Потенциал электростатического поля. разность потенциалов

Содержание

Содержание:

Разница потенциалов в зависимости от напряжения

Разница потенциалов и напряжение — это два термина, которые используются в технике для описания разности потенциалов в двух точках. Напряжение относится к электричеству, где разность потенциалов может быть связана с электрическим, магнитным и гравитационным полями. Однако если рассматривать только электрическое поле, разность потенциалов такая же, как и напряжение.

Разность потенциалов

Потенциал — это понятие, используемое в электрическом, магнитном и гравитационном полях. Потенциал — это функция местоположения, а разность потенциалов между точкой A и точкой B рассчитывается путем вычитания потенциала A из потенциала B. Другими словами, гравитационная разность потенциалов между точками A и B — это объем работы, который должен быть выполняется для перемещения единицы массы (1 кг) из точки B в точку A. В электрическом поле это количество работы, которое необходимо совершить для перемещения единичного заряда (+1 кулон) из точки B в A. Разность гравитационных потенциалов равна измеряется в Дж / кг, где разность электрических потенциалов измеряется в В (вольтах).

Однако в общепринятом смысле термин «разность потенциалов» в основном используется для описания разности электрических потенциалов

Следовательно, мы должны использовать этот термин осторожно, чтобы избежать неверных толкований

напряжение

Разность электрических потенциалов между точками A и B также известна как напряжение между точками A и B. Напряжение измеряется в вольтах (В). Вольтметр — это оборудование, используемое для измерения напряжения. Батарея обеспечивает напряжение между двумя своими концами (электродами), и ее положительная сторона имеет более высокий потенциал, а отрицательный электрод — более низкий потенциал.

В цепи ток течет от более высокого потенциала к более низкому потенциалу. Когда он проходит через резистор, можно наблюдать напряжение между двумя концами. Это называется «падением напряжения». Хотя напряжение всегда находится между двумя точками, иногда люди просят напряжение точки. Речь идет о напряжении между этой конкретной точкой и контрольной точкой. Эта контрольная точка обычно «заземлена», и ее электрический потенциал считается равным 0 В.

В чем разница между разностью потенциалов и напряжением?

1. Разницу потенциалов можно найти в любом поле (гравитационном, электрическом, магнитном и т. Д.), А напряжение используется только для электрических полей.

2. Разность потенциалов по отношению к электрическому полю называется напряжением.

3. Напряжение измеряется в вольтах (В), а единица измерения разности потенциалов изменяется в зависимости от типа энергетического поля (В для электрического, Дж / кг для гравитационного и т. Д.).

Примеры формул для вычисления напряжения

Электрическое поле — что это такое, понятие в физике

Измерить напряжение можно, воспользовавшись такой формулой:

U=A/q (U, A и q – величина напряжения, переносящая работа электрополя и заряд, соответственно).

Выразив работу (A=q*U), можно понять, что, чем больше напряженность, тем большую работу потребуется совершить электрополю, чтобы перенести Q

Такие преобразования помогают усвоить, почему важно, чтобы источник питания был мощным. Чем больше потенциальная разница между его клеммами, тем больший объем работы он способен обеспечивать

Чтобы определить напряжение на участке электрической цепи, используется следующее выражение:

U=I*R.

Здесь I – сила протекающего по проводнику электротока, R – сопротивление фрагмента цепи. Для последовательно и параллельно соединенных проводниковых элементов также существуют свои законы, согласно которым рассчитываются напряжение, токовая сила и сопротивление для каждой из веток.

Эквипотенциальные поверхности

Если предположить, что источником электрополя является точечно заряженная частица (т. е. поле центральное), из этого следует, что все точки пространства, которые находятся от него одинаково далеко, имеют равный потенциал. В пространстве совокупность таких точек образует поверхность шара, а заряд-источник находится в центре сферы.

Однако, если электрополе не имеет централизованного характера, всё равно можно назначить такие поверхности, что пробный заряд, размещённый в любой точке этой поверхности, будет иметь тот же потенциал. Например, в случае однородного поля такой поверхностью является любая плоскость, перпендикулярная линии поля.

§ 49. Связь между напряженностью и разностью потенциалов

Работу перемещения заряда в однородном электрическом поле можно подсчитать по формулам: A = qEl и A = q(φ2 — φ1). Приравняв правые части, получим: qEl = q(φ2 — φ1). Тогда связь между напряженностью и разностью потенциалов:

или

Если расстояние l мало, го эту формулу можно с допустимой погрешностью использовать и для вычисления напряженности и потенциала неоднородного электрического поля. Разность потенциалов (потенциал) измеряется электрометром. Электрометр — это электроскоп с металлическим корпусом, имеющим легкоподвижную стрелку и шкалу в единицах разности

потенциалов. Чтобы измерить потенциал проводника относительно Земли, корпус электрометра заземляется, а проводник соединяется с его стержнем (см. рис.56). При заряжении последнего внутри электрометра возникает электрическое поле. Угол отклонения стрелки тем больше, чем сильнее напряженность этого поля. Так как она прямо пропорциональна разности потенциалов между корпусом (Землей) и стрелкой, то величина отклонения стрелки по шкале показывает разность потенциалов между телом и Землей. Перемещая при помощи изолирующей ручки конец проволоки по поверхности проводника, замечаем, что показание электрометра не изменяется. Следовательно, при равновесии зарядов на проводнике потенциалы во всех его точках, как на поверхности, так и внутри него, одинаковы. По этой причине нет разности потенциалов между двумя любыми точками заряженного проводника — напряжение между ними равно нулю.

Внутри заряженного проводника напряженность электрического поля Е = 0, а поэтому разность потенциалов внутри проводника φ2 — φ1 = 0.

Соединим между собой два отрицательно заряженных тела, находящихся на электрометрах и имеющих разные потенциалы. Электрометры показывают, что при этом потенциал одного тела уменьшается, а другого — увеличивается до тех пор, пока они не становятся одинаковыми. Причиной изменения потенциалов является переход электронов из тела с меньшим потенциалом к телу с большим потенциалом. Установившееся равенство потенциалов указывает на то, что перемещение электронов с одного тела на другое прекратилось. Следовательно, причиной перехода заряженных частиц от одного тела к другому является наличие разности потенциалов между ними; при равенстве потенциалов переход заряженных частиц от одного тела к другому, а также от одной точки тела к другой не происходит.

Рис. 64. Линии напряженности и сечение эквипотенциальных поверхностей

Поверхность, у которой потенциалы во всех ее точках имеют одну и ту же величину, называется эквипотенциальной поверхностью. Поверхность любого проводника при равновесии зарядов на нем является эквипотенциальной поверхностью. На рис. 64 пунктирные линии показывают линии напряженности поля заряженного тела, а сплошными линиями изображены сечения эквипотенциальных поверхностей; густота знаков + указывает на поверхностную плотность зарядов на разных участках поверхности. Эквипотенциальные поверхности используются для графического изображения распределения потенциала в электрическом поле. Все точки эквипотенциальной поверхности имеют одинаковый потенциал, поэтому перемещение заряда вдоль нее не требует совершения работы. Это значит, что сила, действующая на заряд, все время перпендикулярна к эквипотенциальной поверхности (к поверхности заряженного тела). Отсюда мы делаем заключение, что линии напряженности всегда перпендикулярны к эквипотенциальным поверхностям (A = qEl cosα, где cos α90° = 0).

Задача 19. В пространство между горизонтальными пластинами электронно — лучевой трубки влетает электрон со скоростью 30000 км/сек. Вектор скорости электрона направлен параллельно пластинам. Длина пластин 4 см, расстояние между ними 1 см. На них подано постоянное напряжение 600 в. Определить, на сколько сместится электрон при выходе из пластин. Действием на него силы тяжести пренебречь.

Рис. 65. К задаче 19

За время снижения электрон, двигаясь горизонтально равномерно, проходит путь L = vt, отсюда время По второму закону Ньютона где F = eE. Напряженность Тогда ускорение Смещение электрона

Отв.: Δs = 8,4 мм.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​\( \varphi \)​, единица измерения в СИ – вольт (В).

Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​\( \Delta\varphi \)​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​\( U \)​ и называют напряжением.

Важно! Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:. Важно! Эта формула позволяет вычислить работу электростатических сил в любом поле

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки

Важно! Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​\( q \)​ в точке, удаленной от него на расстояние ​\( r \)​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно! Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​\( r =R \)​, где ​\( R \)​ – радиус шара). Напряженность поля внутри шара равна нулю. Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно! Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Падение потенциала во внешней электрической цепи

Внешней электрической цепью называется участок, находящийся за пределами источника. На практике ЭДС вырабатывается на вторичных обмотках трёхфазного трансформатора подстанции, считаясь источником. Начиная с вывода, идёт внешняя цепь.

На ней потенциал падает от фазного напряжения до нейтрали. Речь идёт о рядовых потребителях. Когда в дом приходит электричество, это неизменно система трёхфазного тока. Нейтраль глухо заземлена, чтобы обеспечить нужный уровень безопасности. Жилой дом не гарантирует равномерную загрузку всех фаз, через нейтраль потечёт ток. Если цепь использовать для защиты, не возникает полной гарантии безопасности: путь тока способен пролечь через человека, неожиданно взявшегося за заземлитель.

Следовательно, нужно обеспечить два нулевых проводника: рабочий и защитный. Через первый производится зануление металлических частей объекта, через второй – заземление. Причём за рубежом принято делить две ветви на две разные линии, а в РФ они объединяются в районе контура заземления. Первое сделано для надёжной защиты, второе – для возможности работы в здании трёхфазного оборудования (вдруг пригодится!). Если в промышленной установке оставить лишь заземление корпуса, это плохо окончится для неудачника, попавшего под электрический потенциал.

Следовательно, западная система хороша для однофазного оборудования. Но за счёт унифицированности система РФ сложнее. Импортное оборудование плохо сочетается с российскими условиями: фильтры питания рассчитаны так, чтобы защитный и рабочий нулевые проводники не пересекались. Причина в электрическом потенциале:

  1. На защитном проводнике всегда потенциал грунта – нуль.
  2. На рабочем допустимо иное значение за счёт падения напряжения на проводах линии электроснабжения.

Система TN-C-S

Чтобы выровнять разницу, линии на входе в здание объединяют и заводят на контур громоотвода. Что для импортной техники не становится идеальным решением, предприятия-поставщики электроэнергии несут потери. Это известная система TN-C-S, применяющаяся в РФ. Дома, возведенные ещё в СССР, понемногу переоборудуются.

Измерение дзета-потенциала

Дзета-потенциал не может быть измерен напрямую. Он рассчитывается на основе теоретических моделей или оценивается экспериментально, часто исходя из электрофоретической подвижности. По сути, для определения дзета-потенциала отслеживают скорость, с которой заряженная частица движется в ответ на электрическое поле. Частицы, которые обладают дзета-потенциалом, будут мигрировать к противоположно заряженному электроду. Скорость миграции пропорциональна дзета-потенциалу. Скорость обычно измеряется с помощью лазерного доплеровского анемометра. Расчет основан на теории, описанной в 1903 году Марианом Смолуховским. Теория Смолуховского справедлива для любой концентрации или формы дисперсных частиц. Тем не менее, он предполагает достаточно тонкий двойной слой и игнорирует любой вклад поверхностной проводимости. Более новые теории используются для выполнения электроакустического и электрокинетического анализа в этих условиях.

Существует устройство, называемое дзета-метр — оно дорогое, но обученный оператор может интерпретировать расчетные значения, которые оно производит. Дзета-метры обычно полагаются на один из двух электроакустических эффектов: электрическая амплитуда звука и ток коллоидной вибрации. Преимущество использования электроакустического метода для характеристики дзета-потенциала заключается в том, что образец не нужно разводить.

Понятие потенциала в физике

Что такое потенциал в физике? Это понятие очень часто применяется для описания качеств сил и полей самой разной природы. Скалярная функция, характеризующая некоторую величину, представляющуюся вектором, – вот что это потенциал. Гравитационный потенциал описывает соответствующее поле. В термодинамике это понятие применяется для системной внутренней энергии, в механике – для той или иной приложенной к предмету силы.

Электрика, прежде всего, интересует, что такое потенциал в электричестве. Из общего определения нетрудно вывести, что характеристика электрополя – это электрический потенциал. В своей статической форме электрический потенциал показывает потенциальную энергию одиночного «плюсового» заряда, помещаемого в данное место электрополя, и является одной из разновидностей электромагнитного потенциала. Вторая его форма – векторная (в отличие от скалярной), описывает магнитное поле.

Важно! Характеристика поля, описывающая зависимость работы при передвижении исключительно от исходной точки и места назначения, – это потенциальность поля. Траектория перемещения в этом случае на работу не влияет

Физический смысл электрического поля

Учёные давно ломают голову над субстанциями электрического и магнитного полей, но пока сие для них загадка, как и гравитация. существование не оспаривается, но суть неясна. Не секрет электричество люди знали задолго до нашей эры, а к изучению не стремились.

Подобных примеров тьма. Порой учёные вне зависимости друг от друга делали открытия, изобретения. Встречались случаи, когда муж науки думал, что его измышления не новы. Потом удивлялся, когда оказывалось, что авторство теперь принадлежит постороннему человеку, хотя собственное открытие случилось раньше по времени. Замалчивание гарантировало переход доли известности к описавшему событие. Так происходило в XIX веке – учёные постоянно сотрудничали, что-то обсуждали, порой тяжело найти концы. К примеру, Фарадея упрекали за плагиат конструкции первого человеческого двигателя, а Википедия приписала ему авторство катушки индуктивности, придуманной Лапласом, на которое Майкл не претендовал. Впрочем, когда речь заходит о материи полей, учёные хранят дружное молчание. Единственным исключением стал Никола Тесла, утверждавший, что все во Вселенной состоит из гармонических колебаний.

Итак, учёные не знают о поле ничего, а электрический потенциал это характеристика поля. Субстанцию никто не видел, долго не могли зарегистрировать и с трудом представляют поныне! Не верите – попробуйте нарисовать в воображении электромагнитную волну:

  1. Известно, что колебание представляет суперпозицию электрического и магнитного полей, изменяющихся во времени.
  2. Вектор напряжённости магнитный перпендикулярен вектору электрическому, связаны через константу среды (некая физическая величина).
  3. На вид это две перпендикулярные волны… стоп! Что такое волна?

Так выглядит современная физика. Никто точно не знает, как выглядят поле, колебание, волна, как это нарисовать. Понятно лишь: картинки из учебника слабо описывают происходящее. Дело усугубляется неспособностью человека видеть и чувствовать электромагнитное излучение. Колебание не выглядит синусоидальным, рассматривается для одной точки, линии, фронта и пр. Это, скорее, уплотнение и растяжение эфира, нечто напоминающее трёхмерную неописуемую фигуру.

Длинное предисловие свидетельствует, насколько неизведанным остаётся то, что используется в повседневной жизни. И порой таит реальную опасность для человека. К примеру, доказано, что излучение СВЧ печи постепенно «портит» пищу. Человек, регулярно питающийся из микроволновки, рискует получить в собственное распоряжение обширный список недугов. В первую очередь – болезни крови. Небезопасна для людей и сетевая частота 50 Гц.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​\( \varphi \)​, единица измерения в СИ – вольт (В).

Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​\( \Delta\varphi \)​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​\( U \)​ и называют напряжением.

Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:. Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​\( q \)​ в точке, удаленной от него на расстояние ​\( r \)​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​\( r =R \)​, где ​\( R \)​ – радиус шара). Напряженность поля внутри шара равна нулю. Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Измерение напряжения

Измерение величины напряжения играет большую роль в фундаментальных физике и химии, прикладных электротехнике и электрохимии, электронике и медицине и во многих других отраслях науки и техники. Пожалуй, трудно найти отрасли человеческой деятельности, исключая творческие направления вроде архитектуры, музыки или живописи, где с помощью измерения напряжения не осуществлялся бы контроль над происходящими процессами с помощью разного рода датчиков, являющимися по сути дела преобразователями физических величин в напряжение. Хотя стоит заметить, что в наше время и эти виды человеческой деятельности не обходятся без электричества вообще и без напряжения в частности. Художники используют планшеты, в которых измеряется напряжение емкостных датчиков, когда над ними перемещается перо. Композиторы играют на электронных инструментах, в которых измеряется напряжение на датчиках клавиш и в зависимости от него определяется насколько сильно нажата та или иная клавиша. Архитекторы используют AutoCAD и планшеты, в которых тоже измеряется напряжение, которые преобразуется в числовую форму и обрабатывается компьютером.

В кухонном термометре (слева) температура мяса определяется с помощью измерения напряжения на резистивном датчике температуры, через который пропускают небольшой ток. В мультиметре (справа) температура определяется путем измерения напряжения непосредственно на термопаре

Измеряемые величины напряжения могут меняться в широких пределах: от долей микровольта при исследованиях биологических процессов, до сотен вольт в бытовых и промышленных устройствах и приборах и до десятков миллионов вольт в сверхмощных ускорителях элементарных частиц. Измерение напряжения позволяет нам контролировать состояние отдельных органов человеческого организма при помощи снятия энцефалограмм

мозговой деятельности.Электрокардиограммы иэхокардиограммы дают информацию о состоянии сердечной мышцы. При помощи различных промышленных датчиков мы успешно, а, главное, безопасно, контролируем процессы химических производств, порой происходящие при запредельных давлениях и температурах. И даже ядерные процессы атомных станций поддаются контролю с помощью измерения напряжений. С помощью измерения напряжения инженеры контролируют состояние мостов, зданий и сооружений и даже противостоят такой грозной природной силе как землетрясения.

Пульсоксиметр, как и вольтметр, измеряет напряжение на выходе устройства, усиливающего сигнал с фотодиода или фототранзистора. Однако, в отличие от вольтметра, здесь на дисплее мы видим не значение напряжения в вольтах, а процент насыщения гемоглобина кислородом (97%).

Блестящая идея связать различные значения уровней напряжения со значениями состояния единиц информации дало толчок к созданию современных цифровых устройств и технологий. В вычислительной технике низкий уровень напряжения трактуется как логический нуль (0), а высокий уровень напряжения — как логическая единица (1).

По сути дела, все современные устройства вычислительной техники являются в той или иной степени компараторами (измерителями) напряжения, преобразовывая свои входные состояния по определённым алгоритмам в выходные сигналы.

Помимо всего прочего, точные измерения напряжения лежат в основе многих современных стандартов, выполнение которых гарантирует их абсолютное соблюдение и, тем самым, безопасность применения.

Плата памяти, используемая в персональных компьютера, содержит десятки тысяч логических вентилей

Вещественное значение электрического поля

Учёные длительное время изучали секрет электроэнергии. Главная награда в ее исследовании дана Эрстеду. Его основное открытие — впервые экспериментально установлена связь между электрическими и магнитными явлениями в 1819—1820 гг.

Стало ясно, что колебания предполагают суперпозицию изменяющихся во времени электрических и магнитных полей. Вектор магнитной интенсивности перпендикулярен электрическому вектору, связанному через длинную среду (некоторая физическая величина). Электростатическое воздействие — это действие через поле.

Особенности воздействия:

  • Каждый электрический заряд создаёт вокруг себя электростатическое поле.
  • Электрополем называется пространство, в котором действуют силы напряжения.
  • Величины, характеризующие поле в этой точке, — это интенсивность и потенциал.

Напряжённостью электростатического явления в этой точке называется отношение электросилы, действующей на помещённый в этой точке пробный заряд (положительный) к значению этого заряда:

  • E =F /q (над E и F вектор).
  • Единица напряжённости электростатического поля — 1 N/C.

Значение напряжённости электростатического поля на расстоянии R от источника Q может обозначаться простой формулой: E=k |Q|/R2.

Для графического представления поля используются линии — кривые, для которых вектор напряжённости в каждой точке имеет касательную часть. Поле со сферической симметрией называется центральным. Если линии расположены параллельно друг другу, а интенсивность имеет в каждой точке одинаковое значение, то поле называется однородным.

Разность потенциалов в физике в данный момент — это отношение энергии точечного положительного пробного груза, помещённого в этой точке к значению этого заряда: V=Ep/q.

Единицей измерения потенциала точки электрического поля является 1 В (вольт).