Сила ампера и сила лоренца

Содержание

Сила Ампера. Закон Ампера — определение, формула

Сила Ампера это та сила, с которой магнитное поле действует на проводник, с током помещённый в это поле. Величину этой силы можно определить с помощью закона Ампера. В этом законе определяется бесконечно малая сила для бесконечно малого участка проводника. Что дает возможность применять этот закон для проводников различной формы.

B индукция магнитного поля, в котором находится проводник с током

I сила тока в проводнике

dl бесконечно малый элемент длинны проводника с током

альфа угол между индукцией внешнего магнитного поля и направлением тока в проводнике

Направление силы Ампера находится по правилу левой руки. Формулировка этого правила, звучит так. Когда левая рука расположена таким образом, что лини магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника.

Некоторые проблемы возникают, при использовании правила левой руки, в случае если угол между индукцией поля и током маленький. Трудно определить, где должна находиться открытая ладонь. Поэтому для простоты применения этого правила, можно ладонь располагать так, чтобы в нее входил не сам вектор магнитной индукции, а его модуль.

Из закона Ампера следует, что сила Ампера будет равна нулю, если угол между линией магнитной индукции поля и током будет равен нулю. То есть проводник будет располагаться вдоль такой линии. И сила Ампера будет иметь максимально возможное значение для этой системы, если угол будут составлять 90 градусов. То есть ток будет перпендикулярен линии магнитной индукции.

С помощью закона Ампера можно найти силу, действующую в системе из двух проводников. Представим себе два бесконечно длинных проводника, которые находятся на расстоянии друг от друга. По этим проводникам протекают токи. Силу, действующую со стороны поля создаваемого проводником с током номер один на проводник номер два можно представить в виде.

Сила, действующая со стороны проводника номер один на второй проводник, будет иметь такой же вид. При этом если токи в проводниках текут в одном направлении, то проводнику будут притягиваться. Если же в противоположных, то они будут отталкиваться. Возникает некоторое замешательство, ведь токи текут в одном направлении, так как же они могут притягиваться. Ведь одноименные полюса и заряды всегда отталкивались. Или Ампер решил, что не стоит подражать остальным и придумал что то новое.

На самом деле Ампер ничего не выдумывал, так как если задуматься то поля, создаваемые параллельными проводниками, направлены встречно друг другу. И почему они притягиваются, вопроса уже не возникает. Чтобы определить, в какую сторону направлено поле создаваемое проводником, можно воспользоваться правилом правого винта.

Используя параллельные проводники и выражение силы Ампера для них можно определить единицу в один Ампер. Если по бесконечно длинным параллельным проводникам, находящимся на расстоянии в один метр, текут одинаковые токи силой в одни ампер, то силы взаимодействия между ними будет составлять в 2*10-7 Ньютона, на каждый метр длинны. Используя эту зависимость, можно выразить чему будет равен один Ампер.

Природа магнетизма и гравитации

Всем очевидно и понятно, что предметы, подброшенные вверх, стремительно падают на землю. Что же их притягивает? Можно смело предположить, что они притягиваются какими-то неведомыми силами. Те самые силы получили название — природная гравитация. После каждый интересующийся сталкивается со множеством споров, догадок, предположений и вопросов. Какова природа магнетизма? Чем являются гравитационные волны? В результате какого воздействия они образуются? В чем проявляется их сущность, а также частота? Как они воздействуют на окружающую среду и на каждого человека по отдельности? Как рационально можно использовать это явление во благо цивилизации?

Сила Ампера (при использовании двух параллельных проводников)

Представьте два бесконечных проводника, которые расположены на определённом расстоянии. По ним протекают токи. Если токи текут в одном направлении, то проводники притягиваются. В противоположном случае они будут отталкиваться один от одного. Поля, которые создают параллельные проводники, направлены встречно друг другу.

И чтобы понять, почему они реагируют именно так, вам достаточно вспомнить о том, что одноименные полюса магнитов или одноименные заряды всегда отталкиваются. Для определения стороны направления поля, созданного проводником, следует использовать правило правого винта.

Урок физики в 9 классе по теме : » Решение задач по теме : «Сила Ампера. Сила Лоренца»»

Тема урока:

«Решение задач по теме «Сила Ампера. Сила Лоренца».

Место урока в системе уроков по теме:

На предыдущем уроке обучающиеся получили знания о векторе магнитной индукции, силе Ампера, силе Лоренца. Данный урок позволяет отработать навыки решения задач по формуле силы Ампера и силы Лоренца .

Цель урока:

показать теоретическую значимость закона Ампера при решении задач, научить применять полученные знания при решении задач.

Задачи урока:

  • Дидактическая

    – создавать условия для усвоения нового учебного материала через проблемно-деятельностный подход.

  • Образовательная

    – рассмотреть применение закона Ампера в ходе решения различных задач.

  • Развивающая

    – развивать логическое мышление обучающихся при решении задач на расчёт силы Амперы и силы Лоренца.

  • Воспитательная

    – прививать культуру умственной деятельности.

Планируемые результаты.

Обучающиеся должны:

  • овладеть алгоритмом решения задач по данной теме.
  • уметь решать задачи с применением закона Ампера, формулы для нахождения силы Лоренца .

Техническое обеспечение урока:

  1. Компьютер, проектор, экран.

Дополнительное методическое и дидактическое обеспечение урока:

  1. Презентация к уроку.
  2. Карточки с задачами.

Мобилизующее начало урока («исходная мотивация»). Позитивный настрой на урок.

Умение решать задачи — это практическое

искусство, подобное плаванию или катанию

на лыжах, или игре на фортепиано: научиться

этому можно, лишь подражая избранным

образцам и постоянно тренируясь”

Д. Пойа

В данной теме рассмотрим основные типы задач, а также попытаемся выделить общую методику их решений. В представленной теме можно выделить три типа задач:

1) на расчет полей (вычисление магнитной индукции, в какой либо точке магнитного поля);

2) о силовом действии магнитного поля на проводники или контур с током;

3) о силовом действии магнитного поля на движущиеся в нем заряженные частицы.

1.Фронтальный опрос:

1.Как называют физ. Величину характеризующую магнитное поле?

2. Какой буквой обозначают?

3. В каких единицах измеряют?

4. Что означает 1 Тл?

5.Какую силу называют силой Ампера? Запишите на доске формулу для расчёта Силы Ампера.

6. Как определяется направление силы Ампера? Сформулируйте правило левой руки.

7.Чему равен модуль вектора магнитной индукции?

8. Какую силу называют силой Лоренца? Запишите на доске формулу для расчёта Силы Лоренца

9. Как определяется направление силы Лоренца? Сформулируйте правило левой руки.

2. Решение задач :

Задача 1 Определить силу, с которой однородное магнитное поле действует на проводник длиной 20 см, если сила тока в нем 300 мА, расположенный под углом 45 градусов к вектору магнитной индукции. Магнитная индукция составляет 0,5 Тл.

Задача 2 Проводник с током 5 А находится в магнитном поле с индукцией 10 Тл. Определить длину проводника, если магнитное поле действует на него с силой 20Н и перпендикулярно проводнику.

Задача 3 Определить силу тока в проводнике длиной 20 см, расположенному перпендикулярно силовым линиям магнитного поля с индукцией 0,06 Тл, если на него со стороны магнитного поля действует сила 0,48 Н.

Задача 4 Проводник длиной 20см с силой тока 50 А находится в однородном магнитном поле с индукцией 40 мТл. Какую работу совершит источник тока, если проводник переместится на 10 см перпендикулярно вектору магнитной индукции (вектор магнитной индукции перпендикулярен направлению тока в проводнике).

Задача 5 Определить силу, действующую на заряд 0,005 Кл, движущийся в магнитном поле с индукцией 0,3 Тл со скоростью 200 м/с под углом 45o к вектору магнитной индукции.

Задача 6 Какова скорость заряженного тела, перемещающегося в магнитном поле с индукцией 2 Тл, если на него со стороны магнитного поля действует сила 32 Н. Скорость и магнитное поле взаимно перпендикулярны. Заряд тела равен 0,5 мКл.

3.Самостоятельная работа по карточкам

4. Рефлексия

5. Д.з.

Единицы

Килограмм

В системе СИ масса изменяется в килограммах. Килограмм определяется исходя из точного численного значения постоянной Планка h

, равной 6,62607015×10⁻³⁴, выраженной в Дж с, что равно кг м² с⁻¹, причем секунда и метр определяются по точным значениямc и Δν Cs. Массу одного литра воды можно приближенно считать равной одному килограмму. Производные килограмма, грамм (1/1000 килограмма) и тонна (1000 килограммов) не являются единицами СИ, но широко используются.

Электронвольт

Электронвольт — единица для измерения энергии. Обычно ее используют в теории относительности, а энергию вычисляют по формуле E

=mc ², гдеE — это энергия,m — масса, аc — скорость света. Согласно принципу эквивалентности массы и энергии, электронвольт — также и единица массы в системе естественных единиц, гдеc равна единице, а значит, масса равна энергии. В основном электронвольты используют в ядерной и атомной физике.

Атомная единица массы

Атомная единица массы (а. е. м.

) предназначена для масс молекул, атомов, и других частиц. Одна а. е. м. равна 1/12 массы атома нуклида углерода, ¹²C. Это примерно 1,66 × 10 ⁻²⁷ килограмма.

Слаг

Слаги используются в основном в британской имперской системе мер в Великобритании и некоторых других странах. Один слаг равен массе тела, которое движется с ускорением один фут в секунду за секунду, когда к нему приложена сила в один фунт-силу. Это примерно 14,59 килограмма.

Солнечная масса

Солнечная масса — мера массы, принятая в астрономии для измерения звезд, планет и галактик. Одна солнечная масса равна массе Солнца, то есть, 2 × 10³⁰ килограммов. Масса Земли примерно в 333 000 раза меньше.

Советуем изучить Дистанционное управление яркостью света

Карат

В каратах измеряют массу драгоценных камней и металлов в ювелирном деле. Один карат равен 200 миллиграммам. Название и сама величина связаны с семенами рожкового дерева (по-английски: carob, произносится «кароб»). Один карат раньше был равен весу семечка этого дерева, и покупатели носили с собой свои семена, чтобы проверить, не обманули ли их продавцы драгоценных металлов и камней. Вес золотой монеты в Древнем Риме равнялся 24 семечкам рожкового дерева, и поэтому караты стали применяться для обозначения количества золота в сплаве. 24 карата — чистое золото, 12 каратов — сплав наполовину из золота, и так далее.

Гран

Гран использовался как мера веса во многих странах до эпохи Возрождения. Он основывался на весе зерен, в основном ячменя, и других популярных в то время культур. Один гран равен около 65 миллиграммам. Это немного больше четверти карата. Пока караты не получили широкого распространения, в ювелирном деле использовались граны. Эта мера веса используется и по сей день для измерения массы пороха, пуль, стрел, а также золотой фольги в стоматологии.

Другие единицы массы

В странах, где не принята метрическая система, используют меры массы британской имперской системы. Например, в Великобритании, США и Канаде широко применяются фунты, стоуны и унции. Один фунт равен 453,6 грамма. Стоуны используются в основном только для измерения массы тела человека. Один стоун — это примерно 6,35 килограмма или ровно 14 фунтов. Унции в основном используют в кулинарных рецептах, особенно для продуктов в маленьких порциях. Одна унция это 1/16 фунта, или приблизительно 28,35 грамма. В Канаде, которая формально перешла на метрическую систему в 1970-х годах, многие продукты продаются в упаковке, рассчитанной на округленные британские единицы, например, один фунт или 14 жидких унций, однако на них указан вес или объем в метрических единицах. По-английски такую систему называют «мягкой метрической» (англ. soft metric

), в отличие от «жесткой метрической» системы (англ.hard metric ), в которой на упаковке указывают округленный вес в метрических единицах. На этом снимке показаны «мягкие метрические» упаковки продуктов питания с указанием веса только в метрических единицах и объема как в метрических, так и в имперских единицах.

Автор статьи: Kateryna Yuri

Сила Ампера

Самые простые задачи на определение силы, индукции поля, длины проводника или угла, под которым этот проводник расположен. Направление силы определяем по правилу ЛЕВОЙ руки: если расположить руку так, чтобы магнитные линии втыкались в ладонь, а четыре пальца направить по току, то отведенный большой палец укажет направление действия силы.

Задача 1. Прямолинейный проводник длиной м находится в однородном магнитном поле с индукцией Тл. Сила тока в проводнике А. Проводник перпендикулярен магнитной индукции (рис.). Найти модуль и направление силы, действующей на проводник.

К задаче 1

Со стороны поля на проводник с током действует сила Ампера:

У нас проводник перпендикулярен линиям индукции, поэтому

Определяем направление. Левую руку расположим так, чтобы линии индукции втыкались в ладонь, то есть ладошкой вниз. Четыре вытянутых пальца направим вдоль тока – то есть влево. Тогда большой палец укажет направление действия силы – за плоскость рисунка, от нас.

Ответ: Н, от нас за плоскость рисунка.

Задача 2. Прямолинейный проводник длиной м находится в однородном магнитном поле (рис.). На проводник со стороны поля действует сила Н. Сила тока в проводнике А. Найти модуль и направление индукции магнитного поля, если она перпендикулярна проводнику.

К задаче 2

Со стороны поля на проводник с током действует сила Ампера:

У нас проводник перпендикулярен линиям индукции, поэтому

Для определения направления левую руку расположим пальцами вниз – они указывают направление тока, большим пальцем вправо – он указывает направление действия силы. Тогда ладонь окажется развернутой к нам – в раскрытую ладонь должны втыкаться линии магнитной индукции, следовательно, они направлены от нас за плоскость чертежа.

Ответ: Тл, от нас за плоскость чертежа. Задача 3. На прямой проводник длиной м, расположенный под углом к силовым линиям поля с индукцией Тл, действует сила Н. Найти силу тока в проводнике.

Со стороны поля на проводник с током действует сила Ампера:

Ответ: 30 А.

Задача 4. Прямой провод длиной см находится в однородном магнитном поле с индукцией Тл. Сила тока в проводнике А. Найти угол между направлением магнитной индукции и направлением тока, если на провод действует сила Н.

Со стороны поля на проводник с током действует сила Ампера:

Синус, равный , имеет угол в . Ответ: .

Задача 5. Проводник находится в равновесии в горизонтальном магнитном поле с индукцией мТл. Сила тока в проводнике А. Угол между направлением тока и вектором магнитной индукции . Определить длину проводника, если его масса кг.

Так как поле горизонтально, а проводник в нем «висит», то очевидно, что сила Ампера уравновесила силу тяжести:

Откуда

Ответ: 25,8 см.

Задача 6. Проводник длиной м расположен перпендикулярно силовым линиям горизонтального магнитного поля с индукцией мТл. Какой должна быть сила тока в проводнике, чтобы он находился в равновесии в магнитном поле? Масса проводника кг.

Аналогично предыдущей задаче,

Откуда

Ответ: 10 А.

Действие магнитного поля на движущийся заряд. Сила Лоренца

Подробности
Просмотров: 581

«Физика – 11 класс»

Магнитное поле действует с силой на движущиеся заряженные частицы, в то числе и на проводники с током.
Какова же сила, действующая на одну частицу?

1.
Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь великого голландского физика X. Лоренца, создавшего электронную теорию строения вещества.
Силу Лоренца можно найти с помощью закона Ампера.

Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной Δl, к числу N заряженных частиц, упорядоченно движущихся в этом участке проводника:

Так как сила (сила Ампера), действующая на участок проводника со стороны магнитного поля
равна F = | I | BΔl sin α,
а сила тока в проводнике равна I = qnvS
где
q – заряд частиц
n – концентрация частиц (т.е. число зарядов в единице объема)
v – скорость движения частиц
S – поперечное сечение проводника.
тогда получаем:
На каждый движущийся заряд со стороны магнитного поля действует сила Лоренца, равная:

где α — угол между вектором скорости и вектором магнитной индукции.

Сила Лоренца перпендикулярна векторам и .

2.Направление силы Лоренца

Направление силы Лоренца определяется с помощью того же правила левой руки, что и направление силы Ампера:

Если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90° большой палец укажет направление действующей на заряд силы Лоренца Fл.

3.
Если в пространстве, где движется заряженная частица, существует одновременно и электрическое поле, и магнитное поле, то суммарная сила, действующая на заряд, равна:
= эл + л
где сила, с которой электрическое поле действует на заряд q, равна Fэл = q.

4.Cила Лоренца не совершает работы, т.к. она перпендикулярна вектору скорости частицы.
Значит сила Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль ее скорости.
Под действием силы Лоренца меняется лишь направление скорости частицы.

5.Движение заряженной частицы в однородном магнитном поле

однородное

Сила Лоренца зависит от модулей векторов скорости частицы и индукции магнитного поля.
Магнитное поле не меняет модуль скорости движущейся частицы, значит остается неизменным и модуль силы Лоренца.
Сила Лоренца перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы.
Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, чтоВ однородном магнитном поле заряженная частица равномерно движется по окружности радиусом r.

Согласно второму закону Ньютона

Тогда радиус окружности, по которой движется частица, равен:

Время, за которое частица делает полный оборот (период обращения), равно:

6.Использование действия магнитного поля на движущийся заряд.

Действие магнитного поля на движущийся заряд используют в телевизионных трубках-кинескопах, в которых летящие к экрану электроны отклоняются с помощью магнитного поля, создаваемого особыми катушками.

Сила Лоренца используется в циклотроне – ускорителе заряженных частиц для получения частиц с большими энергиями.

На действии магнитного поля основано также и устройство масс-спектрографов, позволяющих точно определять массы частиц..

Следующая страница «Магнитные свойства вещества»

Назад в раздел «Физика – 11 класс, учебник Мякишев, Буховцев, Чаругин»

Магнитное поле. Физика, учебник для 11 класса – Класс!ная физика

Магнитное поле и взаимодействие токов —
Магнитная индукция. Линии магнитной индукции —
Модуль вектора магнитной индукции. Сила Ампера —
Электроизмерительные приборы. Громкоговоритель —
Действие магнитного поля на движущийся заряд. Сила Лоренца —
Магнитные свойства вещества —
Примеры решения задач —
Краткие итоги главы

Электромагниты

В 1269 г. французский естествоиспытатель Пьер де Марикур написал труд под названием «Письмо о магните». Основной целью Пьера де Марикура было создание вечного двигателя, в котором он собирался использовать удивительные свойства магнитов. Насколько успешными были его попытки, неизвестно, но достоверно то, что Якоби использовал свой электродвигатель для того, чтобы привести в движение лодку, при этом ему удалось ее разогнать до скорости 4,5 км/ч.

Необходимо упомянуть еще об одном устройстве, работающем на основе законов Ампера. Ампер показал, что катушка с током ведет себя подобно постоянному магниту. Это значит, что можно сконструировать электромагнит

– устройство, мощность которого можно регулировать (рис. 5).

Рис. 5. Электромагнит

Двигатель

После открытия действия магнитного поля на проводник с током, Ампер понял, что это открытие можно использовать для того, чтобы заставить проводник двигаться в магнитном поле. Так магнетизм можно превратить в механическое движение – создать двигатель. Одним из первых, работающих на постоянном токе, был электродвигатель (рис. 2), созданный в 1834 г. русским электротехником Б. С. Якоби.

Рис. 2. Двигатель (Источник)

Рассмотрим упрощённую модель двигателя, которая состоит из неподвижной части, с закреплёнными на ней магнитами – статор. Внутри статора может свободно вращаться рамка из проводящего материала, которая называется ротором. Для того чтобы по рамке мог протекать электрический ток, она соединена с клеммами при помощи скользящих контактов. Если подключить двигатель к источнику постоянного тока в цепь с вольтметром, то при замыкании цепи, рамка с током придёт во вращение.

Электромагниты

В 1269 г. французский естествоиспытатель Пьер де Марикур написал труд под названием «Письмо о магните». Основной целью Пьера де Марикура было создание вечного двигателя, в котором он собирался использовать удивительные свойства магнитов. Насколько успешными были его попытки, неизвестно, но достоверно то, что Якоби использовал свой электродвигатель для того, чтобы привести в движение лодку, при этом ему удалось ее разогнать до скорости 4,5 км/ч.

Необходимо упомянуть еще об одном устройстве, работающем на основе законов Ампера. Ампер показал, что катушка с током ведет себя подобно постоянному магниту. Это значит, что можно сконструировать электромагнит

– устройство, мощность которого можно регулировать (рис. 5).

Рис. 5. Электромагнит

Правило левой руки

Если определять физические величины по правилу левой руки, то ее ладонь располагается в таком положении, что четыре пальца направлены вперед, а большой отвернут в бок. Прямые пальцы указывают в сторону направления тока, а оттопыренный большой – направление устремления вектора приложенных усилий. При этом, направление индукции заходит и упирается в ладошку сверху под углом девяносто градусов.

Что определяет закон

По итогам выполнения многочисленных экспериментальных опытов было выведено определение, которое впоследствии стало именоваться правилом левой руки. Оно связало между собой направленности электротока и концентрических линий, а также влияние на проводящий материал силы магнетических полей. Живой пример отражен на картинке, где хорошо видно взаимодействие физических составляющих. Направленность силовых линий и функционирующего магнитного поля не совпадают, их действие направлено в совершенно разные места.

Когда направленность электротока и проводника будет совмещаться с линиями, то силовое влияние на проводящий материал в данном случае отсутствует. В результате, указанный постулат перестанет работать.

Сила Лоренца применение и формула

Действие электромагнитных полей порождает возникновение точечной заряженной частицы, на который воздействуют силы электрического и магнитного характера. В скомбинированном виде они получили наименование силы Лоренца.

Таким образом, сила Лоренца воздействует на любую частицу с зарядом, падающую с определенной быстротой в магнетическом поле. Степень влияния связана с электрическим зарядом частицы (q), показателем магнитной индукции (В) и быстротой падения частицы (V).

На основании полученных данных голландским ученым Хендриком Лоренцем была выведена формула: FL = |q|x V x B x sinα. Все условные обозначения приведены на рисунке.

В практической деятельности сила Лоренца получила применение в следующих областях:

  • Кинескопы – электронно-лучевые или телевизионные трубки. В этих устройствах электроны, летящие в направлении экрана, отклоняются магнитным полем, которое создают специальные катушки.
  • Масс-спектрографы. Определяют массы заряженных частиц, путем разделения их по удельным зарядам. Вакуумная камера помещается в магнитном поле. Заряженный частицы ускоряясь, двигаются по дуге и оставляют след на фотопластинке. Па радиусу траектории вначале определяется удельный заряд, на основании которого вычисляется и масса частицы.
  • Циклотрон. Ускоряет заряженные частицы. Ускорение происходит под действием силы Лоренца, после чего траектория частиц сохраняется за счет магнитного поля. Прибор давно начали использовать в медицинских исследованиях с применением радионуклидных фармацевтических препаратов.
  • Магнетрон. Электронная лампа высокой мощности для генерации микроволн, возникающих при взаимодействии электронного потока и магнитного поля. Используется с современных радиолокационных устройствах.

Сила ампера – формула

Сила Ампера непосредственно воздействует на проводник с током, расположенный внутри поля. Совсем кратко она выражается представленной формулой:

F = I x B x L x sinα, где F является силой Ампера, I – сила тока в проводнике, L – отрезок проводника, находящийся под действием магнитного поля, α – угол между направлением тока и вектором магнитной индукции.

Максимальное значение сила Ампера принимает, когда угол α становится равным 90 градусов. Единицей измерения служит ньютон (Н).

Определение направления силы Ампера выполняется с помощью правила левой руки. Ладонь смотрит вверх, четыре пальца направлены в сторону вектора движения тока. Вектор магнитной индукции перпендикулярен ладони и входит в нее. Направление силы Ампера совпадает с большим пальцем, отогнутым в сторону.

Направлением электрического тока условно считается движение от заряда с плюсом к заряду с минусом.

Определение слова «Ампер» по БСЭ:

Ампер — Ампер (Ampйre)Андре Мари (22.1.1775, Лион, — 10.6.1836, Марсель), французский физик и математик, один из основоположников электродинамики, член Парижской АН (1814). А. родился в аристократической семье. С 14 лет, прочитав все 20 томов«Энциклопедии» Д. Дидро и Ж. Л. Даламбера, он всецело отдался занятиям естественными науками и математикой. В 1801 А. занял кафедру физики в Центральной школе г. Бурк-ан-Брес, а в 1805 получил место репетитора в Политехнической школе в Париже. В этот период им опубликованы работы по теории вероятностей, приложению вариационного исчисления к задачам механики и ряд исследований по математическому анализу. С 1824 профессор Нормальной школы в Париже.Работы А. в области физики поставили его в ряд крупнейших учёных. После открытия в 1820 X. К. Эрстедом действия электрического тока на магнитную стрелку А. предложил «правило пловца» для определения направления отклонения магнитной стрелки током. Дальнейшие исследования привели А. к открытию механического взаимодействия электрических токов и установлению количественного соотношения для определения силы этого взаимодействия (Ампера закон). А. построил первую теорию Магнетизма, основанную на гипотезе молекулярных токов, согласно которой магнитные свойства вещества обусловлены электрическими токами, циркулирующими в молекулах. Теория магнетизма А. покончила с представлениями о«магнитной жидкости» как особом носителе магнитных свойств и была предвестником электронной теории магнетизма. после А. магнетизм стал частью электродинамики. Электродинамическая теория изложена А. в его сочинении «Теория электродинамических явлений, выведенная исключительно из опыта»(1826). В конце жизни А. разработал классификацию науки своего времени, изложенную в работе «Опыт философии наук…» (1834).Соч.: Journal et correspondance de Andrй Marie Ampиre, 9 йd., P., 1893. Correspondance du grand Ampere, publ. par L. de Launay…, v. 1-3, P., 1936-43. в рус. пер. — Электродинамика, М., 1954 (имеется библиография трудов А. и литература о нём).Лит.: Белькинд Л. Д., А. М. Ампер. 1775-1836, М., 1968 (библ., с. 234-251).

Ампер — 1) единица силы электрического тока, входит в число основных единиц Международной системы единиц и системы электрических и магнитных единиц МКСА. Названа в честь французского физика А. Ампера. русское обозначение — а, международное А. С момента введения А. в качестве единицы силы тока (1881, 1-й Международный конгресс электриков) его определение претерпело ряд изменений. Вначале А. был определён как сила тока, который протекает по проводнику сопротивлением в 1 ом при разности потенциалов на концах проводника в 1 в. При этом вольт определялся как 108, а ом — как 109 соответствующих единиц электромагнитной системы СГСМ.Трудности практического воспроизведения теоретически установленных абсолютных электрических единиц привели к введению международных электрических единиц (1893), основанных на вещественных эталонах. Международный А. был определён как сила неизменяющегося электрического тока, который, проходя через водный раствор азотнокислого серебра, выделяет 1,11800 мг серебра в 1 сек. Прогресс, достигнутый затем в области электрических измерений, позволил отказаться от вещественного эталона А. (с 1948). В ГОСТ 9867-61«Международная система единиц» А. определяется через механическое взаимодействие двух токов (см. Ампера закон): «А. есть сила неизменяющегося тока, который, будучи поддерживаем в двух параллельных прямолинейных проводниках бесконечной длины и ничтожно малого кругового сечения, расположенных на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2Ч10&minus.7 единицы силы системы МКС на 1 м длины». А. воспроизводится с помощью т. н. токовых весов, или ампер-весов, которые позволяют с высокой точностью определить силу механического взаимодействия двух катушек с током, а следовательно, и значение силы тока. Международный А. мало отличается от абсолютного А.: 1 амежд = 0,99985а.2) Единица магнитодвижущей силы (в системах СИ и МКСА): «А. — магнитодвижущая сила вдоль замкнутого контура, сцепленного с контуром постоянного тока силой 1 а». Соотношение между Гильбертом (единицей системы СГС) и А.: 1 гб = 10/(4 &pi.)а = 0,7958а. Старое наименование единицы магнитодвижущей силы — ампер-виток (ав).Лит.: Маликов С. Ф., Единицы электрических и магнитных величин. Исторический очерк, 2 изд., М. — Л., 1960. Бурдун Г. Д., Единицы физических величин, 4 изд., М., 1966. Бурдун Г. Д., Калашников Н. В. и Стоцкий Л. Р., Международная система единиц, М., 1964.А. М. Ампер.

Советуем изучить Емкость конденсатора: единица измерения

Магнитное поле

В случае, когда скорость частицы υ→ имеет составляющую υ∥→ вдоль направления магнитного поля, подобная частица в однородном магнитном поле будет совершать спиралевидное движение. Радиус такой спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ┴ вектор υ→, а шаг спирали p – от модуля продольной составляющей υ∥ (рис. 1.18.5).

Рисунок 1.18.5. Движение заряженной частицы по спирали в однородном магнитном поле.

Исходя из этого, можно сказать, что траектория заряженной частицы в каком-то смысле «навивается» на линии магнитной индукции. Данное явление используется в технике для магнитной термоизоляции высокотемпературной плазмы — полностью ионизированного газа при температуре порядка 106 K. При изучении управляемых термоядерных реакций вещество в подобном состоянии получают в установках типа «Токамак». Плазма не должна касаться стенок камеры. Термоизоляция достигается путем создания магнитного поля специальной конфигурации. На рисунке 1.18.6 в качестве примера проиллюстрирована траектория движения несущей заряд частицы в магнитной «бутылке» (или ловушке).

Рисунок 1.18.6. Магнитная «бутылка». Заряженные частицы не выходят за ее пределы. Необходимое магнитное поле может быть создано с помощью двух круглых катушек с током.

Такое же явление происходит в магнитном поле Земли, которое защищает все живое от потока несущих заряд частиц из космического пространства.

Определение 7

Быстрые заряженные частицы из космоса, по большей степени от Солнца, «перехватываются» магнитным полем Земли, вследствие чего образуются радиационные пояса (рис. 1.18.7), в которых частицы, будто в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за доли секунды.

Исключением являются полярные области, в которых часть частиц прорывается в верхние слои атмосферы, что может приводить к возникновению таких явлений, как «полярные сияния». Радиационные пояса Земли простираются от расстояний около 500 км до десятков радиусов нашей планеты. Стоит вспомнить, что южный магнитный полюс Земли находится поблизости с северным географическим полюсом на северо-западе Гренландии. Природа земного магнетизма до сих пор не изучена.

Рисунок 1.18.7. Радиационные пояса Земли. Быстрые заряженные частицы от Солнца, в основном электроны и протоны, попадают в магнитные ловушки радиационных поясов.

Возможно их вторжение в верхние слои атмосферы, служащее причиной возникновения «северных сияний».

Рисунок 1.18.8. Модель движения заряда в магнитном поле.

Рисунок 1.18.9. Модель Масс-спектрометра.

Рисунок 1.18.10. Модель селектора скоростей.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.