Правило левой и правой руки для магнитного поля

Содержание

Электродинамика и магнитостатика

Магнитная индукция представляет собой векторный фактор, который характеризует силовое поле. Величина показывает влияние магнитного фона на отрицательно и положительно заряженные частицы в исследуемом пространстве. Индукция определяет силу влияния поля на заряд, перемещающийся с заданной скоростью. Для этого случая законы применения описываются так:

  • Правило винта. Если поступательное круговое движение буравчика совпадает с направлением заряженных электронов в катушке, то путь поворота ручки инструмента будет совпадать с курсом магнитного вектора полярной индукции, направление при этом зависит от тока.
  • Принцип правой кисти. Если взять стержень в правую кисть так, что отставленный под прямым углом палец демонстрирует курс тока, то другие пальцы будут соответствовать направлению луча магнитной индукции, продуцируемого током. Путь магнитного вектора индукции прокладывается касательно линии отрезков.

Для подвижного проводника

В стержне из металла находится большое число свободных электронов, движение которых характеризуется как хаотичное. Если катушка движется в силовом электромагнитном поле вдоль линий, то фон отклоняет электроны, перемещающиеся одновременно с проводником. Их движение создает ЭДС (электродвижущую силу) и называется электромагнитной наведенной индукцией.

Ток будет протекать под действием разности потенциалов при подсоединении такой катушки к внешней цепи по замкнутому контуру. При передвижении стержня по направлению силовых линий снижается до нуля воздействие поля на заряды. Не возникает электродвижущая сила, нет напряжения, отсутствует ток электронов.

Вам это будет интересно  Описание и разновидности вводно-распределительных устройств (ВРУ)

ЭДС индукции равняется произведению рабочего размера проводника, скорости движения стержня и значения магнитной индукции. Ее направление устанавливается по закону правой руки. Ладонь располагается так, чтобы в нее были направлены линии силового поля, а отогнутый под 90° большой палец ставится вдоль движения стержня. В этом положении четыре распрямленных пальца покажут курс тока индукции.

Нахождение ЭДС по Максвеллу

Электродвижущее давление будет возникать при каждом пересечении стержня и силового поля. Результативным будет перемещение проводника, самого поля или изменение электромагнитных характеристик силового пространства.

ЭДС, полученная в контуре при состыковке его с изменяющимся силовым полем, измеряется скоростью трансформации магнитного потока. Направление индуцированной движущей силы идет так, что продуцируемый ею электрический ток противодействует реконструкции потоков магнитного излучения.

Изменение тока ведет к реформированию создаваемого им магнитного потока. Проходя через пространство, магнитное излучение стыкуется с соседними проводниками и со своим. В стержне наводится электродвижущая сила, которая носит название самоиндукции. Явление означает поддержку тока при его уменьшении и ослабление движения электронов при увеличении силы тока.

Если вращать буравчик по путям завихрения пространства, где возникают векторы, то его движение покажет направление кручения ротора. Это можно проследить, если четыре сжатых пальца правой кисти поставить по курсу завихрения. В этом случае отогнутый палец укажет путь движения ротора.

Для магнитного вектора индукции правила буравчика совпадают с законом Ампера — Максвелла. Но к электротоку через контур добавляется скорость трансформации силового поля через эту конфигурацию, а магнитное поле воспринимается только в случае его перемещения в пределах очертания.

Применение правил левой кисти:

  • Ладонь ставится так, чтобы индукционные линии входили в центр внутренней стороны, а пальцы соответствовали токовому направлению. Отставленный большой палец определит путь силы, оказывающий давление на стержень со стороны силового поля. Мощь носит наименование силы Ампера.
  • При втором варианте ладонь располагается так, чтобы линии силового поля входили под прямым углом в плоскость руки, а пальцы располагались по направлению перемещения положительных электронов или в противоположную сторону от отрицательных частиц. Тогда палец под углом 90° укажет путь приложения силы Лоренца.

Правило правой кисти для соленоида: нужно взять катушку индуктивности в правую руку так, чтобы пальцы показывали путь тока в оборотах, отставленный под 90° большой палец определит курс магнитных линий во внутренней части устройства. Зная полярность, легко вычислить путь прохождения электрического тока.

Кто должен уступить дорогу?

Ситуаций может быть больше, чем позволят рассмотреть рамки одной статьи, но разберем самые частые и основные – остальные же могут быть легко выведены из этих. Как это выглядит, будет отдельно указано на картинках.

При перестроении по полосам движения

Два автомобиля движутся в одном направлении. Осуществляется перестроение. Кто кого должен пропустить? Всегда ли прав тот, кто с правой стороны? Давайте вспомним п.8.4 ПДД, в соответствии с которым:

  • Если перестраиваются оба автомобиля одновременно, преимущество у того, кто движется справа.
  • Если один из автомобилей не перестраивается, а продолжает движение по своей полосе, то преимущество у него, вне зависимости от расположения относительно второго ТС (справа или слева).

Отсюда вытекают и еще несколько типичных ситуаций, трактовка которых вызывает сложности.

При сужении дороги

Существует неверное понимание, что в случае сужения дороги всегда применяется норма помехи справа. Это не совсем так – ситуация так же зависит от обстоятельств:

  • Если сужение происходит за счет уменьшения левой полосы, преимущества у тех, кто движется по правой.
  • Если сужаются обе полосы, т.е. перестроение происходит из обеих полос движения, преимущества так же у тех, кто находится справа.
  • Если же сужается правая полоса, т.е. ТС, находящиеся слева, продолжают движение по своей полосе без перестроения, а правые вынуждены «вливаться» в их ряд, то преимущества у участников движения левой полосы.

Разумеется, все это (как и в других случаях) актуально только при отсутствии дополнительных регулирующих факторов – разметки, знаков, светофоров и/или сотрудников ДПС (ГАИ), регулирующих движение.

Во дворах и на стоянках

Во всех этих случаях так же действуют нормы, диктуемые разметкой, знаками и т.п. Однако, если эти факторы отсутствуют, т.е. транспортные средства находятся на неких участках с разрешенным движением, но без дополнительной регулировки, прямо действует правило правой руки, т.е. преимущества всегда у тех, кто находится справа.

При этом очень важным будет точное понимание таких понятий, как перекресток, прилегающая территория, т.е. оценка типа участка дороги, чтобы определить преимущества.

На перекрестке

Пересечение перекрестка регулируется отдельными нормами, но логика в целом та же. Прежде всего, действуют сигналы сотрудника ГИБДД, светофора, знаков и разметки, и только в их отсутствии применяется норма помехи справа, ситуации при которой будем рассматривать далее.

Кроме прочего, есть в ПДД РФ четкие указания на следующие случаи:

При проезде равнозначных перекрестков

Если перекресток не является круговым, то при равнозначных дорогах напрямую действует правило правой руки – то есть преимущество имеют те, кто расположен справа.

При проезде неравнозначных перекрестков

Не вызывают вопросов случаи, когда перестроение происходит с главной на второстепенную, или наоборот. В этих ситуациях преимущество у тех ТС, что располагаются на главной.

Но бывают варианты, когда главная и второстепенная не пересекаются под прямым углом, а поворачивают. Например, главная сворачивает направо, а встречная второстепенная в противоположном направлении. Если выезда с дороги одного типа на другой не происходит, то в рамках однотипной дороги используется норма помехи справа.

При повороте

Если под поворотом подразумевается движение по перекрестку, то и правила его пересечения будут тем же, что описаны выше. Некоторые вопросы появляются при поворотах на прилегающие территории или выездах из них, но в подавляющем большинстве случаев они определены знаками.

Если же регулирующих факторов нет, если ситуация трактуется неоднозначно, лучше применять правило правой руки, и считать, что у всех, находящихся справа, преимущество.

Общее (главное) правило

Главное правило, которое может использоваться и в варианте правила буравчика (винта) и в варианте правила правой руки — это правило выбора направления для базисов и векторного произведения (или даже для чего-то одного из двух, т. к. одно прямо определяется через другое). Главным оно является потому, что в принципе его достаточно для использования во всех случаях вместо всех остальных правил, если только знать порядок сомножителей в соответствующих формулах.

Выбор правила для определения положительного направления векторного произведения и для положительного базиса

(системы координат) в трехмерном пространстве — тесно взаимосвязаны.

правый базис

По умолчанию же общепринято использовать положительные (и таким образом правые) базисы. Левые базисы в принципе принято использовать в основном когда использовать правый очень неудобно или вообще невозможно (например, если у нас правый базис отражается в зеркале, то отражение представляет собой левый базис, и с этим ничего не поделаешь).

Поэтому правило для векторного произведения и правило для выбора (построения) положительного базиса взаимно согласованы.

Они могут быть сформулированы так:

Для векторного произведения

Правило буравчика (винта) для векторного произведения

:Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю, то буравчик (винт), вращающийся таким же образом, будет завинчиваться в направлении вектора-произведения.

Вариант правило буравчика (винта) для векторного произведения через часовую стрелку

:Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю и смотреть с той стороны, чтобы это вращение было для нас по часовой стрелке, вектор-произведение будет направлен от нас (завинчиваться вглубь часов).Правило правой руки для векторного произведения (первый вариант)

Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю, а четыре пальца правой руки показывали направление вращения (как бы охватывая вращающийся цилиндр), то оттопыренный большой палец покажет направление вектора-произведения.

Правило правой руки для векторного произведения (второй вариант)

Если нарисовать векторы так, чтобы их начала совпадали и первый (большой) палец правой руки направить вдоль первого вектора-сомножителя, второй (указательный) — вдоль второго вектора-сомножителя, то третий (средний) покажет (приблизительно) направление вектора-произведения

Для базисов

Все эти правила могут быть, конечно, переписаны для определения ориентации базисов. Перепишем только два из них: Правило правой руки для базиса

) первый (большой) палец правой руки направить вдоль первого базисного вектора (то есть по осиx), второй (указательный) — вдоль второго (то есть по осиy), а третий (средний) окажется направленным (приблизительно) в направлении третьего (поz), то это правый базис (как и оказалось на рисунке).Правило буравчика (винта) для базиса

:Если вращать буравчик и векторы так, чтобы первый базисный вектор кратчайшим образом стремился ко второму, то буравчик (винт) будет завинчиваться в направлении третьего базисного вектора, если это правый базис.

Примечания

Математические детали общего понятия ориентации базиса, о котором здесь идёт речь — см. в статье Ориентация.

Под определением направления здесь везде имеется в виду выбор одного из двух противоположных направлений (выбор между всего двумя противоположными векторами), то есть сводится к выбору положительного направления.

Это означает, что другие правила могут быть также удобны в любом количестве, но их использование не является необходимым.

Это означает, что при желании можно пользоваться и противоположным правилом, и иногда это может быть даже удобно.

Понятие правого и левого базиса распространяются не только на ортонормированные, но на любые трехмерные базисы (то есть и на косоугольные декартовы координаты тоже), однако мы для простоты ограничимся здесь случаем ортонормированных базисов (прямоугольных декартовых координат с равным масштабом по осям).

Можно проверить, что в целом это действительно так, исходя из элементарного определения векторного произведения: Векторное произведение есть вектор, перпендикулярный обоим векторам-сомножителям, а по величине (длине) равный площади параллелограмма. То же, какой из двух возможных векторов, перпендикулярных двум заданным, выбрать — и есть предмет основного текста, правило, позволяющее это сделать и дополняющее приведённое здесь определение, указано там.

Левая резьба применяется в современной технике только тогда, когда применение правой резьбы привело бы к опасности самопроизвольного развинчивания под влиянием постоянного вращения данной детали в одном направлении — например, левая резьба применяется на левом конце оси велосипедного колеса

Помимо этого, левая резьба применяется в редукторах и баллонах для горючих газов, чтобы исключить подсоединение к кислородному баллону редуктора для горючего газа.

В том числе они могут быть в своих случаях и более удобными, чем общее правило, и даже иногда сформулированы достаточно органично, чтобы особенно легко запоминаться; что, правда, по-видимому, всё же не делает запоминание их всех более лёгким, чем запоминание всего одного общего правила.

Даже если мы имеем дело с достаточно асимметричным (и асимметрично расположенным относительно оси вращения) телом, так что коэффициентом пропорциональности между угловой скоростью и моментом импульса служит тензор инерции, несводимый к численному коэффициенту, и вектор момента импульса тогда вообще говоря не параллелен вектору угловой скорости, тем не менее правило работает в том смысле, что направление указывается приблизительно, но этого достаточно, чтобы сделать выбор между двумя противоположными направлениями.

Строго говоря, при этом сопоставлении есть ещё постоянный коэффициент 2, но в данной теме это не важно, так как речь идет сейчас только о направлении вектора, а не о его величине. Не обязательное требование.

Не обязательное требование.

Правило буравчика кратко и понятно

Схематичное изображение правила буравчика

В электротехнике ПБ показывает направление ЛМИ с привязкой к вектору электрического тока, проходящего в проводнике, и наоборот — определяет путь электротока в катушке во взаимосвязи с вектором ЛМИ.

Для экспериментального понимания нужно взять штопор или винт с правосторонней резьбой и сначала закручивать, а после откручивать. В первом случае это будет происходить по часовой стрелке и винт (штопор) будет двигаться вверх, а во втором случае вращение будет против часовой стрелки и винт (штопор) будет двигаться вниз. Соответственно этому и направление тока будет следовать поведению винта: вверх в первом случае и вниз во втором случае (показано стрелкой).

Движение на перекрестке

При значительной загруженности пересекающихся двух дорог одно неверное движение водителя может стоить, как минимум, повреждения автомобиля, максимум – жизни всех участников в ДТП. Именно для исключения таких последствий на законодательном уровне установлены правила поведения всех участников движения. Данной тематике посвящено довольно много занятий в автошколах. Помимо этого, правительство довольно часто вносит много поправок в некоторые постановления или законодательные акты.

Все это дает возможность не только снизить на перекрестках аварийную обстановку, но и, естественно, сохранить жизнь довольно многим людям. Начало этого участка дороги определяет специальный дорожный знак «Перекресток»

Подразумевается, что водитель автомобиля должен дополнительно сосредоточиться, обратить особое внимание на предшествующие знаки и обозначения, с учетом которых определяется предстоящая траектория передвижения на перекрестке

Организация правил движения на перекрестках является делом специальных служб, которые, учитывая ПДД, устанавливают необходимые светофоры и знаки приоритета. Нужно заметить, что до перекрестка действие дорожных знаков остается действительным лишь в тех случаях, когда это знак ограничения скоростного движения, знак, который запрещает остановку либо же знаки, определяющие зону для парковки или иные знаки, имеющие конец или начало участка действия.

Кроме того, нужно знать, что согласно ПДД на перекрестке строго запрещается передвижение задним ходом, так как это создаст множество помех остальным участникам движения. Помимо этого, нужно помнить, что передвижение на перекрестках происходит в разных направлениях: путь прямо, поворот налево, направо и так далее, которые разрешены правилами. Поэтому по сторонам смотреть будет абсолютно не лишним, даже когда вашему потоку движения на светофоре указывает зеленый свет, или вы едете по главной дороге. Зачастую из-за наличия многих направлений начинающий водители путаются и едут совершенно не по правилам.

Нерегулируемые и регулируемые перекрестки

Нужно упомянуть о двух абсолютно различных видах дорожных пересечений, определяющие ПДД, перекрестки могут быть нерегулируемые и регулируемые. К последним относятся участки дорог, оборудованные светофорами, либо на них все время находится регулировщик. С учетом современной обстановки, последний способ регулирования перекрестка намного популярней, но и первый вариант также в сложных случаях имеет место быть. В тех спорных ситуациях, если отсутствует регулировщик или светофор отключен, то маневрирование или передвижение необходимо совершать, с учетом знаков приоритета, которые находятся на каждом пересечении дороги.

Регулируемые и другие участки, согласно ПДД

Рассмотрим, каким образом определяют правила движения на перекрестке с наличием каких-то вариантов регулировки. Когда речь заходит о перекрестке, на котором находится пешеходный переход, то водитель в любой ситуации (даже когда горит разрешающий передвижение сигнал светофора) должен уступить дорогу велосипедисту или пешеходу. Помимо этого, когда водитель, собирающийся произвести разворот, поворот направо, налево видит, что обязан уступить дорогу тем водителям, у которых основное преимущество «главной дороги», то при наличии светофора или стоп-линии вашему транспортному средству необходимо принять положение таким образом, чтобы остальным водителям было удобно производить перемещение.

Кроме того, правила движения определяют проезд перекрестков, если они имеют большую загрузку: владелец транспорта не должен производить маневр в случае, когда есть шанс остановиться на середине пути, так как вы, таким образом, создаете помеху для передвижения конкурирующему потоку. В таких, неотвратимых ситуациях, если водитель уже начал производить на перекрестном участке дороги маневр поворота налево, то он должен завершить это движение во что бы то ни стало, даже когда сигнал светофора у него уже поменялся на запрещающий. Данная мера необходима для того, чтобы вы небыли помехой для потока, предстоящему тронуться с места.

Использование правила правой руки в электродинамике

Если в магнитном поле подвесить на тонком и гибком проводе рамку с током, то она будет поворачиваться и расположится определенным образом. Аналогично поведение магнитной стрелки. Это свидетельствует о векторном характере физической величины, характеризующей магнитное поле. При этом направление этого вектора будет связано с ориентацией рамки и стрелки. Физической векторной величиной, которая характеризует магнитное поле, стал вектор магнитной индукции ($\vec{B}$).

Готовые работы на аналогичную тему

  • Курсовая работа Правило левой и правой руки для магнитного поля 420 руб.
  • Реферат Правило левой и правой руки для магнитного поля 220 руб.
  • Контрольная работа Правило левой и правой руки для магнитного поля 190 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость Это один из главных параметров, описывающих состояние магнитного поля, поэтому необходимо уметь находить его величину и, конечно, направление.

Для определения направления вектора магнитной индукции используют:

  • правило правого винта или
  • правило правой руки.

Направлением вектора магнитной индукции, в месте локализации рамки с током, считают направление положительного перпендикуляра ($\vec{n}$) к этой рамке. Положительная нормаль ($\vec{n}$) будет иметь направление такое же, как направление поступательного перемещения правого винта, если его головку вращать по току в рамке (рис.1 (a)).

Рисунок 1. Определение направления вектора магнитной индукции. Автор24 — интернет-биржа студенческих работ

Так, обладая пробной рамкой с током, помещая ее в исследуемое поле, давая ей свободно вращаться в нем, можно определить, как направлен вектор магнитной индукции в каждой точке поля. Необходимо только дать рамке прийти в положение равновесия, затем использовать правило правого винта.

Ты эксперт в этой предметной области? Предлагаем стать автором Справочника Условия работы

Теперь обратимся к правилу правой руки. Сожмем правую руку в неплотный кулак (рис.2). Отогнем большой палец на 90°. Руку разместим так, чтобы большой палец указывал направление течения тока, тогда согнутые остальные четыре пальца укажут направление линий магнитной индукции поля, которое создает ток. А мы помним, что касательная в каждой точке поля к силовой линии (линии магнитной индукции) указывает направление $\vec{B}$.

Рисунок 2. Правило правой руки. Автор24 — интернет-биржа студенческих работ

Рассмотрим соленоид. Обхватим правой ладонью его так, чтобы четыре пальца совпали с направлением тока в нем, тогда отогнутый на девяносто градусов палец укажет, как направлено магнитное поле, создаваемое у него внутри.

Нам известно, что если в магнитном поле перемещать проводник, то в этом проводнике будет возникать ток индукции. Правило правой руки можно использовать для определения направления течения тока индукции в таких проводниках. При этом:

  • линии индукции магнитного поля должны входить в открытую ладонь правой руки,
  • палец этой руки отогнуть на девяносто градусов, и направить по скорости перемещения проводника,
  • вытянутые четыре пальца будут указывать, как направлен ток индукции.

Правилом правой руки можно воспользоваться при определении направления ЭДС индукции в контуре:

Согнутыми четырьмя пальцами правой руки охватить контур, в котором индуцируется ЭДС при изменении магнитного потока, отогнуть на девяносто градусов большой палец этой руки и направить его по направлению магнитного потока при его увеличении (или против направления магнитного потока при его уменьшении), тогда согнутые пальцы укажут на направление противоположное ЭДС.

Общее (главное) правило

Рассматриваемая методика применима не только для решения электротехнических задач. Общие принципы справедливы для многих процессов, которые описывают с применением векторных обозначений. Эта форма позволяет, кроме амплитуды, оперировать с направлением силы. В определенной ситуации результирующее воздействие определяется умножением соответствующих векторов.


Декартова система координат

На практике чаще используют первый пример на картинке – правый (положительный) базис. В соответствии с базовым определением подразумевается совмещенное положение векторов. В этом варианте кратчайший поворот от первого (i) ко второму (j) выполняется против направления движения стрелок на циферблате чатов.

Для произведения двух векторов

Удобный для практического применения закон буравчика создан с учетом типовых технических решений. Шурупы и другие крепежные изделия, как правило, изготавливают с аналогичной резьбой (правой). Это соответствует физиологии человека, позволяет развивать большие усилия естественным движением кисти руки.


«Оружейное» мнемоническое правило

Запомнить метод буравчика можно с помощью показанной на рисунке конфигурации пальцев, которой изображают «пистолет». Для устойчивой ассоциации с определенными физическими величинами нужно вспомнить англоязычную аббревиатуру американских спецслужб (ФБР – FBI). При таком расположении пальцы будут показывать следующие вектора:

  • большой – ток в проводнике (I);
  • указательный – магнитную индукцию (B);
  • средний – силовое воздействие (F).

Для базисов

Аналогичным образом запоминают ориентацию векторных составляющих при рассмотрении базисов. Также применяют мнемоническое правило на основе часов. В таком варианте два вектора ассоциируются со стрелками часов. Результат умножения направлен в глубину механизма либо к наблюдателю, соответственно.

Действие магнитного поля на ток. Правило левой руки.

Поместим между полюсами магнита проводник, по кото­рому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.

Объяснить это можно следующим образом. Вокруг провод­ника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направ­лены так же, как и силовые линии магнита, а по другую сто­рону проводника — в противопо­ложную сторону. Вследствие это­го с одной стороны проводника (на рисунке 1 сверху) маг­нитное поле оказывается сгущен­ным, а с другой его стороны (на рисунке 1 снизу) — разрежен­ным. Поэтому проводник испыты­вает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.

Рисунок 1. Действие магнитного поля на ток.

Правило левой руки

Для быстрого определения направления движения провод­ника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).

Рисунок 2. Правило левой руки.

Правило левой руки состоит в следую­щем: если поместить левую руку между полюсами маг­нита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца ру­ки совпадали с направлением тока в проводнике, то боль­шой палец покажет направ­ление движения проводника.

Итак, на проводник, по которому протекает электри­ческий ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказы­вается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая нахо­дится в магнитном поле (рисунок 3 слева).

Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.

Рисунок 3. Сила взаимодействия магнитного поля и тока.

Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изобра­жено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плос­кость, перпендикулярную магнитным силовым ли­ниям. Отсюда следует, что если проводник паралле­лен магнитным силовым линиям, то сила, дейст­вующая на него, равна нулю. Если же проводник перпендикулярен направ­лению магнитных силовых линий, то сила, действую­щая на него, достигает наибольшей величины.

Сила, действующая на проводник с током, зави­сит еще и от магнитной индукции. Чем гуще рас­положены магнитные си­ловые линии, тем больше сила, действующая на проводник с током.

Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:

Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную маг­нитному потоку.

Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Дей­ствие магнитного поля на ток можно наблюдать даже при от­сутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.

Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электроди­намических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп — магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.

Похожие материалы:

  • Магнитное поле тока. Магнитные силовые линии
  • Напряженность магнитного поля
  • Магнитная индукция
  • Электромагнитная индукция
  • Правило правой руки
  • Взаимоиндукция
  • Самоиндукция
  • ЭДС самоиндукции: основные послулаты
  • Постоянные магниты

Комментарии

Громова Ева 27.02.2018 18:58 Спасибо большое за статью!

Цитировать

асаев антон 04.09.2014 04:56 спасибо создателю сайта

Цитировать

Обновить список комментариев