Активное, емкостное и индуктивное сопротивление. закон ома для цепей переменного тока

Содержание

Реактивное индуктивное и емкостное

Выше рассказывалось о скин-эффекте, имеющем место в прямом проводнике. Если проводник смотан в катушку (обмотку), протекающий по нему переменный ток создает более сильное переменное магнитное поле, и наводимая им ЭДС самоиндукции не просто вытесняет ток во внешние слои проводника, а ощутимо ему противодействует. Такое противодействие катушки называют индуктивным сопротивлением.

Индуктивное сопротивление

Вычисляется индуктивное сопротивление по формуле XL = 2П * f * L, где

  • f — частота переменного тока, Гц;
  • L — индуктивность катушки, Гн.

Таким образом, чем выше f, тем больше XL. Этим свойством катушки пользуются при фильтрации высокочастотных помех (гармоник) в сети.

Свойства XL, отличающие его от R:

  • ток в цепи отстает по фазе от напряжения на 900;
  • превращение электроэнергии является обратимым: сначала она преобразуется в магнитное поле (1-я половина полупериода), затем накопленная в нем энергия снова становится электрической (вторая половина).

Обмотки применяются в электромоторах и трансформаторах, потому потребители с такими компонентами имеют значительное индуктивное сопротивление. На его преодоление тратится часть мощности электротока, именуемая реактивной Wр. В противоположность ей, другую часть, совершающую полезную работу, называют активной Wа.

Коэффициент мощности

При сложении обеих составляющих графическим путем, получается треугольник (прямоугольный), в котором полная мощность Wп является гипотенузой. Если угол между ней и вектором активной мощности Wа обозначить через ϕ, то: cosϕ = Wа / Wп.

Для каждого устройства с индуктивным сопротивлением cosϕ обозначается в характеристиках. Также приводится активная мощность, причем выходная, например, на валу электродвигателя. Таким образом, чтобы определить полную потребляемую мощность устройства, следует сделать действие: Wп = Wа / (cosϕ * КПД), где КПД — коэффициент полезного действия прибора.

Необходимость преодолевать реактивное сопротивление, создает значительную дополнительную нагрузку на энергогенерирующее оборудование электростанций. Чтобы разгрузить его, в электросетях применяют установки компенсации реактивной мощности. Они представляют собой конденсаторные батареи.

Емкостным сопротивлением обладают конденсаторы. В цепи постоянного тока этот элемент ток не пропускает, но переменный течет через него относительно свободно, поскольку емкость имеет свойство накапливать в себе заряд.

В 1-й четверти периода она заряжается, во второй — разряжается, в 3-й и 4-й — действия повторяются, но уже с обратной полярностью. При этом он работает подобно индукционной катушке: в 1-й половине полупериода накапливает часть энергии электрогенератора, во 2-й — возвращает ее в цепь.

То есть конденсатор тоже противостоит преобразованию переменного тока — в этом состоит суть емкостного сопротивления. Вычисляют емкостное сопротивление по формуле: Xc = 1 / (2П * f * C), где С — емкость конденсатора, Ф (фарад).

За счет разрядки элемента, ток в цепи опережает напряжение по фазе на 900. На преодоление емкостного сопротивления также расходуется часть полной мощности — реактивная. Установки для ее компенсации содержат индукционные катушки.

Полное сопротивление цепей переменного тока

При последовательном соединении приборов с активным и индуктивным сопротивлениями (рис. 1) полное сопротивление цепи нельзя находить арифметическим суммированием. Если обозначить полное сопротивление через z, то для его определения служит формула: Как видно, полное сопротивление является геометрической суммой активного и реактивного сопротивлений. Так, например, если r = 30 Ом и XL = 40 Ом, то

т. е. z получилось меньше, чем r + XL = 30 + 40 = 70 Ом.

Для упрощения расчетов полезно знать, что если одно из сопротивлений (r или xL) превосходит другое в 10 или более раз, то можно пренебречь меньшим сопротивлением и считать, что z равно большему сопротивлению. Ошибка весьма невелика.

Например, если r = 1 Ом и xL = 10 Ом, то

Ошибка лишь 0,5 % вполне допустима, так как сами сопротивления r и х бывают известны с меньшей точностью.

При параллельном соединении ветвей, имеющих активные и реактивные сопротивления (рис. 2), расчет полного сопротивления удобнее делать с помощью активной проводимости

и реактивной проводимости

Полная проводимость цепи у равна геометрической сумме, активной и реактивной проводимостей:

А полное сопротивление цепи является величиной, обратной у,

Если выразить проводимость через сопротивления, то нетрудно получить следующую формулу:

Эта формула напоминает известную формулу

но только в знаменателе стоит не арифметическая, а геометрическая сумма сопротивлений ветвей.

Пример. Найти полное сопротивление, если параллельно соединены приборы, имеющие r = 30 Он и xL = 40 Ом.

При расчете z для параллельного соединения можно для упрощения пренебречь большим сопротивлением, если оно превосходит меньшее в 10 и более раз. Ошибка не будет превышать 0,5 %

Рис. 1. Последовательное соединение участков цепи с активным и индуктивным сопротивлением

Рис. 2. Параллельное соединение участков цепи с активным и индуктивным сопротивлением

Принцип геометрического сложения применяется для цепей переменного тока также в случаях, когда надо складывать активные и реактивные напряжения или токи. Для последовательной цепи по рис. 1 складываются напряжения:

При параллельном соединении (рис. 2) складываются токи:

Если же последовательно или параллельно соединены приборы, имеющие только одни активные или только одни индуктивные сопротивления, то сложение сопротивлений или проводимостей и соответствующих напряжений или токов, а также активных или реактивных мощностей производится арифметически.

При любой цепи переменного тока закон Ома можно писать в следующем виде:

где z — полное сопротивление, вычисляемое для каждого случая соединения так, как это было показано выше.

Коэффициент мощности cosφ для любой цепи равен отношению активной мощности Р к полной S. При последовательном соединении это отношение можно заменить отношением напряжений или сопротивлений:

При параллельном соединении получим:

Вывод основных расчетных формул для последовательной цепи переменного тока, имеющей активное и индуктивное сопротивления, можно сделать следующим образом.

Проще всего построить векторную диаграмму для последовательной цепи (рис. 3).

Рис. 3. Векторная диаграмма для последовательной цепи с активным и индуктивным сопротивлением

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится осциллограф, генератор частоты, собственно сама катушка индуктивности и резистор на 100 Ом.  Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:

Получилось как то так:

Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал – желтым. Следовательно, красная синусоида – это частота, которую нам выдает генератор частоты, а желтая синусоида – это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал  с частотой  в 1 Килогерц.

Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф

Красный кружок с цифрой “1” – это замеры “красного”канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой “2”. F=1 Килогерц, а Ма=1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц

Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц

Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется сдвиг фаз. Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Увеличиваем частоту до 200 Килогерц

На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.

Амплитуда  желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц

Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц

Амплитуда желтого канала  стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца

Амплитуда “желтого” сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:

Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет,  а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.

Итак, прогоняем все по тем же значениям частоты

При  частоте в 1 Килогерц у  нас значение почти не изменилось.

10 Килогерц

Здесь тоже  ничего не изменилось.

100 Килогерц

Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

200 Килогерц

Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

300 Килогерц

Сдвиг фаз стал больше и амплитуда просела еще больше

500 Килогерц

Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

1 Мегагерц

Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. 😉

2 Мегагерца, предел моего генератор частоты

Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах  на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Расчет катушек индуктивности для фильтров и схем

Индуктивность катушки зависит от ее размеров, количества витков и способа намотки. Чем больше эти параметры, тем выше индуктивность. Если катушка наматывается плотно виток к витку, то индуктивность ее будет больше по сравнению с катушкой, намотанной неплотно, с промежутками между витками.

Когда требуется изготовить катушку по заданным размерам и нет провода нужного диаметра, то при использовании более толстого провода надо сделать больше витков, а тонкого — уменьшить их количество, чтобы получить необходимую индуктивность.

Все приведенные выше рекомендации справедливы при намотке катушек без ферритовых сердечников.

Расчет однослойных цилиндрических катушек производится по формуле

где L — индуктивность катушки, мкГн; D — диаметр катушки, см; l — длина намотки катушки, см;

и n — число витков катушки.

Расчет катушки выполняется в следующих случаях:

1 — по заданным геометрическим размерам необходимо определить индуктивность катушки; 2 — при известной индуктивности требуется определить число витков и диаметр провода катушки. То есть намотать катушку определенной индуктивности, что часто скажем надо для фильтров.

В первом случае все исходные данные, входящие в формулу, известны, и расчет не представляет затруднений.

Пример. Определим индуктивность катушки, изображенной на рис.1, где l = 2 см, D = 1,8 см, число витков n = 20. Подставив в формулу все необходимые величины, получим

Во втором случае известны диаметр катушки и длина намотки, которая, в свою очередь, зависит от числа витков и диаметра провода. Поэтому расчет рекомендуется проводить по следующей схеме. Исходя из конструкции изготавливаемого прибора, определяют размеры катушки (диаметр и длину намотки), а затем рассчитывают число витков по следующей формуле:

Определив число витков, вычисляют диаметр провода с изоляцией по формуле

где d — диаметр провода, мм;

l — длина обмотки, мм; n — число витков.

Пример. Нужно изготовить катушку диаметром 1 см при длине намотки 2 см, имеющую индуктивность 0,8 мкГн. Намотка рядовая, виток к витку. Подставив в последнюю формулу заданные величины, получим

диаметр провода

Если катушку наматывать проводом меньшего диаметра, то нужно полученные расчетным путем 14 витков разместить по всей ее длине (20 мм) с равными промежутками между витками, то есть с большим шагом намотки. Индуктивность данной катушки будет на 1-2% меньше номинальной, что следует учитывать при ее изготовлении.

Если для намотки берется провод большего диаметра, чем 1,43 мм, следует сделать новый расчет, увеличив диаметр или длину намотки катушки. Возможно, придется увеличить и то, и другое одновременно, пока не будут получены необходимые габариты катушки, соответствующие заданной индуктивности.

Следует заметить, что по приведенным выше формулам рекомендуется рассчитывать катушки, у которых длина намотки l равна половине диаметра или превышает эту величину. Если же она меньше половины диаметра, то более точные результаты можно получить по формулам

Калькулятор взаимной индукции

Этот калькулятор определяет взаимоиндукцию двух связанных катушек индуктивности.

Пример.

Рассчитать взаимную индуктивность двух расположенных рядом катушек индуктивности 10 мкГн и 5 мкГн с коэффициентом связи 0,5.

Входные данные

Индуктивность первой катушки, L1

генри (Гн)миллигенри (мГн)микрогенри (мкГн)наногенри (нГн)пикогенри (пГн) Индуктивность второй катушки, L2

миллигенри (мГн)

Коэффициент связи, k

0 ≤ k

≤ 1

Выходные данные

ВзаимоиндукцияM миллигенри (мГн)

Введите величины индуктивностей и коэффициента связи, выберите единицы индуктивности в генри (Гн), миллигенри (мГн), микрогенри (мкГн) или пикогенри (пГн) и нажмите кнопку Рассчитать

В токоизмерительных клещах с разъемным магнитопроводом для безопасного измерения тока без необходимости подключать прибор к схеме используется измерительный трансформатор. В приборе используется явление взаимной индукции. На разъемном магнитопроводе надета катушка, являющаяся вторичной обмоткой измерительного трансформатора. Первичной «обмоткой» является охватываемый магнитопроводом провод с током. Электродвижущая сила, возникающая в катушке на магнитопроводе, пропорциональна току, текущему в проводнике, охваченном клещами. Прибор измеряет напряжение на зажимах катушки и указывает на дисплее значение измеряемого тока.

Калькулятор определит взаимоиндукцию M двух связанных катушек индуктивности по формуле:

где k — коэффициент связи, L₁ — индуктивность первой катушки и L₂ — индуктивность второй катушки. Коэффициент связи определяется как отношение взаимоиндукции двух катушек к максимально возможному значению их взаимоиндукции. Коэффициент связи изменяется в пределах от 0 до 1 и зависит от близости катушек или обмоток, материала их сердечника, их взаимной ориентации, формы и количества витков. У слабо связанных катушек или обмоток коэффициент связи k 0.5. Если две катушки плотно намотаны одна над другой на общем ферромагнитном сердечнике, их связь почти идеальна и значение коэффициента связи k приближается к единице. Если же расстояние между катушками велико, значение k очень мало и приближается к нулю.

Тороидальные трансформатор и дроссель в импульсном блоке питания

Пример расчетов. Коэффициент связи двух катушек с индуктивностью 2 мкГн и 3 мкГн равен 0,5. Взаимоиндукция в микрогенри определяется как

Две катушки с взаимной индукцией на принципиальной схеме

При увеличении электрического тока, протекающего через катушку индуктивности L₁ от внешней цепи, вокруг катушки создается увеличивающееся магнитное поле, в котором сохраняется энергия. При уменьшении тока магнитное поле также уменьшается. При этом на выводах катушки возникает напряжение (ЭДС самоиндукции) в направлении, противоположном направлению тока, и сохраняемая в магнитном поле энергия отдается обратно во внешнюю цепь. Если рядом с первой катушкой поместить вторую катушку L₂, то магнитное поле, возникшее в первой катушке, создаст напряжение во второй катушке. Если общее магнитное поле пронизывает несколько катушек, говорят, что у них имеется взаимная индукция. Она обычно обозначает буквой M и измеряется в единицах индуктивности (генри).

Взаимоиндукция в вашем автомобиле: для создания искры в свечах зажигания используется катушка зажигания, представляющая собой трансформатор с высоким коэффициентом трансформации. Когда ток через первичную обмотку с малым числом витков прерывается, очень большая ЭДС возникает во вторичной обмотке с большим числом витков, которая достаточна для создания искры в зазоре автомобильной свечи зажигания

В обратной ситуации, если ток течет в катушке L₂, а наводится ток в катушке L₁, взаимоиндукция будет той же. Отметим, что электродвижущая сила (ЭДС) возникает только при изменении тока, причем чем быстрее изменяется ток, тем больше будет ЭДС. То есть, ЭДС взаимной индукции прямо пропорциональна скорости изменения тока

Явление взаимной индукции используется в трансформаторах, электродвигателях, генераторах и других устройствах, в которых для функционирования необходимо взаимодействие с магнитным полем. В то же время взаимоиндукция часто бывает нежелательной, когда возникает паразитная индуктивная связь между проводниками в схеме или даже между силовыми кабелями и металлическими кабельными каналами, в которых они помещены.

Полезные примеры из жизни

Как продлить ресурс лампы накаливания

В пожарном депо Ливермоля (Калифорния) зарегистрирован рекорд рабочего режима осветительной лампы: 117 лет. Она практически непрерывно выполняет свою задачу с 1901 года по настоящее время.

Такой ресурс обеспечен за счет:

  • правильного выбора сопротивления, ограничивающего ток через нить накала и создания экономного режима освещения;
  • беспрерывной работы, исключающей переходные процессы при включениях/выключениях, сопровождаемые бросками токов;
  • надежной конструкции.

Как регулировать токи от 100 ампер в силовой цепи

Этот случай я привожу не для повторения, а с целью расширения кругозора и лучшего уяснения процессов, происходящих в электричестве.

Ни один обычный резистор не способен длительно выдерживать токи такой величины. Он просто сгорит. Однако при наладке промышленных генераторов требуется иметь устройство, справляющееся с подобными мощностями.

Это водяной реостат, состоящий из металлического корпуса — ведра прямоугольной формы, служащего одним из контактов для подключения провода от нагрузки.

Второй контакт составляет металлический нож, подключаемый через изоляторы.

Внутрь ведра наливают воду и засыпают соль: создают электролит, хорошо проводящий большие токи.

Перемещение ножа в электролите меняет сопротивление среды и обеспечивает регулировку высоких токов. Проводимость можно изменять концентрацией соли в растворе.

Напоминаю: подобное устройство нельзя использовать в бытовых цепях: оно не отвечает требованиям безопасности.

Таким образом, под каждый конкретный случай расчета используется своя формула электрического сопротивления, которой следует внимательно пользоваться. Исключить ошибки в расчетах помогает специализированный онлайн калькулятор.

По этой теме рекомендую посмотреть видеоролик Владимира Романова.

Если хотите задать вопрос или дополнить информацию, то воспользуйтесь разделом комментариев.

В каких единицах измеряется

Впервые индуктивность была вычислена американским ученым-физиком Джоном Генри и была названа в его честь – Генри, сокращенно Гн. Диапазон индуктивности очень широк, в приведенной ниже таблице видно, какие производные существуют:

Кратные Дольные
Величина Название Обозначение Величина Название Обозначение
101 декагенри даГн daH 10-1 децигенри дГн dГн
102 гектогенри гГн hH 10-2 сантигенри сГн cГн
103 килогенри кГн kH 10-3 миллигенри мГн mГн
106 мегагенри МГн MH 10-6 микрогенри мкГн µГн
109 гигагенри ГГн GH 10-9 наногенри нГн nГн
1012 терагенри ТГн TH 10-12 пикогенри пГн pГн
1015 петагенри ПГн PH 10-15 фемтогенри фГн fГн
1018 эксагенри ЭГн EH 10-18 аттогенри аГн aГн
1021 зеттагенри ЗГн ZH 10-21 зептогенри зГн zГн
1024 иоттагенри ИГн YH 10-24 иоктогенри иГн yГн

Первые две строчки производных в каждой части таблицы применять не рекомендуют, указывают либо в десятых или сотых долях генри, либо десятках и сотнях. В СИ используется указанное обозначение в других системах, таких как СГМС обозначение может отсутствовать, либо применяется статгенри ≈ 8,987552⋅1011 или абгенри.

Индуктивность, L — измеряется в Генри (Гн). Индуктивное сопротивление XL — измеряется в Омах (Ом)

Виды пассивных элементов

Внутреннее сопротивление — формула

Данные устройства характеризуются тем, что вместо рассеивания энергии склонны к ее накоплению. Разные типы таких деталей создают различные формы сопротивления.

Катушка индуктивности

Это радиокомпонент, представляющий собой проводниковый элемент спиральной или винтообразной формы, покрытый изоляцией. В схемах катушки используют для нивелирования помех и искажений, снижения величины переменного тока, генерации магнитного поля. Длинные тонкие элементы носят название соленоидов. Катушки отличаются небольшими величинами активной сопротивляемости и емкости, но обладают индуктивностью, генерируя электродвижущую силу.

Подключение катушки в электрическую цепь

Емкостной элемент

Примером этого вида деталей является конденсатор. Он включает в себя две проводящие обкладки, между которыми находится диэлектрический материал. Протекание электротока обусловлено накоплением и отдачей обкладками своего заряда.

Подсоединение конденсатора в электроцепь

§ 2.9. Закон Ома для электрической цепи переменного тока

Рассмотрим теперь более общий случай электрической цепи, в которой последовательно соединены проводник с активным сопротивлением R и малой индуктивностью, катушка с большой индуктивностью L и малым активным сопротивлением и конденсатор емкостью С (рис. 2.20).

Рис. 2.20

Чему равна амплитуда силы тока в такой цепи (колебательном контуре), если на ее концах поддерживается напряжение u(t) = U sin ωt?

Мы видели, что при включении по отдельности в цепь проводника с активным сопротивлением R, конденсатора емкостью С или катушки с индуктивностью L амплитуда силы тока определяется соответственно формулами (2.6.2), (2.7.3) и (2.8.4). Амплитуды же напряжений на резисторе, катушке индуктивности и конденсаторе связаны с амплитудой силы тока так:

В цепях постоянного тока напряжение на концах цепи равно сумме напряжений на отдельных последовательно соединенных участках цепи. Однако, если измерить результирующее напряжение на контуре и напряжения на отдельных элементах цепи переменного тока, окажется, что напряжение на контуре (действующее значение) не равно сумме напряжений на отдельных элементах.

Почему это так? Дело в том, что гармонические колебания напряжения на различных участках цепи сдвинуты по фазе друг относительно друга.

Действительно, квазистационарный ток в любой момент времени одинаков во всех участках цепи. Это значит, что одинаковы амплитуды и фазы токов, протекающих по участкам с емкостным, индуктивным и активным сопротивлением. Однако только на участке с активным сопротивлением колебания напряжения и силы тока совпадают по фазе. На конденсаторе колебания напряжения отстают по фазе от колебаний силы тока на π/2 (см. § 2.7), а на катушке индуктивности колебания напряжения опережают колебания силы тока на π/2 (см. § 2.8).

Векторная диаграмма электрической цепи

Для вывода закона Ома в случае электрической цепи переменного тока, изображенной на рисунке 2.20, нужно уметь складывать мгновенные колебания напряжений, сдвинутых по фазе друг относительно друга. Проще всего выполнять сложение нескольких гармонических колебаний с помощью векторных диаграмм, о которых было рассказано в § 1.11. Векторная диаграмма электрических колебаний в цепи позволит нам определить амплитуду силы тока в зависимости от амплитуды напряжения и сдвиг фаз между силой тока и напряжением.

Так как сила тока одинакова во всех участках цепи, то построение векторной диаграммы удобно начать с вектора силы тока m. Этот вектор изобразим в виде вертикальной стрелки (рис. 2.21). Напряжение на резисторе совпадает по фазе с силой тока. Поэтому вектор mR должен совпадать по направлению с вектором m. Его модуль равен UmR = ImR.

Рис. 2.21

Колебания напряжения на катушке индуктивности опережают колебания силы тока на π/2 и соответствующий вектор и mL должен быть повернут относительно вектора m на π/2. Его модуль равен UmL = IωL. Если считать, что положительному сдвигу фаз соответствует поворот вектора против часовой стрелки, то вектор mL следует повернуть налево на π/2. (Можно было бы, конечно, поступить и наоборот.)

Вектор напряжения на конденсаторе mC отстает по фазе от вектора m на π/2 и поэтому повернут на этот угол относительно вектора m направо. Его модуль равен .

Для нахождения вектора суммарного напряжения m нужно сложить три вектора: mR, mL и mC. Вначале удобнее сложить два вектора mL и mC (рис. 2.22).

Рис. 2.22

Модуль этой суммы равен , если . Именно такой случай изображен на рисунке. После этого, сложив вектор mL + mC с вектором mR, получим вектор m, характеризующий колебания напряжения в сети.

По теореме Пифагора (из треугольника АОВ):

или

Из равенства (2.9.2) можно найти амплитуду силы тока в цепи:

Это и есть закон Ома для электрической цепи переменного тока, изображенной на рисунке 2.20.

Благодаря сдвигу фаз между напряжениями на различных участках цепи полное сопротивление Z цепи (см. рис. 2.20) выражается так:

От амплитуд силы тока и напряжения можно перейти к действующим значениям этих величин. Они связаны друг с другом точно так же, как и амплитуды в формуле (2.9.3):

Мгновенное значение силы тока меняется со временем гармонически:

где φc, — разность фаз между силой тока и напряжением в сети. Она зависит от частоты со и параметров цепи R, L, С.

Сдвиг фаз между током и напряжением

Сдвиг фаз φc, между колебаниями силы тока и напряжения равен по модулю углу φ между векторами m и m (см. рис. 2.22). Как следует из этого рисунка,

Согласно рисунку 2.22, сила тока отстает от напряжения по фазе при условии . Поэтому сдвиг фаз φc = -φ и

В частных случаях цепей с активным, емкостным и индуктивным сопротивлениями из этой формулы получаются правильные значения сдвига фаз.

Мощность в цепи с реактивными радиоэлементами

При подключении таких элементов в цепь в четных четвертях периода мощность будет иметь отрицательное значение (в это время компонент направляет накопленную энергию в источник напряжения). В итоге использование энергии элементом за весь цикл оказывается равным нулю. Это означает, что на нем не происходит выделения энергии, так что на электросхемах такие детали изображаются холодными. На деле положение вещей может быть немного иным (это зависит от параметров конкретного элемента), бывает, что небольшие тепловые потери на конденсаторе или соленоиде все-таки имеют место. Но они не будут значительными, измеряющимися в кв.