Расчет заряда и разряда конденсатора через сопротивление

Содержание

Концепция Вольты

Как свидетельствуют записки учёного, уже в 1778 году он получил представление о разнице потенциалов, которые называл tension – напряжение. С 1775 года Вольта придерживается концепции электрической ёмкости – capacita, выдвинутой его учителем Беккарией. Вольта уже знает, что электрофорус способен накопить заряд, называет прибор конденсатором, и решает подтвердить теорию практикой. Иначе – найти взаимосвязь напряжения, ёмкости и объёмом (quantita) заряда.

Вольта начал с лейденской банки. Он заряжал её от статического генератора и пробовал определить энергию конденсатора тремя путями:

  1. Наблюдал получаемую искру электрической дуги от различной конструкции лейденских банок, заряженных одинаковым напряжением.
  2. Измерял количество произведённой электростатическими генераторами трения работу, пока показания электрометра не росли до определённого уровня.
  3. Разряжал лейденские банки на открытом воздухе и пытался сравнить производимый ими электрический шок по истечении времени.

Все перечисленное привело исследователя к странным выводам, что высокие лейденские банки более вместительные (при одинаковых площадях обкладок и прочих равных условиях). Вероятно, это связано со скоростью разряда их дуги на воздухе вследствие различий в кривизне поверхностей. Силу разряда Вольта увязывал с электрическим током: чем быстрее течёт флюид, тем более жаркий (по ощущениям) эффект. В результате, Вольта счёл, что разница потенциалов единственная определяет процесс возникновения удара.  Он решил, что напряжение допустимо измерить двумя путями:

  1. Через количество оборотов генератора статического заряда.
  2. Сравнивая силу электрического удара при разряде лейденской банки.

Вольта нашёл, что заряжая пустую лейденскую банку от полной, шок получается вдвое слабее. Постепенно (1782 год) Вольта пришёл к выводу, что вышеуказанные величины соотносятся между собой: tension x capacity ~ load, в современном мире выглядит как U C = q или C = q / U.

Вольта заключил, что ёмкость больше там, где при меньшем напряжении вмещается больше заряда. Последовало заключение, что количество накопленного флюида прямо пропорционально площади обкладок плоского конденсатора. Что согласуется с современными формулами. Вольта обобщил знания на случай произвольного проводника (экспериментировал со стержнями лейденских банок). Изменяя расстояние между обкладками, установил:

С ~ S / d.

Что фактически стало выражением ёмкости плоского конденсатора. Вольта объяснил зависимость наличием некоего сопротивления (resistance) между обкладками, подразумевая воздух. Изменяя дистанцию, удаётся варьировать этот параметр в обе стороны. Это слегка не согласуется с современными концепциями, но Вольта помог Георгу Ому 40 лет спустя вывести зависимость между током и напряжением.

Фактически измерения проделывались на основе работы поля, проявлявшейся лишь вследствие заряда конденсатора. Очевидно, что указанная величина равна энергии – одной из первых физических характеристики, использованных для вывода аналитических выражений.

Основные разновидности конденсаторов ёмкости

Для начала стоит разобраться с типами устройств. Итак, конденсаторы бывают:

  1. Постоянной и переменной ёмкости.
  2. Поляризованными. Их часто называют электролитическими или электролитами.
  3. Подстроечными.

Для указания номинала устройство применяются следующие обозначения:

  • микрофарады;
  • нанофарады;
  • пикофарады.

По типу изготовления устройства для накопления ёмкости электрического тока разделяются на следующие:

  • бумажные;
  • керамические термоустойчивые литые, дисковые, секционные и трубчатые;
  • малогабаритные подстроечные из керамики;
  • герметизированные металлобумажные в один или несколько слоёв;
  • слюдяные;
  • полистироловые;
  • плёночные.

От их типа напрямую зависит область применения и эксплуатационные свойства.

Практические измерения

Значение ёмкости конденсатора обозначается на корпусе в дробных фарадах или с помощью цветового кода. Но со временем компоненты способны потерять свои качества, поэтому для некоторых критических случаев последствия могут быть неприемлемыми. Существуют и другие обстоятельства, требующие измерений. Например, необходимость знать общую ёмкость цепи или части электрооборудования. Приборов, осуществляющих непосредственное считывание ёмкости, не существует, но значение может быть вычислено вручную или интегрированными в измерительные устройства процессорами.

Для обнаружения фактической ёмкости нередко используют осциллограф как средство измерения постоянной времени (т). Эта величина обозначает время в секундах, за которое конденсатор заряжается на 63%, и равна произведению сопротивления цепи в омах на ёмкость цепи в фарадах: т=RC. Осциллограф позволяет легко определить постоянную времени и даёт возможность с помощью расчётов найти искомую ёмкость.

Существует также немало моделей любительского и профессионального электронного измерительного оборудования, оснащённого функциями для тестирования конденсаторов. Многие цифровые мультиметры обладают возможностью определять ёмкость. Эти устройства способны контролируемо заряжать и разряжать конденсатор известным током и, анализируя нарастание результирующего напряжения, выдавать довольно точный результат. Единственный недостаток большинства таких приборов — сравнительно узкий диапазон измеряемых величин.

Вам это будет интересно Выбор и особенности подключения счётчика энергомера

ЭКСПЕРИМЕНТ 1

Определение ёмкости конденсатора методом разрядки

1.Соберите на рабочей части экрана замкнутую электрическую цепь, показанную ниже на рис.2. Для этого сначала щёлкните мышью на кнопке э.д.с.,расположенной в правой части окна эксперимента. Переместите маркер мыши на рабочую часть экрана, где расположены точки, и щёлкните маркером мыши в виде вытянутого указательного пальца в том месте, где должен быть расположен источник тока. Подведите маркер мыши к движку появившегося регулятора э.д.с., нажмите на левую кнопку мыши, удерживая её в нажатом состоянии, меняйте величину э.д.с. и установите 10 В. Аналогичным образом включите в цепь 4 других источника тока. Суммарная величина э.д.с. батареи должна соответствовать значению, указанному в таблице 1 для вашего варианта.

Таким же образом разместите далее на рабочей части экрана 7 ламп Л1-Л7 ( кнопка ), Ключ К (кнопка ), вольтметр (кнопка ), амперметр (кнопка ), конденсатор (кнопка ). Все элементы электрической цепи соедините по схеме рис.1 с помощью монтажных проводов (кнопка ).

2. Щёлкните мышью на кнопке «Старт». Должна засветиться лампа Л7, а надпись на кнопке измениться на «Стоп». Курсором мыши замкните ключ К.

3. После установления в цепи стационарного тока ( должны погаснуть лампы Л5 и Л6 и светиться лампы Л1-Л4) запишите показания электроизмерительных приборов в таблицу 2.

4. Нажмите на кнопку «Стоп» и курсором мыши разомкните ключ К.

5. Двумя короткими щелчками мыши на кнопке «Старт» запустите и остановите процесс разрядки конденсатора. Показания амперметра будут соответствовать начальному току разрядки конденсатора I0. Запишите это значение в таблицу 3.

6. Вновь замкните ключ, зарядите конденсатор и повторите п.п. 5, 6 ещё 4 раза.

7. Для каждого опыта рассчитайте It= I0/2,7- силу тока, которая должна быть в цепи разрядки конденсатора через время релаксации t и запишите эти значения в таблицу 3.

8. При разомкнутом ключе нажатием кнопки «Старт» запустите процесс разрядки конденсатора и одновременно включите секундомер.

9. Внимательно наблюдайте за изменением показаний амперметра в процессе разрядки конденсатора. Остановите секундомер и синхронно нажмите кнопку «Стоп» при показании амперметра, равном или близким к It. Запишите это значение времени t1 в таблицу 3.

10. Проделайте опыты п.п.8, 9 ещё 4 раза.

Таблица 1. Суммарное значение э.д.с. источников тока

Вариант 1 2 3 4 5 6 7 8
Э.д.с.,В 50 49 48 47 46 45 44 43

Таблица 2. Определение сопротивления лампы.

№п/п I, А U, В R, Ом
Номер опыта 1 2 3 4 5 Среднее

значение

I0, А
It, А
t, с
C, Ф

Таблица 3. Результаты измерений и расчётов.

ОБРАБОТКА РЕЗУЛЬТАТОВ:

1. По закону Ома для участка цепи Л1-Л4: и результатам измерений, приведённым в таблице 2, определите сопротивление одной лампы.

2. По формуле (при разрядке конденсатора квазистационарный ток протекает по 6 последовательно соединённым лампам) определите ёмкость конденсатора и запишите эти значения в таблицу 3.

3. Рассчитайте погрешности измерений и сформулируйте выводы по результатам проделанной работы.

Как измерить ёмкость конденсатора мультиметром

Чтобы произвести такую операцию, необходим прибор с режимом измерения емкости (часто помечается как С или Сх). Он должен иметь сопротивление, превышающее 2 килоом. Перед замерами надо произвести разрядку контактов устройства. Для этого подойдет отвертка с рукоятью, покрытой изоляционным материалом (например, прорезиненной). Нужно взять инструмент за рукоятку и дотронуться до контактов, после этого они замкнутся. Затем нужно подержать конденсатор обесточенным около получаса, чтобы он полностью разрядился.

Важно! При неисправности емкостной радиодетали измерительный прибор покажет бесконечное значение и начнет издавать пищащие звуки. Проверке нельзя подвергать устройства, имеющие проколы или выпуклости на корпусе – такие конденсаторы непригодны к эксплуатации. Электрическую цепь отключают от питания

После этого надо убедиться в его отсутствии, приставив щупы к поставщику при предварительно установленной программе измерения напряжения. Нужно, чтобы параметр имел нулевое значение

Электрическую цепь отключают от питания. После этого надо убедиться в его отсутствии, приставив щупы к поставщику при предварительно установленной программе измерения напряжения. Нужно, чтобы параметр имел нулевое значение.

Измерительный прибор ставят в режим измерения емкостного параметра. При использовании прибора с несколькими интервалами настроек выбирают тот, что подойдет с большей вероятностью (ориентируясь на данные маркировки). Если есть кнопка Rel, ее используют для освобождения щупов от емкостной нагрузки. Щупы ставят к выводам детали, строго соблюдая поляризацию. Если после ожидания экран сообщает о перегруженности, емкость слишком велика для идентификации этим прибором, либо надо выбрать другой интервал.

Измерение мультиметром

История накопителей заряда

Самое раннее письменное свидетельство получения зарядов с помощью трения принадлежит учёному Фалесу из Милета (635—543 гг. до н. э.), который описал трибоэлектрический эффект от взаимодействия янтаря и сухой шерсти. Для приблизительно 2300 последующих лет любое получение электричества заключалось в трении двух различных материалов друг о друга.

Качественный рывок в знаниях о зарядах произошёл в эпоху Просвещения — период революционного развития научной мысли в образованных кругах. В это время электричество становится популярной темой, а энтузиастами было произведено немало опытов и экспериментов с генераторами на основе трения.

Открытие явления произошло во время опытов у обоих экспериментаторов, но с той разницей, что Мюссенбрук, во-первых, сделал немало усовершенствований первоначально созданного оборудования, а во-вторых, письменно сообщил коллегам о своих достижениях. Прошло совсем немного времени и учёные мира стали создавать накопители зарядов собственных конструкций. Это были первые шаги в эволюции конденсаторов, продолжающейся и в наши дни. Основные даты хронологии появления устройств для хранения зарядов:

  • 1746 г. — изобретение лейденской банки в результате экспериментов по доработке устройства Клейста;
  • 1750 г. — опыты Бенджамина Франклина с батареями конденсаторов;
  • 1837 г. — публикация Майклом Фарадеем теории диэлектрической поляризации — научной основы работы накопителей;
  • конец XIX в. — начало практического применения лейденских банок вместе с первыми устройствами постоянного тока;
  • начало XX в. — изобретение слюдяных и керамических конденсаторов.

Соединение конденсаторов: формулы

  1. Последовательное соединение
  2. Онлайн калькулятор
  3. Смешанное соединение
  4. Параллельное соединение
  5. Видео

В электронных и радиотехнических схемах широкое распространение получило параллельное и последовательное соединение конденсаторов. В первом случае соединение осуществляется без каких-либо общих узлов, а во втором варианте все элементы объединяются в два узла и не связаны с другими узлами, если это заранее не предусмотрено схемой.

Последовательное соединение

При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = ic1 = ic2 = ic3 = ic4.

В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Qобщ= Q1 = Q2 = Q3.

Если рассмотреть три конденсатора С1, С2 и С3, соединенные в последовательную цепь, то выясняется, что средний конденсатор С2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.

Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.

Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/Cобщ = 1/C1 + 1/C2 + 1/C3.

Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.

Онлайн калькулятор, для расчета емкости конденсаторов соединенных последовательно в электрической цепи.

Параллельное соединение конденсаторов

Параллельным считается такое соединение, при котором конденсаторы соединяются между собой двумя контактами. Таким образом в одной точке может соединяться сразу несколько элементов.

Данный вид соединения позволяет сформировать единый конденсатор с большими размерами, площадь обкладок которого будет равна сумме площадей обкладок каждого, отдельно взятого конденсатора. В связи с тем, что емкость конденсаторов находится в прямой пропорциональной зависимости с площадью обкладок, общая емкость составить суммарное количество всех емкостей конденсаторов, соединенных параллельно. То есть, Собщ = С1 + С2 + С3.

Поскольку разность потенциалов возникает лишь в двух точках, то на все конденсаторы, соединенные параллельно, будет падать одинаковое напряжение. Сила тока в каждом из них будет отличаться, в зависимости от емкости и значения напряжения. Таким образом, последовательное и параллельное соединение, применяемое в различных схемах, позволяет выполнять регулировку различных параметров на тех или иных участках. За счет этого получаются необходимые результаты работы всей системы в целом.

electric-220.ru

Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.

Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

По мере зарядки, лампочка начинает тусклее светиться.

Лампочка затухает при полной зарядке.

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.

Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.

Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Энергия поля плоского конденсатора

Как подобрать конденсатор

Для упрощения можно рассмотреть пример с перемещением разноименно заряженных пластин. Сформированная сила притяжения (F) будет измеряться величиной заряда (q) и напряженностью поля (E) между соответствующими обкладками:

F = q * E.

Так как E = q/(2*e*S), несложно получить выражение для значения силового взаимодействия:

F = q2/(2*e0*S),

где:

  • e0 – это электрическая постоянная = 8,854 * 10-12 Ф*м-1;
  • S – площадь пластин.

Работа (A) равна произведению силы на пройденное расстояние (d), поэтому W (энергия плоского конденсатора) = A = F * d = d *q2/(2*e0*S). Емкость (С) определяется, как C = d /(e0*S). Следующими преобразованиями можно получить итоговое выражение:

  • W = q2/(2*C);
  • q = C * U;
  • энергия конденсатора формула:

W = ½ *C * U2.

Слободянюк А.И. Физика 10/16.4

Предыдующая страница

16.4 Зарядка конденсатора от источника постоянной ЭДС

Рассмотренный в предыдущем разделе процесс зарядки конденсатора посредством перенесения заряда с одной обкладки на другую имеет исключительно теоретический интерес, как метод расчета энергии конденсатора. Реально конденсаторы заряжают, подключая их к источнику ЭДС, например, к гальванической батарее.

Пусть конденсатор емкостью C подключен к источнику, ЭДС которого равна ε

(Рис. 145). Полное электрическое соединение цепи (включающее и внутренне сопротивление источника) обозначим R

. При замыкании ключа в цепи пойдет электрический ток, благодаря которому на зарядках конденсатора будет накапливаться электрический заряд. По закону Ома сумма напряжений на конденсаторе \(

U_C = \frac\) и резисторе \(U_R = IR\) равна ЭДС источника \(\varepsilon = U_C + U_R\), что приводит к уравнению

IR = \varepsilon — \frac\) . (1)

В этом уравнении заряд конденсатора и сила тока зависят от времени. Скорость изменения заряда конденсатора по определению равна силе тока в цепи \(

I = \frac\), что позволяет получить уравнение, описывающее изменение заряда конденсатора с течением времени

Можно также получить уравнение, непосредственно описывающее изменение силы тока в цепи с течением времени. Для этого на основании уравнения (1) запишем уравнения для малых изменений входящих величин

\Delta \varepsilon = \Delta (IR) + \Delta \left (\frac \right )\) .

Формально эту операцию можно описать следующим образом: уравнение (1) следует записать для двух моментов времени t

и ( t

+ Δt ), а затем из второго уравнения вычесть первое. Так как ЭДС источника постоянна, то ее изменение равно нулю Δε = 0, сопротивление цепи и емкость конденсатора постоянны, поэтому их можно вынести из под знака изменения Δ , поэтому полученное уравнение приобретает вид

R \Delta I = — \frac \Delta q\) .

Наконец разделим его на промежуток времени, в течение которого произошли эти изменения, в результате получаем искомое уравнение (с учетом связи между силой тока и изменения заряда)

Математическая смысл этого уравнения указывает, что скорость уменьшения тока пропорциональна самой силе тока. Для однозначного решения этого уравнения необходимо задать начальное условие – значение силы тока в начальный момент времени I

С уравнениями такого типа мы познакомились в «математическом отступлении», поэтому здесь его анализ проведем кратко.

В начальный момент времени, когда заряд конденсатора равен нулю, скорость возрастания заряда (то есть сила тока) максимальна и равна \(

Затем по мере накопления заряда сила тока будет уменьшаться, когда напряжение на конденсаторе станет равным ЭДС источника, заряд конденсатора достигнет максимального стационарного значения \(

\overline = C\varepsilon\) и ток в цепи прекратится.

Схематически зависимости заряда конденсатора и силы тока в цепи от времени показаны на рис. 146. Для оценки времени зарядки конденсатора можно принять, что заряд возрастает до максимального значения с постоянной скоростью, равной силе тока в начальный момент времени. В этом случае

Аналогичная оценка исчезновения тока, полученная на основании уравнения (3) приводит к этому же результату.

Строго говоря, время зарядки конденсатора, описываемой уравнением (2) равно бесконечности

Это парадокс можно исключить, если принять во внимание дискретность электрического заряда

Как рассчитать емкость конденсатора

Расчеты, производимые с помощью онлайн калькулятора, позволяют вычислить емкость конденсатора в течение нескольких секунд. Кроме этого параметра, можно определить показатели заряда, мощности, тока, энергии и прочих качеств конденсатора, необходимых в конкретном устройстве.

Наиболее часто встречаются электролитические конденсаторы, применяемые в схеме асинхронного электродвигателя. Конструкции этих устройств могут быть полярными или неполярными. В первом случае отмечается более высокая емкость, поэтому перед подключением конденсатора к двигателю, необходимо в обязательном порядке выполнить расчеты. С помощью проводимых вычислений устанавливается необходимая емкость, соответствующая конкретному двигателю.

Особое значение придается дополнительным расчетам при эксплуатации трехфазных электродвигателей. В обычном режиме конденсатор функционирует нормально, однако при включении в однофазную сеть, его емкость заметно снижается. Это приводит к увеличению частоты вращения вала. Предварительные расчеты и правильное подключение позволяют избежать подобных ситуаций.

При запуске асинхронного двигателя, работающего от напряжения 220 вольт, требуется конденсатор с высокой емкостью. В связи с этим, невозможно обойтись без проведения расчетов с помощью онлайн калькулятора. Проведение расчетов полностью зависит от способа соединения обмоток электродвигателя. Данное соединение может быть выполнено двумя способами – звездой и треугольником. В первом случае применяется формула Ср=2800хI/U, а для второго случая используется немного измененная формула Ср=4800хI/U.

Следует учитывать, что в цепочке соединенных конденсаторов емкость пускового устройства должна быть примерно в три раза выше, чем в рабочем приборе. Для расчета применяется формула Сп=2.5хСр, в которой Сп и Ср являются соответственно пусковым и рабочим конденсатором.

Чему будет равен максимальный заряд конденсатора

Колебательный контур, состоящий из катушки индуктивности и конденсатора, настроен на длину волны м . Если максимальный ток в цепи I=0,02 А, то максимальный заряд конденсатора равен ———————————————————————————————————————- где: — скорость распространения электромагнитного поля (на сколько я понял в данном случае в вакууме) — индуктивность контура — ёмкость контура

где: I-максимальная сила тока в контуре w — циклическая частота q — амплитудное значение заряда

из формулы 1) можно найти зная можно найти «q — амплитудное значение заряда» «q — амплитудное значение заряда» это и будет «максимальным зарядом конденсатора» ?

Чему равен модуль Юнга Магнитофонная лента имеет толщину d=5 мкм и ширину b=5 мм. Если к ленте длиной L=0.7 м подвесить.

Чему равен наибольший потенциал Чему равен наибольший потенциал, приобретаемый отрицательно заряженной металлической пластинкой .

Чему равен период колебаний частицы? Прошу распишите как решать эти задаче никак не могу их решить Задача 1 Частица, совершающая.

Чему равен радиус диска, если период его колебаний 2 с? на гвозде, вбитом в стену, висит диск так, что точка подвеса находится на расстоянии 1/6 радиуса от.

Источник