Принцип работы ацп, сигма дельта ацп

Сигма-дельта АЦП

Для проведения большинства измерений часто не требуется АЦП со скоростью преобразования, которую даёт АЦП последовательного приближения, зато необходима большая разрешающая способность. Сигма-дельта АЦП могут обеспечивать разрешающую способность до 24 разрядов, но при этом уступают в скорости преобразования. Так, в сигма-дельта АЦП при 16 разрядах можно получить частоту дискретизации до 100К отсчетов/сек, а при 24 разрядах эта частота падает до 1К отсчетов/сек и менее, в зависимости от устройства.

Обычно сигма-дельта АЦП применяются в разнообразных системах сбора данных и в измерительном оборудовании (измерение давления, температуры, веса и т.п.), когда не требуется высокая частота дискретизации и необходимо разрешение более 16 разрядов.

Принцип работы сигма-дельта АЦП сложнее для понимания. Эта архитектура относится к классу интегрирующих АЦП. Но основная особенность сигма-дельта АЦП состоит в том, что частота следования выборок, при которых собственно и происходит анализ уровня напряжения измеряемого сигнала, существенно превышает частоту появления отсчетов на выходе АЦП (частоту дискретизации). Эта частота следования выборок называется частотой передискретизации. Так, сигма-дельта АЦП со скоростью преобразования 100К отсчетов/сек, в котором используется частота передискретизации в 128 раз больше, будет производить выборку значений входного аналогового сигнала с частотой 12.8М отсчетов/сек.

Блок-схема сигма-дельта АЦП первого порядка приведена на рис. 5. Аналоговый сигнал подается на интегратор, выходы которого подсоединены к компаратору, который в свою очередь присоединен к 1-разрядному ЦАП в петле обратной связи. Путем серии последовательных итераций интегратор, компаратор, ЦАП и сумматор дают поток последовательных битов, в котором содержится информация о величине входного напряжения.

Результирующая цифровая последовательность затем подается на фильтр нижних частот для подавления компонентов с частотами выше частоты Котельникова (она составляет половину частоты дискретизации АЦП). После удаления высокочастотных составляющих следующий узел — дециматор — прореживает данные. В рассматриваемом нами АЦП дециматор будет оставлять 1 бит из каждых полученных 128 в выходной цифровой последовательности.

Так как внутренний цифровой ФНЧ в сигма-дельта АЦП представляет собой неотъемлемую часть для осуществления процесса преобразования, время установления ФНЧ становится фактором, который необходимо учитывать при скачкообразном изменении входного сигнала. Например, при переключении входного мультиплексора или при переключении предела измерения прибора необходимо подождать, пока пройдут несколько отсчетов АЦП, и лишь потом считывать корректные выходные данные.

Дополнительным и очень важным достоинством сигма-дельта АЦП является то, что все его внутренние узлы могут быть выполнены интегральным способом на площади одного кремниевого кристалла. Это заметно снижает стоимость конечных устройств и повышает стабильность характеристик АЦП.

Что такое ацп в автодиагностике

Вот нашел полезную информацию по типовым параметрам. Сделана по сути как заметка для себя.

Для многих начинающих диагностов и простых автолюбителей, которым интересна тема диагностики будет полезна информация о типичных параметрах двигателей. Поскольку наиболее распространенные и простые в ремонте двигатели автомобилей ВАЗ, то и начнем именно с них

На что в первую очередь надо обратить внимание при анализе параметров работы двигателя? 1. Двигатель остановлен

1.1 Датчики температуры охлаждающей жидкости и воздуха (если есть). Проверяется температура на предмет соответствия показаний реальной температуре двигателя и воздуха. Проверку лучше производить с помощью бесконтактного термометра. К слову сказать, одни из самых надежных в системе впрыска двигателей ВАЗ – это датчики температуры.

1.2 Положение дроссельной заслонки (кроме систем с электронной педалью газа). Педаль газа отпущена – 0%, акселератор нажали – соответственно открытию дроссельной заслонки. Поиграли педалью газа, отпустили – должно также остаться 0%, ацп при этом с дпдз около 0,5В. Если угол открытия прыгает с 0 до 1-2%, то как правило это признак изношенного дпдз. Реже встречается неисправности в проводке датчика. При полностью нажатой педали газа некоторые блоки покажут 100% открытия (такие как январь 5.1 , январь 7.2), а другие как например Bosch MP 7.0 покажут только 75%. Это нормально.

1.3 Канал АЦП ДМРВ в режиме покоя: 0.996/1.016 В — нормально, до 1.035 В еще приемлемо, все что выше уже повод задуматься о замене датчика массового расхода воздуха. Системы впрыска, оснащенные обратной связью по датчику кислорода способны скорректировать до некоторой степени неверные показания ДМРВ, но всему есть предел, поэтому не стоит тянуть с заменой этого датчика, если он уже изношен.

2. Двигатель работает на холостом ходу.

2.1 Обороты холостого хода. Обычно это – 800 – 850 об/мин при полностью прогретом двигателе. Значение количества оборотов на холостом ходу зависят от температуры двигателя и задаются в программе управления двигателем.

2.2 Массовый расход воздуха. Для 8ми клапанных двигателей типичное значение составляет 8-10 кг/ч, для 16ти клапанных – 7 – 9,5 кг/час при полностью прогретом двигателе на холостом ходу. Для ЭБУ М73 эти значения несколько больше в связи с конструктивной особенностью.

2.3 Длительность времени впрыска. Для фазированного впрыска типичное значение составляет 3,3 – 4,1 мсек. Для одновременного – 2,1 – 2,4 мсек

Собственно не так важно само время впрыска, как его коррекция

2.4 Коэффициент коррекции времени впрыска. Зависит от множества факторов. Это тема для отдельной статьи, здесь только стоит упомянуть, что чем ближе к 1,000 тем лучше. Больше 1,000 – значит смесь дополнительно обогащается, меньше 1,000 значит обедняется.

2.5 Мультипликативная и аддитивная составляющая коррекции самообучением. Типичное значение мультипликатива 1 +/-0,2. Аддитив измеряется в процентах и должен быть на исправной системе не более +/- 5%.

2.6 При наличии признака работы двигателя в зоне регулировки по сигналу датчика кислорода последний должен рисовать красивую синусоиду от 0,1 до 0,8 В.

2.7 Цикловое наполнение и фактор нагрузки. Для «январей» типичный цикловой расход воздуха: 8ми клапанный двигатель 90 – 100 мг/такт, 16ти клапанный 75 -90 мг/такт. Для блоков управления Bosch 7.9.7 типичный фактор нагрузки 18 – 24 %.

Искажение и опасность недостаточной частоты выборки

Понимание характера сигналов и их максимально возможных частот является важной частью точных измерений. Предположим, мы хотим измерить выходной сигнал акселерометра. . Если мы ожидаем, что он будет испытывать колебания с максимальной частотой 100 Гц, мы должны установить частоту выборки по крайней мере в два раза больше (принцип Найквиста)

На практике же для получения качественного сигнала лучше устанавливать частоту выборки в 10 раз больше. Поэтому в этом случае мы устанавливаем частоту выборки 1000 Гц и выполняем измерение

Если мы ожидаем, что он будет испытывать колебания с максимальной частотой 100 Гц, мы должны установить частоту выборки по крайней мере в два раза больше (принцип Найквиста). На практике же для получения качественного сигнала лучше устанавливать частоту выборки в 10 раз больше. Поэтому в этом случае мы устанавливаем частоту выборки 1000 Гц и выполняем измерение.

Теоретически все как надо, но что, если частота сигнала при высокой амплитуде не увеличилась? Если это так, то наша система не сможет точно измерить или преобразовать сигнал. Кроме того, измеренные значения могут оказаться вовсе неверными.

Чтобы представить себе искажения из-за недостаточной частоты выборки, посмотрите старый фильм про проезжающий вагон, когда камеры еще снимали со скоростью 24 кадра в секунду: при разных скоростях это может выглядеть так, как будто колеса вращаются назад или же вообще не двигаются.

Это своего рода стробоскопический визуальный эффект, вызванный гармонической зависимостью между частотой вращения колеса и скоростью съемки камеры. Возможно, вам попадались видео, где кажется, что вертолет висит в воздухе, а его лопасти вообще не двигаются. Это происходит, если выдержка камеры была синхронизирована со скоростью вращения лопастей вертолета.

Это несущественно для кинематографии, но если мы занимаемся наукой, для нас невозможно серьезно полагать, что колеса автомобиля вращаются назад, а быстро вращающиеся лопасти вертолета не двигаются.

С точки зрения оцифровки сигналов напряжения с помощью АЦП важно, чтобы частота выборки была установлена соответствующим образом. Если задать слишком высокое значение, мы потратим впустую вычислительную мощность и в конечном итоге получим файлы данных, которые слишком велики и неудобочитаемы

Слишком низкая частота выборки, в свою очередь, порождает две проблемы:

  1. утрата важных компонентов динамического сигнала;
  2. получение ложных (искаженных) сигналов (если в системе отсутствует фильтрация-сглаживание).

Наглядный пример слишком низкой частоты выборки: исходный сигнал и результат (в черном цвете) — ложный сигнал (шум).

Предотвращение искажения

Решения Dewesoft предотвращают искажение благодаря использованию 24-битных АЦП со встроенными фильтрами сглаживания. Эти фильтры работают в несколько этапов. Один из этапов включает автоматическую настройку на частоту Найквиста (обычно около 40%) от выбранной частоты выборки. Таким образом, даже если вы выберете слишком низкую частоту выборки, ложные или «искаженные» сигналы не смогут испортить измерение.

Проверка ДМРВ мультиметром

1. Проверяем напряжение на колодке ДМРВ:

  1. Устанавливаем мультиметр в режим вольтметра.
  2. Снимаем разъем с проводами от ДМРВ (отщелкиваем фиксатор).
  3. Включаем зажигание.
  4. Подсоединяем «минусовой» щуп прибора к «массе» двигателя, а другой — к выводу №2 колодки (на колодке есть нумерация).
  5. Замеряем напряжение на выводе №4 колодки.

Напряжение на выводе №2 должно быть не меньше 12 В, а на выводе №4 около 5 В. Если показания прибора отличаются, значит разряжен аккумулятор, неисправна цепь питания или ЭБУ.

2. Проверяем ДМРВ Bosch на Лада Приора и Калина 1 (с артикулами: 0 280 218 004, 0 280 218 037, 0 280 218 116):

  1. Устанавливаем мультиметр в режим вольтметра. (предел измерения 2 В).
  2. Включаем зажигание.
  3. Подсоединяем «минусовой» щуп прибора к выводу №3, а другой — к выводу №1.

Сравните показания прибора с таблицей:

Напряжение, В Состояние ДМРВ
0.996…1.01 В Напряжение нового ДМРВ
1.01…1.02 Хорошее состояние датчика
1.02…1.03 Нормальное состояние датчика
1.03…1.04 Ресурс датчика подходит к концу
1.04…1.05 «Предсмертное» состояние, если негативных симптомов нет, то эксплуатируем дальше
1.05…и выше Пора заменить датчик

Проверка ДМРВ также показана на видео:

Еще один способ проверить ДМРВ — заменить его на заведомо исправный.

А вы сталкивались с неисправностью ДМРВ? Если датчик массового расхода воздуха оказался исправным, а в работе двигателя наблюдаются проблемы, читайте «Почему троит, дергается, плохо тянет двигатель» и «Почему плавают обороты».

Ключевые слова: датчики lada xray | датчики лада веста | датчики лада ларгус | датчики лада гранта | датчики лада калина | датчики лада приора | датчики 4х4 | ЭСУД Лада Веста | ЭСУД Lada XRAY | ЭСУД Лада Ларгус | ЭСУД Лада Гранта | ЭСУД Лада Калина | ЭСУД Лада Приора | ЭСУД 4х4 | датчики нива | эсуд нива | универсальная статья

Обнаружили ошибку? Выделите ее и нажмите Ctrl+Enter..

Tensa, Kayna, Forta — новые названия LADA

Рулевое управление Лада Веста (устройство, отзывы)

Как активировать индикатор давления в шинах на панели на Lada Vesta

Что делать если сливают бензин на Ниве 4х4 (ВАЗ 2121, 2131)

Алгоритм

Схема аналого-цифрового преобразователя последовательного приближения обычно состоит из четырех основных подсхем:

  1. Выборки и удержание цепи для получения входного напряжения V в .
  2. Аналоговый компаратор напряжения, который сравнивает V in с выходом внутреннего ЦАП и выводит результат сравнения в регистр последовательного приближения (SAR).
  3. Подсхема регистра последовательного приближения, предназначенная для подачи приблизительного цифрового кода V во внутренний ЦАП.
  4. Внутренний эталонный ЦАП, который, для сравнения с V ref , подает на компаратор аналоговое напряжение, равное выходному цифровому коду SAR в .

Анимация 4-битного АЦП последовательного приближения

Регистр последовательного приближения инициализируется так, чтобы старший бит (MSB) был равен 1 цифре . Этот код подается в ЦАП, который затем передает аналоговый эквивалент этого цифрового кода ( V ref / 2) в схему компаратора. для сравнения с дискретным входным напряжением. Если это аналоговое напряжение превышает V in , то компаратор заставляет SAR сбрасывать этот бит; в противном случае бит остается равным 1. Затем следующий бит устанавливается в 1, и выполняется тот же тест, продолжая этот двоичный поиск до тех пор, пока не будет протестирован каждый бит в SAR. Результирующий код представляет собой цифровую аппроксимацию дискретизированного входного напряжения и, наконец, выводится SAR в конце преобразования (EOC).

Математически пусть V in = xV ref , поэтому x in — это нормализованное входное напряжение. Задача состоит в том, чтобы приблизительно оцифровать x с точностью до 1/2 n . Алгоритм работает следующим образом:

  1. Начальное приближение x = 0.
  2. i- е приближение x i = x i −1s ( x i −1x ) / 2 i , где s ( x ) — знаковая функция (sign ( x ) = +1 для x ≥ 0, −1 для х <0). Используя математическую индукцию, следует, что | х пх | ≤ 1/2 п .

Как показано в приведенном выше алгоритме, АЦП последовательного приближения требует:

  1. Источник входного напряжения V в .
  2. Источник опорного напряжения V ref для нормализации входа.
  3. ЦАП для преобразования i- го приближения x i в напряжение.
  4. Компаратор для выполнения функции s ( x ix ) путем сравнения напряжения ЦАП с входным напряжением.
  5. Регистр для хранения выходных данных компаратора и применения x i −1s ( x i −1x ) / 2 i .

Срабатывание АЦП последовательного приближения при падении входного напряжения от 5 до 0 В. Итерации по оси x . Значение приближения по оси y .

Пример: Десять шагов преобразования аналогового входа в 10-битный цифровой с использованием последовательного приближения показаны здесь для всех напряжений от 5 В до 0 В с итерациями 0,1 В. Поскольку опорное напряжение равно 5 В, когда входное напряжение также равно 5 В, все биты установлены. При снижении напряжения до 4,9 В очищаются только некоторые из младших битов. MSB будет оставаться установленным до тех пор, пока входное напряжение не станет равным половине опорного напряжения, 2,5 В.

Двоичные веса, присвоенные каждому биту, начиная со старшего бита, равны 2,5, 1,25, 0,625, 0,3125, 0,15625, 0,078125, 0,0390625, 0,01953125, 0,009765625, 0,0048828125. Все это в сумме дает 4,9951171875, что означает двоичное 1111111111 или один младший бит меньше 5.

Когда аналоговый вход сравнивается с внутренним выходом ЦАП, он эффективно сравнивается с каждым из этих двоичных весов, начиная с 2,5 В и либо сохраняя его, либо очищая в результате. Затем путем добавления следующего веса к предыдущему результату, повторного сравнения и повторения до тех пор, пока все биты и их веса не будут сравнены с входными данными, находится конечный результат — двоичное число, представляющее аналоговый вход.

Варианты

Тип счетчика АЦП
Цифро-аналоговый преобразователь можно легко развернуть, чтобы обеспечить обратную функцию аналого-цифрового преобразования. Принцип заключается в корректировке входного кода ЦАП до тех пор, пока выходной сигнал ЦАП не окажется в пределах ± 1 ⁄ 2 младшего разряда от аналогового входа, который должен быть преобразован в двоично-цифровую форму.
Сервопривод АЦП слежения
Это улучшенная версия счетного АЦП. Схема состоит из счетчика, направленного вверх-вниз, с компаратором, контролирующим направление счета. Аналоговый выход ЦАП сравнивается с аналоговым входом. Если входной сигнал больше, чем выходной сигнал ЦАП, выход компаратора становится высоким, и счетчик начинает отсчет. АЦП слежения имеет то преимущество, что он прост. Однако недостатком является время, необходимое для стабилизации, поскольку новое значение преобразования прямо пропорционально скорости, с которой изменяется аналоговый сигнал.

Что такое битовое разрешение и почему оно важно?

Частота выборки, рассмотренная в предыдущем разделе, отображается осью времени (T или X) цифрового потока данных, а битовое разрешение — осью амплитуды (Y).

В эпоху зарождения сбора данных 8-битные АЦП были обычным явлением. На момент написания этой статьи 24-битные АЦП являются стандартом для большинства систем сбора данных, предназначенных для проведения динамических измерений, а 16 бит считаются минимальным разрешением для сигналов в целом. Существует ряд бюджетных систем, использующих 12-битные АЦП.

Поскольку каждый бит разрешения эффективно удваивает разрешение преобразования, системы с 24-битными АЦП обеспечивают 2^24 = 16 777 216. Таким образом входной одновольтный сигнал можно разделить на более чем 16 миллионов шагов по оси Y.

16 777 216 шагов для 24-битного АЦП значительно лучше, чем максимальные теоретические 65 656 шагов для 16-битного АЦП. Таким образом, чем выше разрешение, тем лучше форма и точность волновых функций. То же самое применимо и к оси времени.

Сравните 24-битное разрешение (оранжевый) и 16-битное (серый)

Что лучше? РПП или дельта-сигма?

Каждая технология АЦП имеет свои преимущества. И поскольку сферы применения слишком различны, нельзя сказать, что одна из них лучше другой в целом. Тем не менее, можно утверждать, что одна из них лучше другой по ряду критериев современных систем:

Критерий АЦП последовательного приближения Дельта-сигма (ΔΣ) АЦП
Требуется максимальное разрешение амплитудной оси (даже для медленных сигналов, таких как термопары) Обычно максимум 16 или 18 бит Предпочтительнее. Разрешение 24 бита фактически является современным стандартом среди дельта-сигма плат.
Необходимо использовать недорогую мультиплексную АЦ-плату

Единственный вариант. Можно мультиплексировать один АЦП РПП на нескольких каналах для создания недорогих систем сбора данных, если небольшие искажения не критичны.

Н/Д
Требуется максимально возможная частота выборки

Предпочтительнее. Существуют АЦП последовательного приближения для сбора данных с частотой выборки до 10 Мвыб./с.

Встроенный ЦОС-процессор ограничивает макс. частоту выборки дельта-сигма АЦП по сравнению с АЦП РПП.
Желательна фильтрация-сглаживание Дорого и сложно добавить в АЦП последовательного приближения. Предпочтительнее, поскольку фильтрация-сглаживание встроена в дельта-сигма АЦП.
Требуется максимальное соотношение «сигнал-шум»   Единственный вариант. Возможно достижение 160 дБ с помощью запатентованной технологии DualCoreADC компании Dewesoft.
В основном будут регистрироваться искусственные сигналы (например, прямоугольные) Лучше воспроизводит прямоугольные волны.  

Подробнее о различных типах АЦ-преобразователей:

Полное руководство по аналого-цифровым преобразователям

Термин: АЦП

Аналого-цифровой преобразователь (АЦП, Analog-to-digital converter, ADC) — устройство, преобразующее входной аналоговый сигнал в цифровой сигнал (в цифровой двоичный код). Для задач измерения значения сигнала в произвольный момент времени используют асинхронный режим работы с АЦП с жестко не привязанными по времени одиночными аналого-цифровыми преобразованиями. Для задач измерения функциональной зависимости изменения аналогового сигнала используют синхронный режим работы АЦП. Синхронный режим работы АЦП без пропусков данных на сколь угодно большом интервале времени называют также потоковым режимом. Синхронные АЦП, как правило, поддерживают покадровый принцип сбора данных, когда оцифрованные отчёты измерения образуют условные кадры с заданным количеством отсчётов, соответствующих заданным каналам измерения.

АЦП является неотъемлемой частью системы сбора данных.

Основные параметры АЦП:

  • Входной диапазон сигнала (диапазон измерения).
  • Частота преобразования – частота следования аналого-цифровых преобразований. В терминологии ЦОС частота преобразования АЦП называется частотой дискретизации сигнала в его цифровом представлении.
  • Период преобразования = [1/Гц] – величина, обратная частоте преобразования. В терминологии ЦОС период преобразования АЦП является периодом преобразования сигнала в его цифровом представлении. Для асинхронных АЦП нормируется время преобразования.
  • Полоса частот пропускания АЦП …. Это диапазон частот сигнала, который пропускает преобразователь по уровню сигнала -3 дБ.
  • Разрядность АЦП – количество N двоичных разрядов преобразователя, при этом количество уровней квантования сигнала в цифровом представлении АЦП равно 2N.
  • Соотношение сигнал/шум канала преобразования АЦП
  • Технология АЦП. Типичные представители: АЦП последовательного приближения, сигма-дельта АЦП.
  • Межканальное прохождение .

Верхняя частота полосы частот пропускания АЦП последовательного приближения может быть значительно больше частоты преобразования АЦП, а верхняя частота полосы частот пропускания сигма-дельта АЦП не превышает половины частота преобразования АЦП.

АЦП различаются типами входов. Чаще встречаются АЦП с входом напряжения, реже – с входом тока или входом заряда.

Многоканальные АЦП строятся по принципу независимых параллельных каналов АЦП или по принципу АЦП с коммутацией каналов.

АЦП с коммутацией каналов разделяются на АЦП с входным коммутатором каналов (у которых коммутационный процесс происходит непосредственно в измерительной цепи) и на АЦП с внутренним коммутатором, например, как у E20-10 (у которых коммутационный процесс происходит внутри и измерительную цепь не затрагивает).

Важной характеристикой АЦП является наличие гальванической изоляции входной сигнальной цепи. Для АЦП с входом напряжения важной характеристикой является тип входа напряжения: дифференциальный вход, вход с общей землёй

По потребительским свойствам все АЦП можно разделить на АЦП общего применения и специализированные АЦП. Для общего применения больше всего подходят АЦП, имеющие дифференциальные входы напряжения и гальваноразвязку (LTR11, LTR24-1). К специализированным АЦП можно отнести преобразователи, имеющие специальный вход специфического датчика (например, тензометрического – LTR212, LTR216, или ICP-датчика – LTR25), либо предназначенные для выполнения специальных функций (например, измерение частоты – LTR51). В то же время, у АЦП общего применения могут присутствовать специализированные режимы (каналы) измерения (например, измерение сопротивления модулем LTR114).

В особую группу можно выделить АЦП на основе преобразователей «напряжение-частота» для измерения постоянного или медленно меняющегося напряжения или тока (например, H-27x).

Каналы АЦП, дополненные интерфейсом с ПК, входят в состав систем сбора данных – примеры характерных реализаций были упомянуты выше.

( 2 оценки, среднее 4.5 из 5 )

Преобразование с контролем границ

Микроконтроллеры серии 1986ВЕ9х и 1901ВЦ1Т имеют в своём арсенале 2 независимых АЦП – ADC1, ADC2, которые входят в состав блока АЦП. Общая схема приведена на рисунке 1.

Основной идеей данного примера является использование контроля уровня входного сигнала. В начале примера зададим следующие переменные:

которые являются границами и за которыми МК будет следить. Изменять на входе напряжение будем с помощью подстроечного резистора, который согласно описанию платы, подключен к 7 каналу АЦП. Для этого необходимо установить перемычку на разъём XP6 в положение “TRIM” (рисунок 2).

Таким образом, в случае нарушения данных границ, то есть выхода за границы интервала от 0x800 до 0x900, МК возведёт флаг Flg REG AWOIFEN в регистре ADCx_STATUS.

Какой выбрать осциллограф для диагностики авто

Рассмотрим наиболее удобные и информативные приборы.

USB Autoscope Постоловского

На первом месте в рейтинге практиков стоит осциллограф Постоловского USB Autoscope IV. Имеет обширные диагностические функции.

Преимущества

  • Профессиональные скрипты от Андрея Шульгина.
  • Удобный интерфейс.
  • Широкий диапазон измерения от 6 до 300 вольт.
  • Обработка скриптов в автоматическом режиме.
  • Информативный скрипт эффективности по цилиндрам CSS, показывающий работу форсунок, системы зажигания.
  • Тест аккумулятора, генератора, стартера. Показывает неисправности в автоматическом режиме. Легкий процесс съема характеристик: достаточно иметь доступ к плюсовой или минусовой клеммам АКБ.
  • Тест давления в цилиндре. Показывает метки системы газораспределения, правильно ли стоят фазы. Выявляет провернутый задающий диск.

Полная документация по работе с прибором. Подробно описаны скрипты, схемы подключения. Есть видео инструкция на сайте производителя. Отзывчивая поддержка.

Мотодок 3

Вторым в списке рейтинга осциллографов для диагностики автомобиля любой марки стоит Мотодок 3. Имеет схожие характеристики.

Преимущества и недостатки

Скрипт Андрея Шульгина эффективности цилиндров. Есть некоторые недостатки по синхронизации с некоторыми автомобилями, имеющими слабый сигнал с датчика коленчатого вала

Но это сглаживается удобством и быстрой работой.
Подключения на любое расстояние по кабелю RJ 45.
Качество картинки при диагностике, что не маловажно при работе.
Подробная документация на сайте производителя.

Для примера приведены только два осциллографа для диагностики авто. Существуют и другие приборы: отличаются ценой, производителем, но принцип измерения одинаков. Самое главное иметь опыт в чтении осциллограмм к каждой марке автомобиля.

Микроконтроллер C8051F064

Кристалл C8051F064 представляет собой скоростной 8-разрядный микроконтроллер для совместной обработки аналоговых и цифровых сигналов с двумя интегрированными 16-разрядными АЦП последовательных приближений. Встроенные АЦП могут работать в однопроводном и дифференциальном режимах при максимальной производительности до 1М отсчетов/сек. На рис. 17 приведены основные характеристики АЦП микроконтроллера C8051F064. Для самостоятельной оценки возможностей C8051F064 по цифровой и аналоговой обработке данных можно воспользоваться недорогим оценочным комплектом C8051F064EK (рис. 18). Комплект содержит оценочную плату на базе C8051F064, USB-кабель, документацию, а также программное обеспечение для тестирования аналоговых динамических и статических характеристик интегрированного высокоточного 16-разрядного АЦП. VDD= 3.0 V, AV+ = 3.0 V, AVDD = 3.0 V, VREF = 2.50 V (REFBE=0), -40 to +85°, если не указано иначе

Параметры Условия Мин. Типичное Макс. Единицы измерения
Характеристики на постоянном токе
Разрядность 16 бит
Интегральная нелинейность Однопроводный ±0.75 ±2 LSB
Однопроводный ±0.5 ±1 LSB
Дифференциальная нелинейность Гарантированная монотонность ±+0.5 LSB
Аддитивная погрешность (смещение) 0.1 мВ
Мультипликативная погрешность 0.008 % F.S.
Температурный коэффициент усиления 0.5 ppm/°C
Динамические характеристики (Частота дискретизации 1 Msps, AVDD, AV+ = 3.3 В)
Сигнал/шум и искажения Fin = 10 кГц, однопроводный 86 дБ
Fin = 100 кГц, однопроводный 84 дБ
Fin = 10 кГц, дифференциальный 89 дБ
Fin = 100 кГц, дифференциальный 88 дБ
Общие гармонические искажения Fin = 10 кГц, однопроводный 96 дБ
Fin = 100 кГц, однопроводный 84 дБ
Fin = 10 кГц, дифференциальный 103 дБ
Fin = 100 кГц, дифференциальный 93 дБ
Динамический диапазон, свободный от гармоник Fin = 10 кГц, однопроводный 97 дБ
Fin = 100 кГц, однопроводный 88 дБ
Fin = 10 кГц, дифференциальный 104 дБ
Fin = 100 кГц, дифференциальный 99 дБ

Cписок литературы.

  1. https://www.wbc-europe.com/en/services/pim_application_guide.html
  2. www.silabs.com