник с 8 сторонами. Если из центра многоугольника провести лучи к вершинам, получится восемь одинаковых треугольников.

S треуг. =1/2*основание*высота=1/2*5*10/2=12.5 см2

Площадь восьмиугольника есть 8*12.5=100 см2

 Пример 8

Определить площадь правильного шестиугольника со стороной 10 см.

Другие два угла каждого треугольника составляют в сумме 120о и равны между собой.

Следовательно, все треугольники являются равносторонними с углами 60о и стороной 10 см

S треуг. =1/2*основание*высота

Высоту h находим по теореме Пифагора:

102=h2+52

Отсюда h2=100-25=75

h=8.66 см

Следовательно, S треуг. =1/2*10*8.66=43.3 см 2

Площадь шестиугольника равна 6*43.3=259.8 см2

Площадь и объем

Принцип Кавальери гласит, что твердые тела с соответствующими поперечными сечениями равных площадей имеют равные объемы.

Площадь поперечного сечения ( ) объекта при просмотре под определенным углом — это общая площадь ортогональной проекции объекта под этим углом. Например, цилиндр высотой h и радиусом r имеет, если смотреть вдоль его центральной оси, и если смотреть с ортогонального направления. Сфера радиуса r имеет, если смотреть под любым углом. В более общем смысле, его можно вычислить, вычислив следующий интеграл по поверхности:
А′{\ displaystyle A ‘}А′знак равноπр2{\ displaystyle A ‘= \ pi r ^ {2}}А′знак равно2рчас{\ displaystyle A ‘= 2rh}А′знак равноπр2{\ displaystyle A ‘= \ pi r ^ {2}}А′{\ displaystyle A ‘}

А′знак равно∬топdА⋅р^,{\ displaystyle A ‘= \ iint \ limits _ {\ mathrm {top}} d \ mathbf {A} \ cdot \ mathbf {\ hat {r}},}

где — единичный вектор, указывающий вдоль направления взгляда к наблюдателю, — это элемент поверхности с направленной наружу нормалью, а интеграл берется только по самой верхней поверхности, той части поверхности, которая «видна» со стороны перспектива зрителя. Для выпуклого тела каждый луч, проходящий через объект с точки зрения наблюдателя, пересекает только две поверхности. Для таких объектов интеграл можно взять по всей поверхности ( ), взяв абсолютное значение подынтегральной функции (так, чтобы «верх» и «низ» объекта не вычитались, как того требует теорема о расходимости применяется к постоянному векторному полю ) и делится на два:
р^{\ displaystyle \ mathbf {\ hat {r}}}dА{\ displaystyle d \ mathbf {A}}А{\ displaystyle A}р^{\ displaystyle \ mathbf {\ hat {r}}}

А′знак равно12∬А|dА⋅р^|{\ displaystyle A ‘= {\ frac {1} {2}} \ iint \ limits _ {A} | d \ mathbf {A} \ cdot \ mathbf {\ hat {r}} |}

Особые условия

В зависимости от типа рассматриваемого процесса для поперечного сечения используются разные термины:

  • Сечение поглощения для каждой абсорбции падающей частицы
  • Сечение рассеяния для рассеяния, т.е. отклонения падающей частицы
  • Сечение экстинкции для затухания или извлечения энергии, сумма сечений рассеяния и поглощения
  • Сечение захвата для определенного поглощения, а именно захвата нейтрона ((n, ) -ядерная реакция)γ{\ displaystyle \ gamma}
  • Нейтронное сечение (любого) взаимодействия атомного ядра со свободным нейтроном
  • Реакция поперечное сечение для химической реакции , которая инициируется столкновением двух атомов или молекул
  • Упругое эффективное поперечное сечение (часто просто «упругое поперечное сечение») для упругих столкновений, то есть столкновения, при котором сохраняется вся кинетическая энергия.
  • Неупругое эффективное поперечное сечение («неупругое поперечное сечение») для неупругого столкновения, то есть столкновения, при котором кинетическая энергия преобразуется в другие формы энергии, например Например, частица возбуждается (т.е. помещается в более высокое энергетическое состояние) или создаются новые частицы.
  • Ионизация сечение для ионизации атома хита
  • Сечение деления для индуцированного ядерного деления
  • Сечение давления излучения для давления излучения.

Чем можно делать расчеты поперечного сечения

Иногда приходится измерять поперечное сечение самостоятельно, поскольку на провод не нанесена маркировка. Это не повод, чтобы не использовать его. Сперва нужно выяснить, из какого материала была сделана жила. Есть белая алюминиевая, медная красная и латунная желтая. После этого необходимо рассчитать площадь. Для этого следует выяснить проводниковый диаметр, убрав изоляцию. Диаметр можно измерить, используя:

  • штангенциркуль, микрометр;
  • карандаш и линейку.

Важно! Во втором случае результат будет приблизительным. Его использовать следует в крайних случаях

Лучше рассчитывать диаметр по формуле и штангенциркулем.

Штангенциркуль

Сделать штангенциркулем можно замер провода, который имеет любые размеры. Для этого нужно поместить его между штангенциркульными щипцами. Сделать так, чтобы они смотрены на деление шкалы. Затем подсчитать значение.


Штангенциркуль

Целые числа можно получить по верхней шкале, а десятичные — по нижней.

Карандаш + линейка

Если штангенциркуля нет, а длина оголенного проводника позволяет сделать его накрутку на карандаш длиной не меньше 1 см, можно использовать данный способ. Все, что нужно – подсчитать витки, которые поместились на отрезке длины 1 см. Диаметр получается делением длины отрезка на витки.


С помощью карандаша и линейки замеры будут не совсем точными

Обратите внимание! Точность измерения будет зависеть от того, как плотно была сделана намотка, и какая у нее длина

Площадь поперечного сечения проводника

В последние годы отмечается заметное понижение качественных характеристик изготавливаемой кабельной продукции, в результате чего страдают показатели сопротивления — сечение проводов. Диаметр любого проводника в обязательном порядке должен обладать соответствием всем заявленным производителем параметрам.

Любое отклонение, составляющее даже 15-20 %, может стать причиной значительного перегрева электрической проводки или оплавления изоляционного материала, поэтому выбору площади или толщины проводника нужно уделять повышенное внимание не только на практике, но и с точки зрения теории

Поперечное сечение проводников

Параметры, наиболее важные для правильного выбора сечения проводника, отражены в следующих рекомендациях:

толщина проводника — достаточная для беспрепятственного прохождения электротока, при максимально возможном нагреве провода в пределах 60 °C;
сечение проводника — достаточное для резкого понижения напряжения, не превышающего допустимые показатели, что особенно важно для очень длинной электропроводки и значительных токов.

Особое внимание требуется уделять максимальным показателям рабочего температурного режима, при превышении которого проводник и защитная изоляция приходят в негодность. Сечением используемого проводника и его защитной изоляцией должна в обязательном порядке обеспечиваться полноценная механическая прочность и надежность электрической проводки.

Сечением используемого проводника и его защитной изоляцией должна в обязательном порядке обеспечиваться полноценная механическая прочность и надежность электрической проводки.

Определение сечения провода розеточных линий

При определении диаметра провода для комнатной проводки считают максимальную нагрузку потребителей, которые могут быть включены одновременно. Ориентируясь на эту мощность, выбирают сечение основных линий, которые идут от счётчика и вводных автоматов к распределительным коробкам. Это те участки, которые будут нести суммарную нагрузку всех подключенных потребителей. Выбирают провод с медными жилами не менее 6 мм2.

Проводники ответвлений от распределительных коробок к розеткам выбираются индивидуально для каждой комнаты. Тут учитываются бытовые электроприборы, которые могут быть присоединены к розетке. Сечение жил подбирается с запасом на один порядок. Это на тот случай, если возникнет необходимость запитать от розетки какой-то строительный инструмент: перфоратор, сварочный инвертор.

Если суммарная мощность потребителей в комнате будет составлять 4 кВт, то проводник с медной жилой, питающий розетку, должен быть сечением 2,5 мм2.

Внимание! Сечение токопроводящей жилы должно позволять выдерживать нагрузку по току и во время работы бытовой техники не перегреваться. На практике определяют прибор самой большой мощности и выбирают подходящий диаметр провода относительно характеристик прибора. В итоге получается, что отводящий проводник с медными жилами на каждую розетку будет иметь сечение 2,5 мм2

Основной провод для разводки берут сечением 6 мм2. При этом следует учесть, что весь контур электропроводки выполняют проводами, имеющими жилы из одного материала. Скручивать между собой жилы из меди и алюминия нельзя

В итоге получается, что отводящий проводник с медными жилами на каждую розетку будет иметь сечение 2,5 мм2. Основной провод для разводки берут сечением 6 мм2. При этом следует учесть, что весь контур электропроводки выполняют проводами, имеющими жилы из одного материала. Скручивать между собой жилы из меди и алюминия нельзя.

Приступаем к расчёту

Так как задача – найти истинную площадь, то из полученного значения необходимо вычесть величину толщины стенки. Следовательно, формула приобретает вид:

  • S = π • (D/2 – N)2;
  • В этой записи D – внешний диаметр окружности;
  • N – толщина стенки трубы.

Чтобы вычисления были максимально точными, следует вписать больше знаков после запятой в числе π (пи).

К примеру, требуется рассчитать сечение трубы, внешний диаметр которой 1 метр. Толщина её стенок 10 мм. (или 0,01 м.). Следовательно, нам известно:

D = 1 м.; N = 0,01 м.

Для упрощения возьмём π = 3,14. Подставляем значения в формулу:

S = π • (D/2 – N)2 = 3,14 • (1/2 – 0,01)2 = 0,754 м2.

Первоначальные данные и вычисления

Для начала необходимо сказать о том, что сама конструкция изделий подобного типа фактически является цилиндром. Учитывая это, и следует подбирать специальные формулы, которые известны из начального курса геометрии.

Однако стоит отметить, что сортамент труб круглого сечения по ГОСТу довольно разнообразен и при работе с данными это необходимо учитывать.

Формулы

Обычно площадь круга находится с использованием формулы S= π•R 2 .

  • В данном случае под литерой R подразумевают радиус самой трубы, а буква π является константой, равной числу 3.14.
  • Однако такая формула площади сечения трубы позволяет получить данные с учетом самих стенок, что может пригодиться только для пробоя отверстий прохождения. Для оценки пропускной способности нужны совершенно другие расчеты.

Учитывая все особенности применяемых материалов, следует получить площадь живого сечения трубы, где во внимание принимается и толщина стенок. Выглядит такая формула так: S= π•(D/2-N) 2
В данной ситуации литера D указывает на внешний диаметр изделия, который легко измерить при помощи линейки или посмотрев в спецификацию

Буква же N означает толщину стенки трубы. Именно ее часто определяет сортамент стальных труб круглого сечения, а получить эту величину можно также из спецификации или же при помощи линейки.

Программы

В современном строительстве расчет площади трубы круглого сечения выполняют с использованием специального программного обеспечения. Обычно мастера применяют полноценные калькуляторы, позволяющие получать самые разнообразные данные, где трубам отводится целая система. Однако существуют и программы, разработанные только для получения этих данных.

Большинство таких калькуляторов разработаны для использования на любых платформах, поэтому их можно установить даже на мобильный телефон, чтобы получить возможность узнать сечение трубы для отопления прямо на месте работы, не прибегая к самостоятельному вычислению.

Стоит отметить, что подобного рода софт может разрабатываться самыми разными компаниями. Поэтому прежде чем начинать его использовать стоит убедиться, что в нем применяется метрическая система измерений. В противном случае можно получить момент сопротивления сечения трубы или другие данные в единицах, которые придется дополнительно обрабатывать.

Область использования

Прежде всего, полученные параметры применяют для того, чтобы установить расход воды в трубе круглого сечения

Это очень важно при работе с дорогими жидкостями или газами, для которых и собирается трубопровод

  • Считается, что расчет количества воды по сечению трубы самый точный и при известной величине давления можно получить все самые необходимые данные про систему. Это часто используют на производстве и при создании охладительных систем.
  • Если система создается своими руками в бытовых целях, то подобные параметры знать совершенно не обязательно. Однако при разветвленном водопроводе такие вычисления могут пригодиться. (См. также статью Разводка труб: особенности.)
  • Стоит отметить, что не достаточно знать все необходимые данные, а нужно еще уметь их применять. Поэтому для сложных проектов стоит нанимать специалистов, хотя их цена порой довольно высока.
  • Необходимо сказать о том, что в определенных случаях нужно использовать материалы со строго определенной площадью сечения. Этого требует инструкция по монтажу, основываясь на характеристиках точек потребления или необходимых конечных характеристиках всей системы. (См. также статью Система канализации: особенности.)