Конденсатор в электродвигателе: что это такое и для чего он нужен

Содержание

Механизм и строение

Состав керамического BaTiO3 является совокупностью, составленной из микрокристаллов от 1 до 20 миллиметрового в диаметре. Этот микрокристалл называют частицей, и состоит из кристаллической структуры, которая показана на рис. 1 и 2. Частица разделена на много доменов при температуре ниже Точки Кюри. Кристаллические оси выровнены в одном направлении в пределах домена, таким образом, как и спонтанная поляризация. При нагревании до Точки Кюри и выше кристаллическая структура BaTiO3 изменяется от четырехугольной до кубической. Тогда, спонтанные поляризационные и доменные стены исчезают (пропадают).

Строение керамического конденсатора.

Когда BaTiO3 находится в охлажденном состоянии (ниже Точки Кюри), ее кристаллическая структура поворачивается от кубической до четырехугольной, отрезки примерно до 1 % вдоль оси C и вдоль других осей – сокращаются. Тогда появляются спонтанные поляризационные и доменные стены. В то же время от воздействия «из вне» частицы искажаются. В этой стадии генерируются много мелких доменных стен, и направление спонтанной поляризации в каждом домене легко полностью изменить, даже малыми (низкими) электрическими полями. Так как диэлектрическая постоянная – пропорциональна сумме инверсии спонтанной поляризации к единице объема, наблюдается большая емкость.

Когда конденсаторы хранятся (применяются) без нагрузки при температурах ниже Точки Кюри размер беспорядочно ориентированных доменов становится большим, и они (домены) постепенно сдвигаются к устойчивому энергетическому состоянию (Рис. 3, 90   доменов). Это также облегчает сбор остаточного напряжения при кристаллическом искажении.

Кроме того, перемещение пространственных зарядов (ионы с низкой подвижностью, свободные точки кристаллической решетки и т.д.) в пределах доменной стены приводит к поляризации пространственного заряда. Эта поляризация пространственного заряда неблагоприятно воздействует на спонтанную поляризацию, преграждая ее инверсию.

Другими словами, временный переход от генерации спонтанной поляризации (спонтанная поляризация постепенно перестраивается к более устойчивому состоянию) к инверсии  затруднена появлением поляризации пространственного заряда. В этом состоянии более высокое электрическое поле необходимо, чтобы полностью изменить спонтанную поляризацию в доменах, которые в свою очередь могут быть полностью изменены низким уменьшением электрического поля и снижениями емкости. Это, как полагают и есть механизм старения.

Однако, микротекстура кристаллической решетки возвращается в исходное состояние при нагревании до температуры выше Точки Кюри, в которой старение решетки начинается снова и снова. Вообще емкость многослойного керамического конденсатора с высокой диэлектрической постоянной уменьшается приблизительно линейно в логарифмическом масштабе времени – в течение 24 часов после термической обработки выше 125 C. Пожалуйста, обратитесь к прикрепленным типовым данным старения нашей продукции и номинальной емкости конденсаторов. Емкость, которая уменьшилась в результате естественного старения, имеет свойство восстанавливаться при нагревании конденсаторов до Точки Кюри и выше.

Ожидаемая емкость многослойного керамического конденсатора будет в его номинале, когда эти условия установлены на оборудовании. Мы выбираем свою амплитуду емкости, основанную на предшествующем предположении. Кстати, температура, компенсирующая значения типовых конденсаторов, не проявляют явление старения.

Керамические конденсаторы стандартных параметров.

Керамические и стеклокерамические конденсаторы с твердым неорганическим диэлектрическим слоем выпускаются в высоковольтном и низковольтном исполнении. Отличаются компактными размерами и надежностью. Широко востребованы в вычислительной, бытовой, медицинской, военной техники, транспорте. По номинальному напряжению их разделяют на высоко- и низковольтные.

По типу конструкции выпускают следующие керамические конденсаторы:

  • КТК – трубчатые;
  • КДК – дисковые;
  • SMD – поверхностные и другие.

Для изготовления керамических конденсаторов используют не обожженную глину, а материалы, сходные с ней по структуре, – ультрафарфор, тиконд, ультрастеатит. Обкладка – серебряный слой. Керамические и стеклокерамические устройства используются в схемах, в которых важных частотные характеристики, невысокие потери при утечке, компактные габариты, невысокая стоимость.

Что такое конденсатор

Эта деталь содержит две металлических пластины, между которыми находится слой диэлектрика. Когда к пластинам подключают напряжение, на них накапливается заряд. Электрическое находится внутри конденсатора. Оно тем сильнее, чем больший заряд находится на пластинах.

Если отсоединить напряжение от пластин, то конденсатор начинает отдавать заряд. Если используется переменный ток, то полярность напряжения будет периодически меняться. При этом на пластинах будет попеременно то положительный, то отрицательный заряд.

Ёмкость конденсатора является его важнейшей характеристикой. Она характеризует то, сколько энергии он способен пропустить через себя. Её измеряют в фарадах. Поскольку речь идёт об очень большой величине, обычно применяются приставки, которые обозначают, насколько небольшая часть используется. Чаще всего используются микрофарады (такая единицы равны 0,000001 фарады).

Процедура подключения мотораИсточник kabel-house.ru

Для каждого конденсатора существует номинальное напряжение. При нём эта деталь способна долго и надёжно работать. Обязательно указывается предельная величина наработки, которая выражается в количестве часов.

Существуют различные типы конденсаторов:

Полярные рассчитаны на использование в цепях постоянного тока

Важной особенностью является необходимость подключения в соответствии с указанной на них полярностью. Они обычно имеют небольшие размеры и относительно большую ёмкость.
Неполярные могут подключаться независимо от полярности

Их используют в цепях переменного тока. У них размеры больше, чем у полярных.
Электролитические. В них в качестве пластин используются листы фольги, а диэлектриком является тонкий слой окисла.

Для использования в качестве пускового конденсатора лучше всего подходят электролитические. Их часто используют при частоте переменного тока 50 Гц и напряжении 220-600 вольт. Конденсаторы могут иметь достаточно высокую ёмкость она может составлять сотни тысяч микрофарад.

Эти детали имеют высокую уязвимость к действию перегрева. При нарушении теплового режима они быстро выходят из строя. Неполярные конденсаторы не имеют этого недостатка, однако стоят в несколько раз дороже.

Однофазный асинхронный двигательИсточник asutpp.ru

При параллельном подключении ёмкости складываются. В том случае, когда её не хватает, для увеличения можно параллельно подключить дополнительную деталь. В этой ситуации нет необходимости заново собирать пусковую цепь.

Применяются также другие типы конденсаторов. Например, это могут быть вакуумные, жидкостные, газовые и другие. Однако в качестве пусковых конденсаторов их не используют.

Иногда тот конденсатор, который имеется в конструкции, не справляется с запуском. В таком случае его рекомендуется удалить, а вместо него поставить тот, который имеет большую ёмкость. Для маломощных двигателей допустимо, чтобы один конденсатор выполнял функции рабочего и пускового.

Использование полярных конденсаторов в условиях переменного напряжения возможно тогда, когда подключение выполнено через диод. Теперь полярность контактов изменяться не будет. Однако если диод будет неисправен, то деталь выйдет из строя.

Устройство асинхронного двигателяИсточник elektrikexpert.ru

Преимущества и недостатки

Преимущества электролитических конденсаторов:

  • Большая емкость;
  • Компактность.

Недостатки:

  • Со временем электролит высыхает, теряется емкость;
  • Работает только на низких частотах;
  • Ограничения по эксплуатационным условиям и риск вздутия/взрыва.

Разберём подробнее преимущества и недостатки электролитов.

Большая емкость

Электролитические конденсаторы обладают большой емкостью, и это их отличительная и самая главная особенность среди остальных конденсаторов.

Емкость обозначается в микрофарадах (мкФ), поскольку электролиты с меньшими значениями не выпускают.

Они обычно выпускаются от нескольких мкФ, до нескольких Ф (1 000 000 мкФ).

Компактность

Благодаря химическим источникам, конденсаторы большой емкости намного компактнее, чем если бы их делали керамическими или пленочными.

Емкость конденсатора можно увеличить только за счет его обкладок, диэлектрика и геометрии. Поэтому электролиты лидируют по соотношению емкость/габариты.

Ионисторы

Разновидность электролитических конденсаторов — это ионисторы. Они обладают большей емкостью (например, 3000 Ф), и работают в основном как резервный или автономный низковольтный источник питания схемы. А также поддерживает схему в спящем режиме без другого источника.

Высыхание электролита

Основная проблема таких конденсаторов – это высыхание электролита. Обычно такая проблема проявляется из-за того, что техникой долго не пользуются или нарушаются условия эксплуатации (перегрев корпуса). Из-за этого электролит начинает высыхать, поэтому происходит потеря емкости.

Можно восстановить емкость конденсатора путем разбавления засохшего электролита дистиллированной водой (как аккумулятор), но это не выгодно. Лучше и надежнее всего заменить старый на новый, аналогичный по параметрам.

Работа на низких частотах

Это скорее особенность, чем недостаток. Большие емкости — это высокое реактивное сопротивление для высоких частот.

Поэтому, такие конденсаторы используются в низкочастотных цепях. Например, в блоках питания в качестве фильтров и сглаживания пульсаций.

Когда конденсатор вздувается и взрывается

Так как конденсаторы такого типа являются химическими источниками, то необходимо соблюдать полярность подключения.

Если вы подключите минус источника к плюсу конденсатора и плюс источника к минусу конденсатора, то сразу же начнется вскипание электролита. Такой эффект возникает из-за обратной химической реакции. Конденсатор может взорваться.

В старых конденсаторах типа К-50 корпус монолитный, и он взрывался громко и достаточно разрушительно.

В современных электролитах на корпусе есть небольшой надрез, который в случае вскипания электролита позволяет горячему пару выйти наружу.


Иногда они просто вдуваются без нарушения герметизации, а бывают и такие случаи, когда конденсатор полностью теряет герметичность.

На корпусах современных конденсаторов вертикальной чертой указывается минусовой контакт.

Внимательно устанавливайте и записывайте прежнее положение, ибо многие производители ставят свои обозначения.

Например, среди радиолюбителей обычно минусовые контакты рисуют в виде квадрата.

А производители печатных плат наоборот, рисуют квадратные контактные площадки под плюс конденсатора. И то, так делают не все.

Так как есть такая путаница среди и радиолюбителей и производителей, всегда обращайте на то. где указан плюсовой контакт. И записывайте прежнее положение детали, иначе это чревато взрывом.

Проверка при установке

После того, как был выбран подходящий пусковой конденсатор, его необходимо проверить. Для этого необходимо выполнить следующие действия:

  • Сначала необходимо от электромотора отключить питание.
  • Нужно обесточить конденсатор, поскольку на нём мог сохраниться остаточный заряд. Для этого требуется закоротить его обмотки.
  • Теперь нужно снять одну из клемм и подключить прибор для измерения ёмкости.
  • Щупы подключают к выводам конденсатора. После этого измерительный прибор покажет точное значение ёмкости.

При использовании мультиметра предварительно нужно установить главный переключатель в режим измерения ёмкости.

При проведении расчётов можно использовать упрощённый вариант. Известно, что пусковой ток может превышать номинальный в 3-8 раз. Поэтому можно просто использовать ёмкость в 2-3 раза большую, чем у рабочего конденсатора. Если ёмкости для запуска недостаточно, достаточно просто взять более подходящий конденсатор.

Подробные характеристики пускового конденсатораИсточник electrikexpert.ru

Для чего нужен автоусилитель звука

Встроенный усилитель магнитолы не всегда соответствует заявленным производителем характеристикам. Средние показатели мощности не превышают 18-20 ватт. Даже максимальные показатели в 55 ватт, которые указаны на фронтальной панели аудиосистемы (4х55) не более чем удачный маркетинговый ход, и в условиях эксплуатации никогда не достигаются. Это и обуславливает низкое качество звука, воспроизведенного в автомобиле. Уровень шума в салоне перекрывает звучание музыки, а при попытке сделать немного громче появляются искажения, снижение амплитуды звучания и другие, неприятные для слуха, вещи. Вот почему людям, которые ценят хороший звук в автомобиле, рекомендуется к имеющейся автомобильной аудиосистеме подключить усилитель.

Как правильно выбрать мощность трансформатора

Перед тем как соединить потолочные светильники, следует уяснить один момент: для нормальной работы всех подключенных осветительных приборов необходимо использовать трансформатор, мощность которого на 20% превышает суммарную мощность светильников в электрической цепи. К примеру, требуется устройство для понижения мощности для 8 лампочек по 40 Ватт. Вначале определяется суммарная мощность: 8*40=320 Ватт. Следовательно, для такого напряжения следует приобрести драйвер мощностью около 400 Ватт.

При расчете напряжения важно учитывать, что для большого количества лампочек требуется преобразователь большей мощности. Однако стоимость и размеры понижающего устройства увеличиваются с повышением значения мощности. Для решения проблемы точечные светильники делят на несколько групп и подключают свой трансформатор к каждой из них

Но в этом случае преобразователи должны иметь меньшую мощность

Для решения проблемы точечные светильники делят на несколько групп и подключают свой трансформатор к каждой из них. Но в этом случае преобразователи должны иметь меньшую мощность.

Работа конденсатора в электрической цепи

Уже давно мы отошли от понимания электричества в терминах движения, действия зарядов и так далее. Теперь мы мыслим понятиями электрических цепей, где обычными вещами являются напряжения, токи, мощность. И к рассмотрению поведения зарядов прибегаем только, чтобы понять, как работает в цепи какое-нибудь устройство.

Например, конденсатор в простейшей цепи постоянного электрического тока является просто разрывом. Обкладки ведь не соприкасаются друг с другом. Поэтому, чтобы понять принцип действия конденсатора в цепи, придется все-таки вернуться к поведению зарядов.

Зарядка конденсатора

Соберем простую электрическую цепь, состоящую из аккумулятора, конденсатора, резистора и переключателя.


Конденсатор: принцип действия

εc  – ЭДС аккумулятора, C – конденсатор, R – резистор, K – переключатель  

Когда переключатель никуда не включен, тока в цепи нет. Если подключить его к контакту 1, то напряжение с аккумулятора попадет на конденсатор. Конденсатор начнет заряжаться настолько, насколько хватит его емкости. В цепи потечет ток заряда, который сначала будет довольно большим, а по мере зарядки конденсатора будет уменьшаться, пока совсем не сойдет на нуль.

Конденсатор при этом приобретет заряд такого же знака, как и сам аккумулятор. Разомкнув теперь переключатель К, получим разорванную цепь, но в ней стало два источник энергии: аккумулятор и конденсатор.


Конденсатор

Разрядка конденсатора

Если теперь перевести переключатель в положение 2, то заряд, накопленный на обкладках конденсатора, начнет разряжаться через сопротивление R.

Причем, сначала, при максимальном напряжении, и ток будет максимальным, величину которого можно вычислить, зная напряжение на конденсаторе, по закону Ома. Ток будет течь, то есть конденсатор будет разряжаться, а напряжение его падать. Соответственно и ток будет все меньше и меньше. И когда в конденсаторе заряда совсем не останется, ток прекратится.


Процессы внутри конденсатора

У ситуации, описанной в этих двух случаях, есть интересные особенности:

  1. Электрическая батарея постоянного напряжения, работая в цепи с конденсатором, дает, тем не менее, переменный ток: при зарядке он изменяется от максимального значения до 0.
  2. Конденсатор, имея некоторый заряд, при разряжении через резистор, даст тоже переменный ток, изменяющийся от максимального значения до 0.
  3. В обоих случаях после непродолжительного действия ток прекращается. Конденсатор в обоих случаях после этого демонстрирует разрыв в цепи — ток больше не течет.

Описанные процессы называются переходными. Они имеют место в электрических цепях с постоянным напряжением питания, когда в них установлены реактивные элементы. После прохождения переходных процессов реактивные элементы перестают влиять на режимы токов и напряжений в электрической цепи. Время, в течение которого переходный процесс завершается, зависит как от емкости конденсатора C, так и от активного сопротивления нагрузки R. Очевидно, что чем они больше, тем больше нужен и интервал времени, пока переходный процесс не завершится.

Параметр, характеризующий время переходного процесса, называется «постоянной времени» для данной схемы, обозначается греческой буквой «тау»:

Формула

Произведение сопротивления в омах на емкость в фарадах, если рассмотреть внимательно эти единицы измерения, действительно дает величину в секундах. 

Однако переходный процесс разрядки конденсатора — это процесс плавный. То есть, грубо говоря, он не заканчивается никогда.


Временная диаграмма разрядки конденсатора через резистор

Uc  – напряжение  на конденсаторе (вольт), U – первоначальное напряжение заряженного конденсатора, t – время (сек)

На рисунке видно, что конденсатор будет разряжаться «всегда», так как чем меньше на нем остается зарядов, тем меньший ток будет бежать по цепи, следовательно, тем медленнее будет идти процесс разрядки. Процесс экспоненциальный. По времени отложены значения в секундах величин, кратных постоянной времени. С некоторых значений можно считать процесс практически законченным, например, при 5t, когда напряжения на конденсаторе осталось порядка 0,7%.

Режим, когда переходный процесс завершен, называется стационарным, или режимом постоянного тока.

Основные параметры конденсаторов

Емкость

Этот показатель характеризует способность конденсатора накапливать электрический заряд. Емкость тем больше, чем больше площадь проводниковых обкладок и чем меньше толщина диэлектрического слоя. Также эта характеристика зависит от материала диэлектрика. На приборе указывается номинальная емкость. Реальная емкость, в зависимости от эксплуатационных условий, может отличаться от номинальной в значительных пределах. Стандартные варианты номинальной емкости – от единиц пикофарад до нескольких тысяч микрофарад. Некоторые модели могут иметь емкость в несколько десятков фарад.

Классические конденсаторы имеют положительную емкость, то есть чем больше приложенное напряжение, тем больше накопленный заряд. Но сегодня в стадии разработки находятся устройства с уникальными свойствами, которые ученые называют «антиконденсаторами». Они обладают отрицательной емкостью, то есть с ростом напряжения их заряд уменьшается, и наоборот. Внедрение таких антиконденсаторов в электронную промышленность позволит ускорить работу компьютеров и снизить риск их перегрева.

Что будет, если поставить накопитель большей/меньшей емкости, по сравнению с требуемой? Если речь идет о сглаживании пульсаций напряжения в блоках питания, то установка конденсатора с емкостью, превышающей нужную величину (в разумных пределах – до 90% от номинала), в большинстве случаев улучшает ситуацию. Монтаж конденсатора с меньшей емкостью может ухудшить работу схемы. В других случаях возможность установки детали с параметрами, отличающимися от заданных, определяют конкретно для каждого случая.

Удельная емкость

Отношение номинальной емкости к объему (или массе) диэлектрика. Чем тоньше диэлектрический слой, тем выше удельная емкость, но тем меньше его напряжение пробоя.

Плотность энергии

Это понятие относится к электролитическим конденсаторам. Максимальная плотность характерна для больших конденсаторов, в которых масса корпуса значительно ниже, чем масса обкладок и электролита.

Номинальное напряжение

Его значение отражается на корпусе и характеризует напряжение, при котором конденсатор работает в течение срока службы с колебанием параметров в заданных пределах. Эксплуатационное напряжение не должно превышать номинальное значение. Для многих конденсаторов с повышением температуры номинальное напряжение снижается.

Полярность

К полярным относятся электролитические конденсаторы, имеющие положительный и отрицательный заряды. На устройствах отечественного производства обычно ставился знак «+» у положительного электрода. На импортных приборах обозначается отрицательный электрод, возле которого стоит знак «-». Такие конденсаторы могут выполнять свои функции только при корректном подключении полярности напряжения. Этот факт объясняется химическими особенностями реакции электролита с диэлектриком.

К группе неполярных конденсаторов относится большинство накопителей заряда. Эти детали обеспечивают корректную работу при любом порядке подключения выводов в цепь.

Конденсаторы в промышленности

Применение конденсаторов в промышленности

Конденсатор представляет собой пассивный радиоэлектронный компонент, двухполюсный, имеющий определенное или переменное значение емкости, малую проводимость, способен накапливать заряд и энергию электро поля, или же проще – в нужный момент заряжаться или разряжаться. Переводится с латыни, как уплотнитель, загуститель (не в смысле пищевой промышленности, конечно). Самый конструкционно простой вариант конденсаторов – это два электрода в виде пластин (обкладки), которые разделены диэлектрическим компонентом очень малой толщины по сравнению с обкладками. Конденсаторы, используемые на практике, в промышленности состоят из многих диэлектрических слоев и многослойных электродов, могут быть в виде ленты, цилиндра, параллелепипеда.

Прототипом современных конденсаторов считается «лейденская банка». Такое название данный «прибор» получил по названию города, где и было создано первое устройство, похожее на конденсатор, каноником Эвальдом Юргеном фон Клейстом. А почему банка – элементарно, приборчик и был обычной банкой, обернутой фольгой, закрытой деревянной крышкой, с воткнутыми металлическими стержнями. Но известно, что еще немногим раньше Эпинус создал свой конденсатор с двумя проводниками, разделенными диэлектриком.

Промышленное использование конденсаторов в радиотехнике, электронике и прочих областях достаточно обширно. Любая электрическая, электронная схема содержит этот важный радиоэлектронный компонент. Конденсатор можно смело именовать основой радиоэлектронной промышленности.

Применение конденсаторов в различных областях промышленного производства

Современная электронная, радиотехническая промышленность, как и в прошлые года прошлого века остро нуждается в конденсаторах. Применение их широко и разнообразно. Вот малая толика сфер, где применяются приборы, содержащие конденсаторы:

Телевизионная и радиотехническая аппаратура и оборудование. Здесь данный радиоэлектронный компонент необходим, чтобы реализовывать колебательные контуры, блокировать их, а также для настройки оборудования, его правильной работы. Применяют также, чтобы разделять разно частотные цепи. Выпрямительные фильтры также не работают без конденсаторов.

В радиолокации. Без использования конденсаторов практически невозможно сформировать импульсы значительной мощности.

Телеграф, телефон, телефония, в том числе и мобильная. В этом случае кондеры нужны, чтобы разделить цепи, по которым идет постоянный/переменный токи, разно частотные электро токи, при симметрировании различных кабелей, для гашения искры в контактах.

Телемеханика, автоматика – реализация некоторых датчиков, работающих по емкостному принципу. Конденсаторы в этой сфере разделяют цепи, по которым идет пульсирующий/постоянный токи, также для гашения искры. Тиатронные импульсные генераторы содержат конденсаторы.

Электронно-вычислительные машины современного образца, прочие счетные устройства, специальные запоминающие устройства.

Электронная, измерительная аппаратура и оборудование. Здесь, конденсаторы применяют, чтобы получать образцы емкости, создавать переменные емкости, например, лабораторные приборы переменной емкости, создание измерительного оборудования, имеющего емкостную основу.

Особую важность имеет использование конденсаторов в лазерных приборах. В этом случае этот РЭК помогает формировать мощные импульсы

Конденсаторы чрезвычайно необходимы в электроэнергетической сфере. Их применяют, когда необходимо:

  • Повысить коэффициент мощности в промышленных установках.
  • Создать продольную компенсационную емкость линий высоковольтных электрических передач.
  • Регулировать напряжение в распределительной сети.
  • Защищать сеть от перенапряжения.
  • Гасить возможные радиопомехи, которые могут создавать электрооборудование и электротранспорт.

Кроме того, конденсаторы применяют и в не электротехнических сферах народного хозяйства и технического производства. В металлопромышленности РЭК позволяет обеспечивать стабильную работу в высокочастотных установках, используемых при плавке и термообработке различных металлов.

Угольная промышленность, добыча руд и металлов – в этом случае, конденсаторы применяются в оборудовании и транспорте, помогающем добывать эти полезные ископаемые, ну и электровзрывные устройства тоже имеют в своем составе столь «волшебные» кондеры.

Вообще-то, можно сделать простой вывод – практически любое устройство, оборудование, транспорт, приборы – везде, во всех сферах применяются конденсаторы.

Что такое конденсатор?

Основная функция конденсатора

Функция конденсатора — накопление электростатического заряда на обложках при подключении его к источнику напряжения. После отключения конденсатора от цепи он сохраняет накопленную электроэнергию. Повторное подключение конденсатора к замкнутому контуру без источника питания или с источником напряжения ниже, чем напряжение накопленное в конденсаторе, приведет к высвобождению части или всей энергии.

Электрическая емкость — основной параметр конденсатора

Главный параметр — емкость, то есть способность конденсатора к накоплению заряда. Емкость обозначается буквой „C”, а единицей измерения емкости является F (Фарад):

С = Q / U

1F = 1C / 1V

где,
С – емкость, в фарадах
Q — заряд, накопленный на одной обложке, в кулонах *
U — напряжение между обложками, в вольтах
* Кулон — это величина заряда, прошедшего через проводник при силе тока 1 А за время 1 сек.

Основные виды конденсаторов

1. Электролитические конденсаторы

Тип:

  • Алюминиевые, имеют емкость от 1 мкф до 1 ф (a);
  • Танталовые, имеют емкость до 3000 мкф (b);
  • Ниобиевые, имеют узкий диапазон емкости, напряжением до 10В (c);
  • Суперконденсаторы (ионисторы), имеют очень большую емкость и скорость зарядки/разрядки (d).

Конструкция:

Алюминиевый электролитический конденсатор состоит из двух алюминиевых лент (обкладок), разделенных бумагой (диэлектриком, то есть изолятором), который пропитан электролитом (исполняющий роль отрицательного электрода). Одна из алюминиевых лент играет роль анода. Ее поверхность очень шероховатая, что значительно увеличивает ее поверхность.

В процессе производства конденсаторов выполняют так называемый процесс формирования – это когда конденсатор подключают к источнику напряжения выше номинального напряжения. В результате этого на алюминиевой ленте, исполняющую роль анода, под влиянием отрицательных ионов из электролита образуется тонкий слой оксида алюминия, который, как бумага выполняет функцию изолятора. Для чего тогда служит другая алюминиевая лента? Подводит ток к катоду, т. е. к электролиту.

Особенности:

  • большая емкость (от 1 мкф до 1 ф)  при сравнительно небольших размерах;
  • низкое сопротивление;
  • маленькая индуктивность;
  • необходимо соблюдать полярность при подключении (в противном случае может привести к взрыву);
  • проводят ток в одном направлении;
  • при неправильном или длительном хранении могут высыхать — тонкий слой оксида алюминия повреждается, а повышенное давление во время работы конденсатора может привести к его разгерметизации;

Применение:

Электролитические конденсаторы применяются в цепях питания в качестве фильтра и накапливания энергии.

2. Керамические конденсаторы

Тип:

  • тип 1 – лучший из используемых в народе конденсаторов, имеют строго определенный температурный коэффициент и небольшие потери, но диапазон их емкости только от 0,1 пф до 10 нф;
  • тип 2 (сегнетоэлектрические) – имеют хуже параметры, но имеют небольшие размеры и большую емкость от 100 пф до 1 мкф;
  • тип 3 (полупроводниковые) – параметры схожи с типом 2, но они еще меньше, их диапазон емкости составляет от 100 пф до 10 мкф.

Конструкция:

Основным компонентом диэлектрика является двуокись титана в виде уплотненного порошка.

Применение:

Керамические конденсаторы широко применяются в цепях большой частоты, как элементы резонансных контуров и т.д.

Маркировку керамических конденсаторов можно посмотреть здесь.

3. Конденсаторы пленочные

Тип:

  • полистирол (марка KSF, KS, MKS ) — самые стабильные пленочные конденсаторы, их погрешность может составлять не более 0,5%, выпускаются в диапазоне от 10 пф до 100 нф;
  • полиэстер (MKSE или МКТ) — наиболее распространенные пленочные конденсаторы, параметрами близкие к керамическим (сегнетоэлектрическим) конденсаторам, диапазон емкости от 100 пф до 100 мкф;
  • поликарбонат (MKC ) — имеют лучшие характеристики чем у конденсаторов MKT, но они значительно больше;
  • полипропилен ( KMP, KFMP или MKP) используются в импульсных схемах (с большими пиками тока и напряжения), диапазон емкости от 1 нф до 10 мкф.

Конструкция:

Диэлектриком является пленка из пластмассы, а обкладки могут быть изготовлены из алюминиевой фольги или из пластиковой пленки, на которую в вакууме наносится металл – алюминий (металлизированные конденсаторы).