Вектор напряженности электрического поля

Диэлектрики в электрическом поле

Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.

В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.

В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.

Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.

Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.

Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:

В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.

Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.

Суть явления

Любое вещество состоит из атомов. Они имеют ядра с положительным зарядом, а вокруг них вращаются отрицательно заряженные электроны. Под воздействием электрополя эти частицы начинают двигаться. Чем больше зарядов было перемещено, тем большую работу выполняет электрическое поле.

На этот параметр влияют две величины:

  • сила тока;
  • напряжение.

Физический смысл последней величины заключается в том, что работа электротока (А) на любом участке цепи соотносится с зарядом (q), проходящим по этому участку. В результате выполнения работы заряд со знаком «плюс» перемещается из точки с меньшим потенциалом в точку с большим. Говоря проще, напряжение равно отношению работы по перемещению заряда к его показателю и обозначается литерой «U». Таким образом, формула для определения разности потенциалов выглядит следующим образом — U = A / q.

Напряжение определяется разностью потенциалов либо электродвижущей силой. При этом работа является энергией и измеряется в джоулях (Дж). Для определения электрозаряда в международной системе единиц используется кулон (Кл).

В приведенном примере роль силы тока выполняет объем жидкости, а ее давление соответствует напряжению. При движении воды она свободно в большом количестве перемещается в шланге, создавая при этом определенное давление. Если конец шланга сжать, то при одновременном увеличении давления жидкости уменьшится ее объем. При этом струя будет перемещаться на большее расстояние.

С электричеством ситуация аналогична. Показатель силы тока зависит от объема (количества) электронов, двигающихся по проводнику. Разность потенциалов можно считать силой, с которой проталкиваются электроны. Из этого следует, что при одинаковом показателе заряда источника тока для проведения большего тока необходимо увеличить поперечное сечение проводника.

Кроме этого, напряжение зависит от следующих факторов:

  • материала провода;
  • сопротивления;
  • температуры.

Что такое напряжение в сети электричества.

Напряжение – это физическая величина, которая характеризует электрическое поле. Иными словами, оно показывает, какую работу оно совершает при перемещении одного положительного заряда на определённое расстояние.

Показатель напряжения на вольтметре

За единицу напряжения в международной системе принимается такой показатель на концах проводника, при котором заряд в 1 Кл совершает работу в 1 Дж для перемещения его по этому проводнику. Общепринятой единицей измерения напряжения считается 1 В – Вольт.

Важно! Работа измеряется в Джоулях, заряды в Кулонах, а напряжение в Вольтах, следовательно, 1 Вольт равняется 1 Джоулю, деленному на 1 Кулон

Электростатика

Этот раздел электродинамики описывает частный случай, когда заряженные тела находятся в статичном состоянии. Такая ситуация значительно упрощает расчеты. Для практического примера можно создать электростатический конденсатор.

Устанавливают две плоскости одинаковой размерности параллельно на небольшом расстоянии, разделяют слоем диэлектрика. Если создать разницу потенциалов, между поверхностями образуется поле. В такой конструкции накапливается электрический заряд. Какой будет емкость, можно узнать с помощью этой формулы:

C=Q/ (ϕ1-ϕ2)=Q/U=e*S/d,

где

  • e – проницаемость диэлектрика;
  • e0 – электрическая постоянная (8,85*10-12 Ф/м);
  • S – площадь пластин;
  • D – расстояние между ними.

Конденсатор

Чтобы зарядить конденсатор до нужной емкости, надо затратить энергию W=(e*e0*E2/2)*S*D. На рисунке показано, как изменять рабочие параметры сборки при последовательном и параллельном соединении модулей.

Теорема Гаусса

Эта теорема определяет пропорциональность потока вектора напряженности электрического поля (Ф) заряду (Q), который заключен в произвольную поверхность замкнутого типа:

Ф=4π*Q.

Напряжённость электрического поля точечного заряда

В этом случае можно пользоваться рассмотренным выше законом Кулона. В следующих разделах представлены формулы для вычисления в разных системах единиц.

В единицах СИ

В этой системе базовой выбрана сила тока, поэтому кулон является производной величиной.

Основная формула:

F=k*(q1*q2/r122).

Здесь коэффициент k=1/(4π*e0).

Для системы СГС

Здесь, как и в предыдущем примере, выбран единичный заряд – «точка». Основные правила характеризуют физические процессы аналогично. Разница лишь в постоянных величинах. В данном случае коэффициент k обратно пропорционален диэлектрической проницаемости (е) среды.

В этом варианте для получения результата надо сложить вектора каждого заряда:

Еобщ=Е1+Е2+…+En.

Чтобы обеспечить непрерывность линии напряженности, берут интеграл соответствующей области. Построить распределение силовых линий можно с помощью расчета перемещения вектора по всем точкам.

Электростатическая потенциальная энергия

Предположим, что точечный заряд q перемещают в пространстве из точки а в точку b, электрические потенциалы
в которых, обусловленные другими зарядами, равны соответственно Va и Vb. Изменение электростатической
потенциальной энергии заряда q в поле других зарядов составляет:

ΔU = Ub — Ua = q(Vb — Va) = qVba

Пусть теперь имеется система нескольких точечных зарядов. Чему равна электростатическая потенциальная энергия системы?
Удобнее всего выбрать за нуль потенциальную энергию зарядов на очень больших (в идеале бесконечно больших) расстояниях друг от друга.
Потенциальная энергия уединенного точечного заряда Q1 равна нулю, поскольку в отсутствие других зарядов на него не действует никакая сила. Если к нему поднести второй точечный заряд, Q2, потенциал в точке, где находится второй заряд, будет равен:

Здесь r1 2 — расстояние между зарядами. Потенциальная энергия двух зарядов равна:

Она характеризует работу, необходимую для перемещения заряда Q2 из бесконечности (V = 0) на расстояние r1 2 до
заряда Qi (или со знаком минус работу, необходимую для разнесения зарядов на бесконечно большое расстояние).

Если система состоит из трех зарядов, то ее полная потенциальная энергия будет равна работе по перемещению всех трех зарядов из бесконечности в место их расположения. Работа по сближению зарядов Q2 и Q1 определяется выражением (24.10);
чтобы перенести заряд Q3 из бесконечности в точку на расстоянии r1 3 от Q1 и на расстоянии r2 3 от Q2, требуется совершить работу:

В этом случае потенциальная энергия системы трех точечных зарядов будет равна:

Для системы четырех зарядов выражение для потенциальной энергии будет содержать шесть таких членов и т.п. (При составлении подобных сумм необходимо следить за тем, чтобы не учитывать одну и ту же пару дважды).
Часто нас интересует не полная электростатическая потенциальная энергия, а лишь часть ее. Например, может возникнуть необходимость найти потенциальную энергию одного диполя в присутствии другого диполя. Во взаимодействии участвуют четыре заряда: Q1 и -Q1 первого диполя и Q2 и -Q2 второго диполя.
Потенциальная энергия одного диполя и в присутствии другого (иногда ее называют энергией взаимодействия) представляет собой работу по сближению диполей с бесконечно большого расстояния. В этом случае нас не интересует взаимная потенциальная энергия зарядов Q1 и -Q1 или Q2 и -Q2; выражение для потенциальной энергии двух диполей будет содержать лишь четыре члена, соответствующие энергиям взаимодействия между зарядами: Q1 и Q2 ; Q1 и -Q2 ; -Q1 и Q2 ; -Q1 и -Q2.

Напряжённость электрического поля в классической электродинамике

Для лучшего понимания темы необходимо напомнить несколько базовых определений. Существуют отрицательные и положительные электрические заряды. Каждый из них не зависит от системы координат, что подразумевает отсутствие влияния скорости. В изолированном объеме сумма зарядов не изменяется. Базовой величиной считают Кулон, который соответствует прохождению тока через единичную площадь сечения проводника за одну секунду.

Электрическое поле:

  • создается зарядами;
  • распространяется со скоростью света;
  • не ограничено в свободном пространстве.

Описывает напряженность электрического поля формула с векторными составляющими:

E=F/q0,

где:

  • E – это вектор напряженности, который зависит от координат в пространстве по осям Х, Y, Z и времени;
  • F – сила, оказывающая воздействие на единичный точечный заряд q0.

Вместе с вектором магнитной индукции напряженность (Е) формирует электромагнитное поле. Суммарное воздействие сил образует тензор. Вместе с зарядом это главные параметры электродинамики.

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, заполненный водой.


водоносная башня

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!

водобашня, заполненная водой

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил,  давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи – нет.

Кулон и электрический заряд

Одна из основных единиц электрических измерений, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, – это кулон – единица измерения электрического заряда, пропорциональная количеству электронов в несбалансированном состоянии. Один кулон заряда соответствует 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается «Кл». Единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этом смысле, ток – это скорость движения электрического заряда через проводник.

Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении). В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.

Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.

Постоянный электрический ток

Электрический ток – направленное движение свободных носителей энергии в веществе или внутри вакуума. Этот показатель появляется при соблюдении главных условий:

  • Есть источник энергии.
  • Замкнутость пути, который используется для перемещения.

I – буква, которую применяют для обозначения силы тока.

Важно. Единица измерения – Амперы

Величина тока зависит от количества электричества или разрядов, которые проходят через поперечное сечение у проводника в единицу времени.

Когда речь о постоянном токе – предполагается, что с течением времени не меняются его направление, основная величина.

Амперметр – устройство, применяемое для измерения силы тока. Его подключение к цепи – последовательное. Показатель важен, поскольку от него зависят и сила воздействия и другие подобные параметры. На практике часто встречаются ситуации, когда сила тока заменяется плотностью. В данном случае единица измерения – Ампер на метр квадратный. Площадь сечения проводов выражается в мм 2 . И плотность тока предполагает опору на эту характеристику.

Электрическое поле можно назвать реально существующим явлением, как и любые предметы. Поле и вещества относят к основным формам существования материи. Способность действовать с силой на заряды – главное свойство. Его используют, чтобы обнаруживать, измерять явления. Ещё одна характеристика – распространение со скоростью света

Это тоже важно для тех, кто занимается изучением подобных факторов

Потенциал. Разность потенциалов. Напряжение.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

– энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

– следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение — разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

Единица разности потенциалов

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Связь между напряженностью и напряжением.

Из доказанного выше: →

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

  1. Вектор напряженности направлен в сторону уменьшения потенциала.
  2. Электрическое поле существует, если существует разность потенциалов.
  3. Единица напряженности: – Напряженность поля равна1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.

Эквипотенциальные поверхности.

ЭПП – поверхности равного потенциала.

– работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

– вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Потенциальная энергия взаимодействия зарядов.

Потенциал поля точечного заряда

Потенциал заряженного шара

а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара.

б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.

Перераспределение зарядов при контакте заряженных проводников.

Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.

Основные электрические величины и единицы их измерения

Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.

Величина Единица измерения в СИ Название электрической величины
q Кл — кулон заряд
R Ом – ом сопротивление
U В – вольт напряжение
I А – ампер Сила тока (электрический ток)
C Ф – фарад Емкость
L Гн — генри Индуктивность
sigma См — сименс Удельная электрическая проводимость
e0 8,85418781762039*10 -12 Ф/м Электрическая постоянная
φ В – вольт Потенциал точки электрического поля
P Вт – ватт Мощность активная
Q Вар – вольт-ампер-реактивный Мощность реактивная
S Ва – вольт-ампер Мощность полная
f Гц — герц Частота

Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.

Десятичный множитель Произношение Обозначение (русское/международное)
10 -30 куэкто q
10 -27 ронто r
10 -24 иокто и/y
10 -21 зепто з/z
10 -18 атто a
10 -15 фемто ф/f
10 -12 пико п/p
10 -9 нано н/n
10 -6 микро мк/μ
10 -3 милли м/m
10 -2 санти c
10 -1 деци д/d
10 1 дека да/da
10 2 гекто г/h
10 3 кило к/k
10 6 мега M
10 9 гига Г/G
10 12 тера T
10 15 пета П/P
10 18 экза Э/E
10 21 зета З/Z
10 24 йотта И/Y
10 27 ронна R
10 30 куэкка Q

Связь между напряжением и напряжённостью. Эквипотенциальные поверхности

В 1839 году немецкий учёный Карл Фридрих Гаусс предложил изображать электростатические поля с помощью эквипотенциальных поверхностей.

Эквипотенциальной называется воображаемая поверхность, в каждой точке которой потенциал одинаков.

Из определения эквипотенциальной поверхности следует, что разность потенциалов между двумя любыми её точками равна нулю.

Давайте с вами вспомним, что разностью потенциалов называют скалярную физическую величину, численно равную отношению работы сил поля по перемещению заряда между данными точками поля к величине этого заряда:

Из этого определения следует, что при переносе заряда вдоль эквипотенциальной поверхности работа полем не совершается (то есть она равна нулю).

Однако мы с вами знаем, что в общем случае работа сил электростатического поля пропорциональна переносимому заряду, модулю напряжённости поля, модулю перемещению и косинусу угла между направлением вектора электрической силы и вектора перемещения:

Но в записанной формуле значения заряда, модуля напряжённости и модуля перемещения всегда отличны от нуля. Поэтому должно равняться нулю значение косинуса угла альфа. А это значит, что угол альфа должен быть равен 90о. Отсюда следует, что линии напряжённости электростатического поля всегда перпендикулярны эквипотенциальным поверхностям.

Так, например, эквипотенциальные поверхности однородного электростатического поля представляют собой плоскости, перпендикулярные линиям напряжённости. А эквипотенциальные поверхности точечного заряда — это сферы, в центре которых расположен заряд.

Зная картину эквипотенциальных поверхностей, можно определить напряжённость поля в любой его точке. Например, пусть заряд перемещается с одной эквипотенциальной поверхности на другую, расстояние между которыми по нормали равно d

Мы уже знаем, что в этом случае работа, совершаемая электростатическим полем по перемещению заряда прямо пропорциональна величине этого заряда, напряжённости поля и модулю перемещения заряда:

С другой стороны, работа поля по перемещению заряда из одной его точки в другую пропорциональна значению переносимого заряда и разности потенциалов начальной и конечной точек:

Давайте почленно разделим первое уравнение для работы на второе:

А из полученного выражения выразим модуль напряжённости поля:

Полученная нами формула выражает связь между напряжённостью и разностью потенциалов (или напряжением) однородного электростатического поля.

На её основании и вводится единица напряжённости в СИ — вольт на метр (В/м).

1 В/м — это модуль напряжённости такого однородного электростатического поля, в котором напряжение между двумя точками, лежащими на одной силовой линии на расстоянии 1 м, составляет 1 В.

В заключении отметим, что при изучении электростатического поля мы очень часто сравнивали его с гравитационным полем Земли.

В таблице представлены соответствия между механическими и электрическими величинами этих полей. Обсудите их со своим соседом (или соседкой) по парте.

А теперь, для закрепления материала, решим с вами несколько несложных задач. Задача 1.

Напряжённость однородного электростатического поля, образованного двумя эквипотенциальными поверхностями, равна 10 кВ/м. Определите расстояние между этими поверхностями, если потенциал одной из них равен 200 В, а второй — – 150 В.

Задача 2.

Между двумя разноимённо заряженными параллельными пластинами, находящимися на расстоянии 1 см друг от друга, покоится отрицательно заряженная капелька масла, плотность которого 900 кг/м3. Определите модуль заряда капельки, если её радиус равен 8 нм, а напряжение между пластинами составляет 650 В.