Простой тестер электролитических конденсаторов

Содержание

Устройство и характеристики конденсатора

Конструкция конденсатора представляет собой две токопроводящие пластины, разделённые диэлектриком. Если приложить к пластинам напряжение от источника постоянного тока, то ток короткое время будет протекать через конденсатор, и он зарядится. На его пластинах (обкладках) накопится напряжение, равное напряжению источника. Длительность протекания тока и ёмкость его заряда зависят от площади обкладок и расстояния между ними. Ёмкость обозначается буквой С и измеряется в фарадах. Единица измерения в системе СИ – 1Ф (F). Обозначение принято в честь физика из Англии М. Фарадея.

Внимание! Ёмкость 1Ф – очень большая величина. Если рассматривать Землю как уединённый проводник в форме шара, то ёмкость составила бы около 700 мкФ

Поэтому электротехнические элементы измеряют в малых величинах: пикофарадах (пФ), нанофарадах (нФ), микрофарадах (мкФ).

Единицы измерения ёмкости

В цепях постоянного и переменного тока ёмкостной элемент ведёт себя по-разному. Если постоянный ток конденсатор через себя не пропускает, то переменному току, проходящему через него, оказывает определённое сопротивление. Это ещё одна важная характеристика конденсатора – ёмкостное сопротивление RC.

Сопротивление из разряда реактивных сопротивлений, рассчитывается по формуле:

Rс =1/6,28*f*C,

где:

  • Rc – емкостное сопротивление, Ом;
  • 6,28 – 2 π;
  • f – частота тока, Гц;
  • C – емкость данного конденсатора, Ф.

Важно! Как видно из формулы, для токов разной частоты сопротивление одного и того же элемента меняется. Чем выше частота тока, тем ниже ёмкостное сопротивление конденсатора

Различают конденсаторы постоянной и переменной ёмкости. Вторые имеют конструкцию, в результате которой изменяется расстояние между пластинами.

По типу исполнения конденсаторы постоянной ёмкости бывают:

  • полярные электролитические;
  • однослойные и многослойные керамические;
  • высоковольтные керамические;
  • полиэстеровые;
  • танталовые;
  • полипропиленовые конденсаторы.

Конструкция зависит от порядкового разряда ёмкости элемента, применяемого материала для пластин и диэлектрика.

Необходимый минимум сведений

Как известно, конденсаторы имеют определенную емкость и служат для накопления и непродолжительного хранения электрического заряда. При подаче напряжения заряд какое-то время должен увеличиваться, затем происходит резкое снижение уровня — разряд, и все повторяется снова — заряд/разряд. Чем больше емкость конденсатора, тем более длительное время необходимо для накопления заряда. По сути, это все свойства, которые стоит знать для проверки конденсатора мультиметром.

Узнать рабочий конденсатор или нет несложно. Нужен только мультиметр. Можно недорогой. Главное — рабочий

Если говорить о видах, то способ производства конденсаторов на проверку не влияет. Проверяют работоспособность бумажных, тонкопленочных, электролитических, жидкостных, керамических, твердотельных и всех других, абсолютно одинаково. Не влияет на способ проверки и положение элемента на плате — входные, помехоподавляющие, шунтирующие — без разницы. Не имеет значения и вольтаж. Низковольтные — на 6 В или 50 В, высоковольтные на 1000 В —  проверка одинаковая.

Единственное, что необходимо принимать во внимание — полярный конденсатор или нет. Как, наверное, понятно по названию, полярные конденсаторы требовательны к полярности питания. Так как при проверке мультиметром, прибор тоже подает питание на проверяемый элемент, положение щупов при проверке полярного конденсатора должно быть строго определенным:

Так как при проверке мультиметром, прибор тоже подает питание на проверяемый элемент, положение щупов при проверке полярного конденсатора должно быть строго определенным:

  • Красный щуп — к положительному выводу.
  • Черный щуп — к минусовому (отрицательному).

Для неполярных положение щупов может быть любым. Еще, наверное, стоит сказать, как опознать полярные конденсаторы. Это всегда электролитические (полярные) емкости, которые выглядят обычно как небольшие бочонки. На полярных на корпусе у одного из выводов идет полоса контрастного цвета. Если корпус белый — полоса черная, корпус черный — полоса белая (светло-серая). Вот этой полосой отмечается отрицательный вывод (минус).

Внешний вид электролитического (полярного) конденсатора и его обозначение на схемах

Перед тем как проверить конденсатор мультиметром, осмотрите его корпус. Если полосы нет — можно не задумываться о положении щупов.

Обозначения на конденсаторах

От размеров элемента зависит количество данных, характеризующих его параметры. На корпус элемента наносятся обязательные электрические характеристики:

  • ёмкость конденсатора, С;
  • максимальное напряжение, на которое рассчитан элемент, В.

Расчет емкости конденсатора

На очень мелких деталях может быть отмечена только ёмкость, по стандарту EIA. Если нарисованы только цифры и буква, то цифры обозначают ёмкость, буквы могут иметь расшифровку, применимую к типу конструкции. При наличии трёх цифр первые две – это ёмкость. Третья цифра, лежащая в пределах 0-6, – это множитель нуля (505 – 55*100000). Когда третья цифра 8, значение умножают на 0,01, если 9 – на 0,1.

К сведению. Буква, обозначающая ёмкость, может стоять как после числового значения, так перед ним и между цифрами. Например, Н15; 1Н5; 15Н. Таким образом, может обозначаться десятичный разряд числа – 0,15нФ; 1,5нФ; 15нФ.

Дополнительно могут быть обозначены значения:

  • тип – конструктивное исполнение;
  • вид тока – постоянный, переменный, AC — DC;
  • рабочая частота, Гц;
  • величина допустимых отклонений ёмкости, %;
  • полярность выводов у электролитических конденсаторов, « + » и « — ».


Обозначения на корпусе электролитического конденсатора

Устройство и характеристики конденсатора

Конструкция конденсатора представляет собой две токопроводящие пластины, разделённые диэлектриком. Если приложить к пластинам напряжение от источника постоянного тока, то ток короткое время будет протекать через конденсатор, и он зарядится. На его пластинах (обкладках) накопится напряжение, равное напряжению источника. Длительность протекания тока и ёмкость его заряда зависят от площади обкладок и расстояния между ними. Ёмкость обозначается буквой С и измеряется в фарадах. Единица измерения в системе СИ – 1Ф (F). Обозначение принято в честь физика из Англии М. Фарадея.

Внимание! Ёмкость 1Ф – очень большая величина. Если рассматривать Землю как уединённый проводник в форме шара, то ёмкость составила бы около 700 мкФ

Поэтому электротехнические элементы измеряют в малых величинах: пикофарадах (пФ), нанофарадах (нФ), микрофарадах (мкФ).

Единицы измерения ёмкости

В цепях постоянного и переменного тока ёмкостной элемент ведёт себя по-разному. Если постоянный ток конденсатор через себя не пропускает, то переменному току, проходящему через него, оказывает определённое сопротивление. Это ещё одна важная характеристика конденсатора – ёмкостное сопротивление RC.

Сопротивление из разряда реактивных сопротивлений, рассчитывается по формуле:

Rс =1/6,28*f*C,

где:

  • Rc – емкостное сопротивление, Ом;
  • 6,28 – 2 π;
  • f – частота тока, Гц;
  • C – емкость данного конденсатора, Ф.

Важно! Как видно из формулы, для токов разной частоты сопротивление одного и того же элемента меняется. Чем выше частота тока, тем ниже ёмкостное сопротивление конденсатора

Различают конденсаторы постоянной и переменной ёмкости. Вторые имеют конструкцию, в результате которой изменяется расстояние между пластинами.

По типу исполнения конденсаторы постоянной ёмкости бывают:

  • полярные электролитические;
  • однослойные и многослойные керамические;
  • высоковольтные керамические;
  • полиэстеровые;
  • танталовые;
  • полипропиленовые конденсаторы.

Конструкция зависит от порядкового разряда ёмкости элемента, применяемого материала для пластин и диэлектрика.

Неполярные и полярные разновидности

Среди многообразия конденсаторов следует выделить два основных типа: полярные или электролитические, а также неполярные. В качестве диэлектрика в данных приборах используют — стекло, бумагу и воздух.

Специфика полярных конденсаторов

Само название наглядно говорит о том, что они имеют полярность, потому являются электролитическими. Потребуется верное и точное следование схеме, когда их будут подключать — “минус” к “минусу”, а “плюс” к “плюсу”. Если не соблюдать данное правило, то элемент не только утратит работоспособность, но вполне способен взорваться. Электролит встречается как в состоянии твёрдом, так и в жидком.

В качестве диэлектрика в устройствах применяется бумага, которая пропитана электролитом. Ёмкость варьируется в пределах от 0,1 тыс. и до 100 тыс. МкФ.

Когда происходит замыкание пластин, то осуществляется выделение тепла. Под его действием происходит испарение электролита, а затем следует взрыв.

Сверху у конденсаторов современного исполнения имеется крестик и незначительное вдавливание. Толщина вдавлиной части немного меньше, чем остальная поверхность. Если происходит взрыв, тогда верхний участок открывается, как роза. Поэтому при наблюдении за повреждённым элементом можно заметить вспучивание на корпусе.

Отличительные особенности неполярных конденсаторов

Плёночные неполярные части используют диэлектрик из керамики, а также из стекла. Если сравнивать с конденсаторами электролитическими, то у них самозаряд меньше. Это можно объяснить тем, что керамика имеет более высокое сопротивление, чем бумага.

Конденсаторы подразделяются на детали как специального назначения, так и общего. Они бывают следующими:

  1. Пусковыми. Используются для поддержания надёжной и качественной работы электродвигателей. Увеличивают в двигателе стартовый момент, например, это компрессор или насосная станция, осуществляющие запуск.
  2. Дозиметрическими. Предназначены для работы в цепях, в которых незначительный показатель токовых нагрузок. У них необъёмный самозаряд, но сопротивление изоляции повышенное. Большей частью это фторопластовые элементы.
  3. Импульсными. Используются для формирования повышенного скачка напряжения, а также его перевода на принимающую панель устройства.
  4. Высоковольтными. Применяются в высоковольтных приборах. Производятся в разнообразном исполнении. Встречаются масляные и керамические, плёночные и вакуумные. Они заметно отличаются от других деталей и имеют ограниченный доступ.
  5. Помехоподавляющими. Предназначены для смягчения в частотной вилке электромагнитного фона. Имеют незначительную собственную индуктивность, что даёт возможность повысить резонансную частоту, а также увеличить полосу сдерживаемых частот.

Если сравнивать в процентном отношении, то наиболее значительное число неисправных элементов приходится на случаи, когда наблюдается подача напряжения превосходящее стандартные показатели. Оплошности в проектировании вполне могут вызвать неисправности элементов.

Когда диэлектрик утрачивает свои характеристики и свойства, то могут возникнуть сбои и перепады в деятельности конденсатора. Например, при его растрескивании, вытекании или высыхании. Ёмкость может сразу измениться. Определить её значение возможно только благодаря измерительным устройствам.

Параллельное включение в схему исправного компонента

Еще один способ проверить конденсатор без выпаивания состоит в подключении параллельно ему заведомо исправного аналога той же емкости. Если устройство заработает, значит проблема действительно была в конденсаторе и его необходимо заменить.

В схемах с высоким напряжением этот способ проверки применять нельзя.

Проверка на искру

При отсутствии измерительного прибора под рукой либо в случае большой емкости конденсатора его можно проверить «на глазок».

Элемент заряжают, затем металлическим инструментом с изолированными ручками замыкают его выводы. На руки следует надеть резиновые перчатки.

Яркая искра в сопровождении характерного звука свидетельствует об исправности конденсатора. Если разряд получился вялым, радиодеталь пора утилизировать.

Для получения исчерпывающей информации о состоянии конденсатора требуется мультиметр с функцией замера емкости (на панели управления имеется сектор «CX»).

Но и не оснащенный такой опцией тестер немало расскажет о данном элементе. Демонтаж конденсатора с платы требуется не всегда, но следует быть готовым к тому, что при измерениях на плате, точность окажется далеко не идеальной.

Что такое конденсатор?

Если взглянуть на статистику, то больше половины рекомендаций по ремонту оборудования связано с неисправностью такого элемента, как конденсатор. Этот прибор составляет большое количество различных электросхем. Принцип функционирования сводится к поэтапному накоплению электроэнергии с различным потенциалом между обкладками и последующим быстрым разрядом.

Выделяют два наиболее известных типа конденсаторов, которые устанавливаются в современных схемах:

  1. Полярные (электролитические). Такое название они получили потому, что при подключении в схему требуется задать определенную полярность: «плюс» к «плюсу», а «минус» к «минусу».
  2. Неполярные. К этой группе относятся любые другие варианты конденсаторов.

Общепринятое обозначение этого элемента на схемах отчетливо показывает его принцип работы.

Строение этого электронного компонента простое – он состоит из двух покрытых изоляционным слоем обкладок, которые проводят ток. С целью изоляции используют всевозможные материалы и компоненты, которые не проводят электричество: кислород, пластинки из керамики, специальную целлюлозу, фольгу.

По внешнему виду такие элементы отличаются миниатюрным размером при внушительной емкости, поэтому в процессе работы с ними следует соблюдать технику безопасности.

Принцип функционирования

Работа такого элемента, как конденсатор, основывается на том, что находясь в электрической схеме, он способствует накоплению зарядов. Это необходимо только в тех схемах, где происходит распределение составляющих тока (переменный ток). В то время как в схемах с постоянным током конденсатор не сможет накапливать энергию.

Где применяется?

Устанавливают конденсаторы различных видов в радиосхемы и бытовые приборы. Как правило, эти устройства имеют небольшую емкость, поэтому их неисправность не провоцирует тяжелых последствий.

Крупногабаритные конденсаторы составляют различные электрические двигатели, где являются элементами пуска. В данном случае они отличаются большим номиналом и такой же емкостью.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

Особенности проверки конденсаторов разных типов

Существует множество типов радиодеталей, которые отличаются материалом диэлектрика, пластин, видом электролита, поэтому они имеют разные способы диагностики рабочего состояния.

Для проверки годности керамического конденсатора задают наибольший предел измерения омметра. Признаком исправности будет измеренное сопротивление не менее 2 МОм. При других значениях деталь меняют.

Для испытания танталового конденсатора выбирают наибольший предел измерения в омах. При сопротивлении равном 0 его меняют. Перед проверкой электролитического конденсатора большой ёмкости и высокого напряжения необходима максимальная разрядка. Остаточное напряжение испортит прибор.

SMD конденсаторы неполярные, поэтому их проверяют как керамические, определяя годность в режиме омметра.

У плёночного конденсатора с коротким замыканием показание будет равно 0. При внутреннем обрыве аналоговый мультиметр покажет бесконечность, цифровой – 1.

Проверка без выпаивания

Исследовать радиодеталь не выпаивая, нельзя, показание будет неверным от влияния других элементов схемы.Вносит погрешность в измерение соседство трансформаторов, индуктивности, предохранителей. Параллельное или последовательное соединение их будет увеличивать или уменьшать итог тестирования. Для правильной оценки состояния конденсатор выпаивают.

Watch this video on YouTube

Без выпаивания можно приблизительно определить работу участка схемы. Для этого прикасаются щупами к ножкам детали и измеряют сопротивление. Если показание увеличивается, затем уменьшается — деталь исправна.

Необходимо помнить, что контроль конденсаторов возможен только до максимальной величины 200 мкФ. Электроизмерительные приборы не измеряют большие параметры. При значении менее 0,25 мкФ конденсаторы проверяют только на короткое замыкание.

Проверка электродвигателей разного вида с помощью мультиметра

Как измерить ёмкость конденсатора мультиметром?

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Прозвонка проводов с помощью мультиметра — что это значит и как выполняется

Что такое конденсатор, виды конденсаторов и их применение

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Типы транзисторов

Стандартные современные транзисторы отличаются структурой, принципом действия и основными параметрами, в соответствии с которыми они могут быть представлены:

  • Биполярными устройствами, которые отличаются наличием трёх слоёв в виде «базы», «коллектора» и «эмиттера». Полупроводниковый материал отвечает за протекание тока исключительно в одном направлении, определяемым видом перехода. Характерной особенностью данного типа транзистора является подача в базу токов незначительной величины.
  • Полевыми или униполярными устройствами, которые отличаются наличием трёх выводов в виде «затвора», «стока» и «истока». Показатели сопротивления зоны проводника напрямую зависят от уровня напряжения, прилагаемого к затворной части. В соответствии с проводимостью кристалла выпускаются устройства, имеющие p-канал и n-канал.

Электрические или электронные компоненты, представленные конденсатором, в отличие от транзисторов включают в себя пару проводниковых обкладок, разделенных диэлектрическим слоем.

Существует огромное количество разновидностей конденсаторных приборов, которые, чаще всего, различаются материалом обкладок и видовыми особенностями диэлектрика:

  • бумажного и металлобумажного типа;
  • электролитические разновидности;
  • полимерного или пленочного типа;
  • керамического типа;
  • с наличием диэлектрика воздушного типа.

Виды транзисторов

Кроме всего прочего, конденсаторные устройства могут быть полярными и неполярными. Второй вариант используется для обеспечения периодического, непродолжительного включения в цепь с переменными токовыми показателями. Полярные электролитические конденсаторы обладают значительно меньшими размерами, чем неполярные устройства с аналогичной емкостью.

Если все транзисторы отвечают за протекание тока в соответствии с управляющим сигналом, то конденсаторы накапливают и затем отдают электрический ток, поэтому часто применяются для выравнивания скачков напряжения.

Как правильно использовать прибор

Если номинальное напряжение неизвестно, то можно действовать исходя из того, что оно составляет 10-12 В. Обычно используют резисторы, имеющие сопротивление 5-10 КОм.

Чтобы проверить деталь, не выпаивая ее из схемы, параллельно с ней можно подсоединить конденсатор с такими же параметрами в рабочем состоянии. Если схема восстановит свою работу, то это означает, что деталь была неисправна и ее следует заменить.

Мостовая схема

Измерение емкости без выпаивания с платы сложно и доступно только профессиональному специалисту. Прибор для проверки электролитических конденсаторов без выпайки может быть использован только с учетом схемы подключения конденсатора. Дело в том, что полученный результат будет существенно зависеть от способа подключения детали и в различных ситуациях может показать труднообъяснимые результаты. Например, если параллельно с ним включена катушка, то при измерении емкости без выпайки будет показано нулевое сопротивление.

Вам это будет интересно  Рейтинг лучших паяльных станций

Если неисправен конденсатор, надо его проверить, применив один из имеющихся методов. В случае неисправности потребуется его заменить, чтобы плата восстановила свою работоспособность.

Электрические цепи, состоящие из проводников и полупроводников, включают в себя элементы, позволяющие накапливать заряды и отдавать их в нужный момент. Из-за этой особенности такие элементы изначально стали называть ёмкостью. Название пришло со времён, когда электричество считали жидкостью, а её накопитель – сосудом. Это не совсем удачное определение применяется до сих пор, хотя сам элемент называется конденсатор.

Типы конденсаторов и их внешний вид

Снижение напряжения пробоя конденсатора

Снижение максимально возможного напряжения – это так называемый обратимый пробой. Его не определить тестером. Но в схеме при работе при номинально допустимом значении напряжения элемент ведёт себя как пробитый. При этом он будет измеряться тестером как рабочий.

Определить можно постепенной подачей напряжения от отдельного источника питания до величины, указанной на корпусе. У неисправного конденсатора пробой будет происходить раньше этой величины. Электролит закипит, и корпус начнёт греться.

Внимание! Если на маркировке стоит значение «60V», то при плавной подаче напряжения на выводы от нуля до 50V элемент должен вести себя нормально. Пробоя быть не должно

Измерение ёмкости конденсаторов с помощью измерительных приборов заводского изготовления или самодельных устройств позволяет производить ремонт и наладку электронных схем. Выявление неисправного конденсатора путём измерения его физических ёмкостных значений сохранит работоспособность электронного устройства и снизит время, затраченное на ремонт.