Магнитный поток

Конвертер величин

Калькуляторы

В этой части Конвертера физических единиц TranslatorsCafe.com представлена группа калькуляторов, выполняющих расчеты в различных областях электротехники, радиотехники и электроники.

Магнитостатика, магнетизм и электродинамика

Магнитостатика — раздел классической электродинамики, изучающий взаимодействие постоянных токов посредством создаваемого ими постоянного магнитного поля и способы расчета магнитного поля в этом случае.

Электродинамика

— раздел физики, изучающий силы, возникающие при взаимодействии электрически заряженных частиц и тел. Эти силы объясняются в электродинамике с помощью электромагнитных полей. Силы электромагнитного взаимодействия лежат в основе большинства явлений, с которыми мы встречаемся в повседневной жизни. Часть привычных явлений обусловлена действием гравитационных сил.

Электромагнитное поле

— физическое поле, появляющееся при взаимодействии движущихся заряженных телами или частиц. Электромагнитное поле можно рассматривать как сочетание электрического и магнитного полей.

Электрическое поле

— физическое поле, окружающее электрически заряженные частицы, проводники с проходящими в них электрическими токами и изменяющиеся во времени и пространстве магнитные поля.

Магнитное поле

— физическое силовое поле, окружающее заряженные частицы, проводники с электрическим током, магнитные материалы и переменные электрические поля, а также действующее на проводники с электрическим током, движущиеся электрические заряды и тела, обладающие магнитным моментом. Магнитное поле в любой точке определяется направлением и силой и таким образом является векторным полем. Магнитное поле характеризуется двумя основными величинам — вектором магнитной индукцииВ и вектором напряженности магнитного поляH .

Конвертер магнитного потока

Магнитный поток

определяется как интеграл вектора магнитной индукции через конечную поверхность. Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади. Для измерения магнитного потока используют флюксметр, который измеряет напряжение на измерительной катушке.

В СИ единицей магнитного потока является вебер

(Вб, размерность — В·с = кг·м²·с⁻²·А⁻¹). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м². В системе СГС — магнитный поток измеряется вмаксвеллах (Мкс).

Использование конвертера «Конвертер магнитного потока»

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Изучайте технический английский язык и технический русский язык с нашими видео! — Learn technical English and technical Russian with our videos!

Пользуйтесь конвертером для преобразования нескольких сотен единиц в 76 категориях или несколько тысяч пар единиц, включая метрические, британские и американские единицы. Вы сможете перевести единицы измерения длины, площади, объема, ускорения, силы, массы, потока, плотности, удельного объема, мощности, давления, напряжения, температуры, времени, момента, скорости, вязкости, электромагнитные и другие. Примечание.

В связи с ограниченной точностью преобразования возможны ошибки округления. В этом конвертере целые числа считаются точными до 15 знаков, а максимальное количество цифр после десятичной запятой или точки равно 10.

Для представления очень больших и очень малых чисел в этом калькуляторе используется компьютерная экспоненциальная запись

, являющаяся альтернативной формой нормализованной экспоненциальной (научной) записи, в которой числа записываются в форме a · 10x. Например: 1 103 000 = 1,103 · 106 = 1,103E+6. Здесь E (сокращение отexponent ) — означает «· 10^», то есть«…умножить на десять в степени…» . Компьютерная экспоненциальная запись широко используется в научных, математических и инженерных расчетах.

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Канал Конвертера единиц TranslatorsCafe.com на YouTube

Основные уравнения

Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряжённость магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.

(Здесь формулы приведем в СИ, в виде для вакуума, где есть варианты для вакуума — для среды; запись в другом виде и подробности — см. по ссылкам).

В магнитостатике

В магнитостатическом пределе наиболее важными являются:

  • Закон Био — Савара — Лапласа: играет в магнитостатике ту же роль, что закон Кулона в электростатике:

    B→(r→)=μ4π∫L1I(r→1)dL1→×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int \limits _{L_{1}}{\frac {I\left({\vec {r}}_{1}\right){\vec {dL_{1}}}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
    B→(r→)=μ4π∫j→(r→1)dV1×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int {\frac {{\vec {j}}\left({\vec {r}}_{1}\right)dV_{1}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
  • Теорема Ампера о циркуляции магнитного поля:

    ∮∂S⁡B→⋅dl→=μIS≡μ∫Sj→⋅dS→,{\displaystyle \oint \limits _{\partial S}{\vec {B}}\cdot {\vec {dl}}=\mu _{0}I_{S}\equiv \mu _{0}\int \limits _{S}{\vec {j}}\cdot {\vec {dS}},}
    rotB→≡∇→×B→=μj→.{\displaystyle \mathrm {rot} \,{\vec {B}}\equiv {\vec {\nabla }}\times {\vec {B}}=\mu _{0}{\vec {j}}.}

В общем случае

Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции B→{\displaystyle {\vec {B}}}:

Три из четырех уравнений Максвелла (основных уравнений электродинамики)

divE→=ρε,   rotE→=−∂B→∂t{\displaystyle \mathrm {div} \,{\vec {E}}={\frac {\rho }{\varepsilon _{0}}},\ \ \ \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}}}
divB→=,    rotB→=μj→+1c2∂E→∂t{\displaystyle \mathrm {div} \,{\vec {B}}=0,\ \ \ \ \,\mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}}
а именно:

Закон отсутствия монополя:

divB→=,{\displaystyle \mathrm {div} \,{\vec {B}}=0,}

Закон электромагнитной индукции Фарадея:

rotE→=−∂B→∂t,{\displaystyle \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}},}

Закон Ампера — Максвелла:

rotB→=μj→+1c2∂E→∂t.{\displaystyle \mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}.}

Формула силы Лоренца:

F→=qE→+qv→×B→,{\displaystyle {\vec {F}}=q{\vec {E}}+q\left,}
Следствия из неё, такие как

Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)

dF→=Idl→×B→,{\displaystyle d{\vec {F}}=\left,}
dF→=j→dV×B→,{\displaystyle d{\vec {F}}=\left,}

выражение для момента силы, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):

M→=m→×B→,{\displaystyle {\vec {M}}={\vec {m}}\times {\vec {B}},}

выражение для потенциальной энергии магнитного диполя в магнитном поле:

U=−m→⋅B→,{\displaystyle U=-{\vec {m}}\cdot {\vec {B}},}
  • а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т. д..
  • Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:
F→=Kqmr→r3.{\displaystyle {\vec {F}}=K{\frac {q_{m}{\vec {r}}}{r^{3}}}.}

(это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).

Выражение для плотности энергии магнитного поля

w=B22μ{\displaystyle w={\frac {B^{2}}{2\mu _{0}}}}

Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).

«Действие магнитного поля на проводник с током»

Если металлический проводник с током поместить в магнитное поле, то на этот проводник со стороны магнитного поля будет действовать сила, которая называется силой Ампера.

Сила Ампера зависит от длины проводника с током, силы тока в проводнике, модуля магнитной индукции и расположения проводника относительно линий магнитной индукции: FA = BIlsinа.

Для определения направления силы Ампера применяют правило левой руки. Если левую руку расположить в магнитном поле так, чтобы силовые линии входили в ладонь, а четыре пальца были направлены по току, то отогнутый большой палец укажет направление силы, действующей на проводник.

Магнитное взаимодействие можно наблюдать между двумя параллельными токами (опыт Ампера): два параллельных проводника с током отталкиваются, если направления токов в них противоположны, и притягиваются, если направления токов совпадают.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника l и силе тока I в проводнике. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции В. Соответственно, F = BIl. В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записывается в том случае, если линии магнитной индукции перпендикулярны проводнику с током. Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции = 1Н / 1А • 1м = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1Н при силе тока в проводнике 1 А.

Магнитное поле действует также на движущиеся заряженные частицы. При этом сила (сила Лоренца) зависит от модуля магнитной индукции, заряда частицы, а также от модуля и направления её скорости.

Электрический двигатель

Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся, потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ab, противоположна силе, действующей на сторону cd.

Советуем изучить Линии магнитной индукции

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

Действие магнитного поля на проводник с током

Конспект урока по физике в 8 классе «Действие магнитного поля на проводник с током».

Следующая тема: «Электромагнитная индукция. Опыты Фарадея».

Как измерить магнитный поток?

Поскольку магнитный поток является просто способом выражения магнитного поля в данной области, его можно измерять магнитометром так же, как и магнитное поле. Например, предположим, что маленький датчик магнитометра перемещается (без вращения) внутри области площадью 0,5м2 рядом с большим листом магнитного материала и указывает на постоянное показание 5 мТ. Магнитный поток через область тогда (5·10 -3 )·(0,5 м 2 )= 0,0025 Вб. В случае, если показания магнитного поля изменяются в зависимости от положения, необходимо найти среднее значение. Схожим термином, с которым вы можете столкнуться, является плотность магнитного потока, измеряемая Вб/м2, поскольку мы делим поток на площадь, мы также можем напрямую указать единицы плотности потока в Тесле. На самом деле, термин плотность магнитного потока часто используется как синоним величины магнитного поля.

Постоянные магниты

Источником магнитного поля (МП) могут служить постоянные магниты. Они изготавливаются из магнетита. В природе он известен как оксид железа. Это минерал чёрной окраски, имеющий молекулярное строение FeO·Fe2O3. Свойства магнитов известны с давних времён. Магниты имеют два полюса – северный и южный.

Постоянные магниты можно классифицировать по следующим критериям:

  • материал, из которого изготовлен магнит;
  • форма;
  • сфера использования.

Магниты с постоянными полюсами изготавливаются из различных материалов:

  • ферритов – прессованных изделий из порошков оксида железа и оксидов иных металлов;
  • редкоземельных – нодимовых (NdFeB), самариевых (SmCo), литых (сплавы металлов), полимерных (магнитопласты).

Форма магнитов самая различная:

  • цилиндрическая (прямоугольная);
  • подковообразная;
  • кольцеобразная;
  • дискообразная.

Направление линий МП в зависимости от формы магнита

Постоянные магниты нашли широкое применение в различных отраслях народного хозяйства:

  • МРТ – медицинский прибор для диагностики человеческого организма;
  • приводы жёстких дисков в современных компьютерах;
  • в радиотехнике, при изготовлении динамиков;
  • производство декоративных украшений с применением магнитов на полимерной основе.

В двигателях постоянного тока такие магниты вмонтированы в корпус индуктора.

Теорема Гаусса для магнитного поля

Значение суммарного магнитного потока через замкнутую поверхность S равняется нулю:

∮B→dS→=.

Выражение ∮B→dS→= является справедливым для любых магнитных полей. Данное уравнение считается аналогом теоремы Остроградского-Гаусса в электростатике в вакууме:

∮E→dS→=qε.

Запись ∮B→dS→= говорит о том, что источник магнитного поля – это не магнитные заряды, а электрические токи.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Пример 1

Дан бесконечно длинный прямой проводник с током I, недалеко от которого имеется квадратная рамка. По ней проходит ток с силой I’. Сторона рамки равна a. Она располагается в одной плоскости с проводом, как показано на рисунке 2. Значение расстояния от ближайшей стороны рамки до проводника равняется b. Найти работу магнитной силы при удалении рамки из поля. Считать токи постоянными.

Рисунок 2

Решение

Индукция магнитного поля длинного проводника с током в части, где расположена квадратная рамка, направляется на нас.

Следует учитывать нахождение рамки с током в неоднородном поле, что означает убывание магнитной индукции при удалении от провода.

За основу возьмем формулу магнитного потока и работы, которая их связывает:

A=I’Φ2-Φ1 (1.1), где I’ принимают за силу тока в рамке, Φ1 – за поток через квадратную рамку при расстоянии от ее стороны к проводу равняющимся b. Φ2=. Это объясняется тем, что конечное положение рамки вне магнитного поля, как дано по условию. Отсюда следует, запись формулы (1.1) изменится:

A=-I’Φ1 (1.2).

Перейдем к нормали n→ и выберем ее направление к квадратному контуру относительно нас, используя правило правого винта. Отсюда следует, что для всех элементов поверхности, ограниченной при помощи контура квадратной рамки, угол между нормалью n→ и вектором B→ равняется π. Запись формулы потока через поверхность рамки на расстоянии х от провода примет вид:

dΦ=-BdS=-B·a·dx=-μ2πIldxx (1.3), значение индукции магнитного поля бесконечно длинного проводника с током силы I будет:

B=μ2πxIl (1.4).

Отсюда следует, что для нахождения всего потока из (1.3) потребуется:

Φ1=∫S-μ2πIldxx=-μ2πIl∫bb+adxx=-μ2πIl·lnb+ab (1.5).

Произведем подстановку формулы (1.5) в (1.2). Искомая работа равняется:

A=I’μ2πIl·lnb+ab.

Ответ: A=μ2πII’l·lnb+ab.

Пример 2

Найти силу, действующую на рамку, из предыдущего примера.

Решение

Для нахождения искомой силы, действующей на квадратную рамку с током в поле длинного провода, предположим, что под воздействием магнитной силы рамка смещается на незначительное расстояние dx. Это говорит о совершении силой работы, равной:

δA=Fdx (2.1).

Элементарная работа δA может быть выражена как:

δA=I’dΦ (2.2).

Произведем то же с силой, применяя формулы (2.1), (2.2). Получаем:

Fdx=I’dΦ→F=I’dΦdx (2.3).

Используем выражение, которое было получено в примере 1:

dΦ=-μ2πIldxx→dΦdx=-μ2πIlx (2.4).

Произведем подстановку dΦdx в (2.3). Имеем:

F=I’μ2πIlx (2.5).

Каждый элемент контура квадратной рамки находится под воздействием сил (силы Ампера). Отсюда следует, что на рамку действует 4 силы, причем на стороны AB и DC равные по модулю и противоположные по направлению. Выражение принимает вид:

FAB→+FDC→= (2.6), то есть их сумма равняется нулю. Тогда значение результирующей силы, приложенной к контуру, запишется:

F→=FAD→+FBC→ (2.6).

Используя правило левой руки, получаем направление этих сил вдоль одной прямой в противоположные стороны:

F=FAD-FBC (2.7).

Произведем поиск силы FAD, действующей на сторону AD, применив формулу (2.5), где x=b:

FAD=I’м2πIlb (2.8).

Значение FBC будет:

FBC=I’μ2πIlb+a (2.9).

Для нахождения искомой силы:

F=I’μ2πIlb-I’μ2πIlb+a=II’μl2π1b-1b+a.

Ответ: F=II’μl2π1b-1b+a. Магнитные силы выталкивают рамку с током до тех пор, пока она находится в первоначальной ориентации относительно поля провода.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Магнитный поток через открытую поверхность

Для открытой поверхности Σ электродвижущая сила вдоль границы поверхности, ∂Σ, представляет собой комбинацию движения границы со скоростью v через магнитное поле B (проиллюстрированное общим полем F на диаграмме) и индуцированное электрическое поле вызвано изменяющимся магнитным полем.

В то время как магнитный поток через закрытую поверхность всегда равен нулю, магнитный поток через открытую поверхность не обязательно равен нулю и является важной величиной в электромагнетизме.

При определении общего магнитного потока через поверхность необходимо определить только границу поверхности, фактическая форма поверхности не имеет значения, и интеграл по любой поверхности, имеющей одну и ту же границу, будет равным. Это прямое следствие того, что поток на замкнутой поверхности равен нулю.

Взаимодействие магнита с контуром

В качестве наглядного примера взаимодействия магнита и контура в сделанную из медного провода катушку помещают магнит. Если магнит медленно вставлять внутрь катушки, происходит постепенное увеличение пересекающего ее витки создаваемого магнитом потока. Появляющееся вследствие такой манипуляции упорядоченное движение частиц в катушке будет направлено по часовой стрелке, создавая собственное магнитное поле, ослабляющее поле магнита, отталкивая его тем самым от катушки.

Если магнит отдаляют от контура, его поток уменьшается, а заряженные частицы начинают двигаться против часовой стрелки, вследствие чего возникающая совокупность силовых магнитных линий будет притягивать магнит.

На заметку. В случае с незамкнутым (открытым) контуром: металлическим или алюминиевым кольцом, имеющим прорезь; катушкой, витки которой не замкнуты через амперметр, источник питания, данная закономерность, как и правило Ленца, не работает.

Причины возникновения индукционного тока в движущихся и неподвижных проводниках

Причин, по которым может происходить изменение магнитного потока, пронизывающего замкнутый контур, две:

  1. Изменение магнитного потока вследствие перемещения всего контура или отдельных его частей в магнитном поле, которое не изменяется со временем;
  2. Изменение магнитного поля при неподвижном контуре.

Перейдем к рассмотрению этих случаев подробнее.

Перемещение контура или его частей в неизменном магнитном поле

При движении проводников и свободных носителей заряда в магнитном поле возникает ЭДС индукции. Объяснить возникновение δинд можно действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца здесь – это сторонняя сила.

Пример 2

На рисунке мы изобразили пример индукции, когда прямоугольный контур помещен в однородное магнитное поле B→ направленное перпендикулярно плоскости контура. Одна из сторон контура перемещается по двум другим сторонам с некоторой скоростью.

Рисунок 1.20.3. Возникновение ЭДС индукции в движущемся проводнике. Отражена составляющая силы Лоренца, которая действует на свободный электрон

На свободные заряды подвижной части контура воздействует сила Лоренца. Основная составляющая силы Лоренца в данном случае направлена вдоль проводника и связана с переносной скоростью зарядов υ→. Модуль этой сторонней силы равен:

FЛ=eυ→B.

Работа силы FЛ на пути l равна:

A=FЛ·l=eυBl.

По определению ЭДС: 

δинд=Ae=υBl.

Значение сторонней силы для неподвижных частей контура равно нулю. Для соотношения δинд можно записать другой вариант формулы. Площадь контура с течением времени изменяется на ΔS=lυΔt. Соответственно, магнитный поток тоже будет с течением времени изменяться: ΔΦ=BlυΔt.

Следовательно, 

δинд=∆Φ∆t.

Знаки в формуле, которая связывает δинд и ∆Φ∆t, можно установить в зависимости от того, какие направления нормали и направления контура будут выбраны. В случае выбора согласованных между собой по правилу правого буравчика направлений нормали n→ и положительного направления обхода контура l→ можно прийти к формуле Фарадея.

При условии, что сопротивление всей цепи – это R, то по ней будет протекать индукционный ток, который равен Iинд=δиндR. За время Δt на сопротивлении R выделится джоулево тепло:

∆Q=RIинд2∆t=υ2B2l2R∆t

Парадокса здесь нет. Мы просто не учли воздействие на систему еще одной силы. Объяснение заключается в том, что при протекании индукционного тока по проводнику, расположенному в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, которая связана с относительной скоростью движения зарядов вдоль проводника. Благодаря этой составляющей появляется сила Ампера FА→.

Для рассмотренного выше примера модуль силы Ампера равен FA =IBl. Направление силы Ампера таково, что она совершает отрицательную механическую работу Aмех. Вычислить эту механическую работу за определенный период времени можно по формуле:

Aмех=-Fυ∆t=-IBlυ∆t=-υ2B2l2R∆t

Проводник, перемещающийся в магнитном поле, испытывает магнитное торможение. Это приводит к тому, что полная работа силы Лоренца равна нулю. Джоулево тепло может выделяться либо за счет уменьшения кинетической энергии движущегося проводника, либо за счет энергии, которая поддерживает скорость перемещения проводника в пространстве.

Изменение магнитного поля при неподвижном контуре

Определение 3

Вихревое электрическое поле – это электрическое поле, которое вызывается изменяющимся магнитным полем.

В отличие от потенциального электрического поля работа вихревого электрического поля при перемещении единичного положительного заряда по замкнутому проводящему контуру равна δинд в неподвижном проводнике.

В неподвижном проводнике электроны могут приводиться в движение только под действием электрического поля. А возникновение δинд нельзя объяснить действием силы Лоренца.

Первым, кто ввел понятие вихревого электрического поля, был английский физик Джон Максвелл. Случилось это в 1861 году.

Фактически, явления индукции в подвижных и неподвижных проводниках протекают одинаково. Так что в этом случае мы тоже можем использовать формулу Фарадея. Отличия касаются физической причины возникновения индукционного тока: в движущихся проводниках δинд обусловлена силой Лоренца, в неподвижных – действием на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Рисунок 1.20.4. Модель электромагнитной индукции

Рисунок 1.20.5. Модель опытов Фарадея

Рисунок 1.20.6. Модель генератора переменного тока

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Математическое представление

Магнитное поле в макроскопическом описании представлено двумя различными векторными полями, обозначаемыми как H и B.

H называется напряжённостью магнитного поля; B называется магнитной индукцией. Термин магнитное поле применяется к обоим этим векторным полям (хотя исторически относился в первую очередь к H).

Магнитная индукция B является основной характеристикой магнитного поля, так как, во-первых, именно она определяет действующую на заряды силу, а во-вторых, векторы B и E на самом деле являются компонентами единого тензора электромагнитного поля. Аналогично, в единый тензор объединяются величины H и электрическая индукция D. В свою очередь, разделение электромагнитного поля на электрическое и магнитное является совершенно условным и зависящим от выбора системы отсчёта, поэтому вектора B и E должны рассматриваться совместно.

Впрочем, в вакууме (при отсутствии магнетиков), а значит и на фундаментальном микроскопическом уровне, H и B совпадают (в системе СИ с точностью до условного постоянного множителя, а в СГС — полностью), что позволяет в принципе авторам, особенно тем, кто не использует СИ, выбирать для фундаментального описания магнитного поля H или B произвольно, чем они нередко и пользуются (к тому же, следуя в этом традиции). Авторы же, пользующиеся системой СИ, систематически отдают и здесь в этом отношении предпочтение вектору B, хотя бы потому, что именно через него прямо выражается сила Лоренца.

Единицы измерения

Величина B в системе единиц СИ измеряется в теслах (русское обозначение: Тл; международное: T), в системе СГС — в гауссах (русское обозначение: Гс; международное: G). Связь между ними выражается соотношениями: 1 Гс = 1·10−4 Тл и 1 Тл = 1·104 Гс.

Векторное поле H измеряется в амперах на метр (А/м) в системе СИ и в эрстедах (русское обозначение: Э; международное: Oe) в СГС. Связь между ними выражается соотношением: 1 эрстед = 1000/(4π) A/м ≈ 79,5774715459 А/м.

Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный Φ, пронизывающий контур или катушку с током, пропорционален силе тока I

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукциииндуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна или 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17)

где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида.

Магнитный поток, пронизывающий все N витков соленоида, равен

Следовательно, индуктивность соленоида равна

где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Рисунок 1.21.1.
Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает.

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I2RΔt.

Ток в цепи равен

Выражение для ΔQ можно записать в виде

В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I до 0. Это дает

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.

Рисунок 1.21.2.
Вычисление энергии магнитного поля.

Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить:

где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии. Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.