Как запрограммировать преобразователь частоты? источник команд управления

Содержание

Для чего понадобился ПЧ

Ко мне обратился старый знакомый с обувного производства. Ему для предпродажной подготовки женских сапог требуется операция полировки, чтобы сапоги блестели.

Станок для полировки был в отвратительном состоянии, но его удалось привести в чувство, перебрав советские контакторы и подсоединив двигатели.

Тем не менее, для качественной обработки поверхности кожи было предпочтительно, чтобы линейная скорость полировки могла меняться. Кроме как ПЧ, другими способами это сделать невозможно. Замена шкивов не рассматривалась – скорость нужно менять оперативно и без инструментов.

В результате я установил преобразователь частоты Delta. Подключил и настроил его так, что можно менять обороты подключенного через него двигателя нажатием кнопок на панели управления. Дальше – подробности.

Как выбирать

Для производителей преобразователей частоты и другого электронного оборудования основным инструментом завоевания рынка является цена. С целью её уменьшения они создают приборы с минимальным набором функций. Соответственно, чем универсальнее конкретная модель, тем выше её цена. Для нас это имеет большое значение по той причине, что для эффективной и долгой работы двигателя может потребоваться ПЧ с определенными функциями

Давайте рассмотрим основные критерии, на которые следует обращать внимание

Управление

По способу управления частотные преобразователи делят на векторные и скалярные. Первые на сегодня встречаются гораздо чаще, однако имеют более высокую цену по сравнению со вторыми. Преимущество векторного управления заключается в высокой точности регулировки. Скалярное управление очень просто, оно может лишь удерживать соотношение выходного напряжения и частоты на заданной величине. Такой преобразователь целесообразно ставить на небольшой прибор без высокой нагрузки на двигатель, например, вентилятор.

Мощность

Безусловно, чем это значение выше, тем лучше. К слову, в данном вопросе цифры не столь важны

Обратите большее внимание на фирму-производителя – чем «родственнее» ваше оборудование друг к другу, тем более эффективно оно будет работать. Кроме того, использование нескольких преобразователей от одного бренда поддерживает принцип взаимозаменяемости и простоты обслуживания

Подумайте и наличии в вашем городе соответствующего сервисного центра.

Сетевое напряжение

В данном случае действует тот же принцип, что и в предыдущем разделе – чем шире рабочий диапазон напряжения, тем лучше для нас. Отечественные электросети, к сожалению, слабо знакомы с понятием «стандарт», поэтому лучше максимально обезопасить аппаратуру от вероятных перепадов. Падение напряжения едва ли приведет к серьезным последствиям (преобразователь, скорее всего, просто отключится), а вот большое повышение опасно – оно может привести поломке устройства в результате взрыва электролитических сетевых конденсаторов.

Диапазон частотной регулировки

В данном случае следует опираться исключительно на требования производства и конкретных устройств

Так, например, для такого оборудования, как шлифовальные машины важно значение максимальной частоты (от 1000 Гц). Стандартом нижнего предела считается соотношение 1 к 10 по отношению к верхнему

На практике чаще всего используются преобразователи с диапазоном от 10 до 100 Гц. Заметьте, что широким диапазоном регулировки обладают только модели преобразователей с векторным управлением.

Входы управления

Для передачи команд управления в преобразователях предназначены дискретные входы. С помощью них осуществляется запуск двигателя, остановка, торможение, обратное вращение и т.д. Для сигналов обратной связи, осуществляющих текущий контроль и настройку привода непосредственно во время работы, используются аналоговые входы. А цифровые используются для передачи сигналов с высокой частотой, генерируемых энкодерами (датчиками угла поворота).

Фактически, чем больше вводов, тем лучше, однако большое их количество не только делает сложной настройку прибора, но и повышает его стоимость.

Количество выходных сигналов

Дискретные выходы преобразователя необходимы для вывода сигналов, сообщающих о возникновении проблем, таких как, перегрев устройства, отклонение величины входного напряжения от нормы, авария, ошибка и т.п. Аналоговые выходы необходимы для передачи обратных связей в сложных системах. Принцип выбора тот же: ищите баланс между количеством сигналов и стоимость прибора.

Шина управления

В поиске подходящей шины управления поможет схема подключения преобразователя частоты – количество выходов и входов должно быть, как минимум, равным, но лучше купите шину с небольшим запасом – значительно облегчите себе дальнейшее усовершенствование устройства.

Перегрузочные способности

Нормой считается, если мощность частотного преобразователя выше мощности двигателя на 10-15%. Ток тоже должен быть немного выше номинала двигателя. Однако такой подбор «на глаз» рекомендуется только в случае, когда нет необходимой технической документации на двигатель. При ее наличии – тщательно ознакомьтесь с требованиями и подберите соответствующий преобразователь. Если важны ударные нагрузки, пиковый ток преобразователя должен быть больше указанного значения на 10%.

Настройка, создание программы и установка преобразователя

Настройка механизма

Эта процедура включает в себя настройки значений:

  • Источник команд управления.
  • Команда задания частоты от источника.

Другие настройки даны в подробном описании к документам на частотный преобразователь.

Настройка: источник команд управления

Под этими командами считают:

  • Пуск (RUN).
  • Стоп (STOP).
  • Вперед (FWD).
  • Назад (REV).

Управляющие данные из источников (по настройкам значения 2.01):

  • 2.01= 0 – Панель управляющая в корпусе (клавиатура) частотника (по умолчанию).
  • 2.01= 1 – Наружные сигналы, имеющие разрешение встроенной кнопки «STOP».
  • 2.01= 2 – Наружные сигналы, запрещающие встроенной кнопки «STOP».
  • 2.01= 3 – Вид программы передающих RS-485, разрешающий кнопки «STOP».
  • 2.01= 4 – Вид программы передающих RS-485, запрещающий кнопки «STOP».

У многих видов частотников имеются источники команд, переключающиеся по программируемому дискретному входу. В серии VFD-VE источник команд управления изменяется клавишей PU, у серии VFD-C2000 клавишей HAND на встроенной панели управления.

Для первоначальной настройки нужно определить основной источник сообщения управляющих команд. Если это будет встроенная управляющая панель, то настройка закончена.

Для подсоединения наружных сигналов сообщения можно выбирать два варианта: активная или неактивная клавиша STOP на панели.

Пульт управления

Частотный регулятор управляется с пульта (ПУ), который идет в комплекте с прибором. Для подключения ПУ частотника необходимо монтировать в удобном месте по схеме в инструкции пользователя. После монтажа рукоять ПУ ставится в нулевое положение и дается команда RUN. Следующий шаг – плавный поворот рукояти на минимальный градус:

  • Если после подключения частотного преобразователя к двигателю, последний вращается в правильную сторону, можно регулировать скорость. Здесь стоит разобраться, как этот показатель отображается на ПУ частотника. Есть 2 варианта – в оборотах/минуту или герцах. В первом случае показывается скорость вращательного движения электрического двигателя, во втором – питающее напряжение.
  • Если двигатель запустился в обратную сторону, включаем реверс на частотнике.

Первый пуск

После выполнения всех подключений необходимо еще раз проверить правильность сборки схемы и качество контактных соединений. Далее приступают к настройке преобразователя, пробному пуску привода.

  • Перед подачей напряжения на частотный преобразователь необходимо убедиться, что на устройстве отключена подача команд на двигатель, а запуск электрической машины никому не повредит.
  • При включении питания должны заработать встроенные в частотник вентиляторы охлаждения и загореться дисплей. На нем должно отображаться состояние “выключено” или “OFF”.
  • Далее требуется восстановить заводские настройки частотного регулятора. Для этого используется ввод соответствующей команды или нажатие клавиши Reset. Некоторые модели преобразователей затем следует перезагрузить.
  • Далее вводят все характеристики двигателя, фильтров и других вспомогательных элементов привода и осуществляют программирование частоты вращения, параметров регулирования и другие настройки. Некоторые модели частотников определяют фактические характеристики электродвигателей автоматически.
  • Далее осуществляется пробный пуск привода в ручном режиме. При этом проверяют правильность направления вращения вала и работу двигателя во всем интервале регулируемых скоростей. При необходимости вносят корректировки в предварительные настройки.
  • После чего производят окончательную настройку частотных преобразователей под регулируемый параметр и условия технологического процесса. Настройка преобразователей осуществляется с панели управления или с ПК. Эти операции должен производить специалист по автоматизации.
  • · Далее опробуют привод в тестовом режиме и вносят изменения в настройки, после чего проверяют корректность работы привода еще раз.

Функционал, схема подключения, порядок настройки разных типов и моделей частотных регуляторов могут существенно различаться. При выполнении монтажа и программирования частотников необходимо строго следовать общим правилам по монтажу электротехнического оборудования, инструкции и алгоритму настроек, рекомендованному производителем. Вносить изменения в ПО (программное обеспечение) и схемы подключения категорически запрещено.

Внимание! Фактические характеристики электродвигателей, долго находившихся в эксплуатации или побывавших в капитальном ремонте, могут отличаться от паспортных данных. Для частотно-регулируемого привода рекомендуется использовать новые электрические машины или частотные преобразователи, определяющие фактические параметры электродвигателей автоматически

Преобразователь частоты для вентиляции – управление вентиляторами частотником

Чтобы обеспечить эффективность использования энергии и длительную работу энергонасыщенных производственных вентиляторов применяют преобразователи частоты. Применение инверторов в систему вентиляции решает важные производственные проблемы:

  1. Снижение энергопотребления из-за уменьшения частоты вращения.
  2. Отсутствие динамического удара во время запуска вентилятора, плавный запуск.
  3. Специальная защищенность обмоток двигателя от влаги, функция многих инверторов.
  4. Обратный ход без механических перегрузок.
  5. Контроль за системой в автоматическом режиме, предупреждение аварий.
  6. Автоматика для рабочих параметров.
  7. Совмещение электрических приводов в одну систему предприятия.

Преобразователь частоты для вентилятора заводского исполнения продлевает срок службы механизма в два раза, увеличивает его работоспособность. Эффект от использования преобразователя появится в течение месяца по отчетам: уменьшение мощности из-за отсутствия дросселей и заслонок, улучшения технологии производства.

Автоматическое управление вентиляцией, отоплением и системой кондиционирования в жилых домах и производственных помещениях, щиты, контроллеры датчики, блоки управления приточной и вытяжной вентиляцией предлагает в Москве компания “Вентавтоматика”.

Настройка ПИД-регулятора

Для каждой системы настройка прибора проводится индивидуально, здесь мы рассмотрим основные рекомендации, общие для различных ситуаций:

1. Установить дифференциальную и интегральную составляющие в нуль. Задать максимальную скорость и наблюдать за реакцией.

2. Увеличить пропорциональную составляющую и повторить пункт первый. Продолжать эту процедуру до начала автоколебательного процесса.

3. Уменьшать эту составляющую до стабильности системы.

4. Выставить значение пропорциональной составляющей на 15 % ниже устойчивого.

5. Выставить ступенчато-максимальное значение скорости с помощью изменения интегральной составляющей.

6. Обычно дифференциальный регулятор в настройке не нуждается.

7. Проверить стабильность системы.

Техника безопасности

При установке преобразователей и настройке привода обязательно соблюдать ряд общих требований:

Большинство моделей частотных регуляторов поддерживают множество режимов работы и настроек. Их можно адаптировать для использования в различных промышленных установках, комплексных системах автоматизации. Например, для синхронизации и одновременного регулирования производительности нагнетательных вентиляторов котельных, вытяжных установок систем удаления продуктов сгорания.

Подключение, тестирование и программирование частотных регуляторов должно выполняться специалистами, имеющими допуск к электрооборудованию, профильное образование и прошедшими инструктаж по ТБ.

Источник

Частотник для трехфазного электродвигателя

Трехфазные асинхронные электродвигатели – самые распространенные электрические машины. Их отличают небольшие габариты при значительной мощности, простота конструкции, низкая стоимость. До появления частотных регуляторов применение этих устройств ограничивали высокие пусковые токи, сложные схемы регулирования скорости вращения ротора. Ранее для этого применялись:

  • Механические устройства (муфты, редукторы и т.д.).
  • Электрические схемы, изменяющие величину питающего напряжения.

Такие методы не обеспечивали точность, жесткие механические характеристики электродвигателя во всем диапазоне регулирования вызывали значительные потери мощности. В качестве электропривода ответственного оборудования применялись электрические машины постоянного тока, а также двигатели с фазным ротором.

С появлением высоковольтных транзисторов и тиристоров стал возможным серийный выпуск частотных преобразователей для асинхронных электродвигателей мощностью до десятков МВт. Частотно-регулируемый электропривод отвечает всем современным требованиям:

  • Максимально возможный К.П.Д. (свыше 90%).
  • Надежность и простота управления.
  • Высокая ремонтопригодность.
  • Широкий диапазон и плавное регулирование скорости вращения, углового положения вала, разгона и торможения, момента силы и других параметров.
  • Высокая энергоэффективность.
  • Изменение характеристик в зависимости от фактической нагрузки на валу.
  • Помехоустойчивость и быстрое устранение ошибок.
  • Снижение тока при запуске до 100-200% от номинального.

Применение преобразователей частоты позволяет заменить дорогостоящие электромоторы переменного тока с фазным ротором и двигатели постоянного тока на дешевые асинхронные машины с короткозамкнутым ротором.

ПЧ — органы управления

Преобразователи «Веспер» оборудованы панелью с информационным ЖК-дисплеем и набором для управления и проведения пусконаладки. В зависимости от модели ПЧ, дисплеи могут отличаться количеством строчек. На дисплей прибора можно выводить данные о текущем состоянии параметров.

Для большего удобства и реализации более сложных систем управления через аналоговые и дискретные (релейные, транзисторные) выходы можно подключить выносной ДУ-пульт. А через линию интерфейсной связи — ПК (ноутбук или стационарный).

Ноутбук можно использовать в режиме осциллографа — для наблюдения за изменениями параметральных величин в реальном времени. В таком случае также необходимо заранее подготовить место с изолированной поверхностью и предусмотреть возможность работы ноутбука от батареи.

Как подключить частотник к асинхронному двигателю?

Используемый для управления частотой напряжения преобразователь зачастую используется для энергоснабжения трёхфазных двигателей.  С помощью преобразователя частоты также возможно обеспечить присоединение такого устройства к однофазной сети, предотвратив снижение его рабочей мощности. Этим они значимо выигрывают у конденсаторов, которые при подключении не могут сохранить исходный уровень мощности. Подробней про применение частотника для трехфазника- смотрите здесь.

При подключении частотного преобразователя следует предварительно разместить автоматический выключатель, функционирующий от тока сети по значению равного номинальному (или наиболее близкого к таковому) уровню потребления тока в двигателе. Если используется частотник трёхфазного типа, то соответственно следует воспользоваться трёхфазным автоматом с общим рычагом. Такой вариант обеспечивает быстрое обесточивание всех фаз сразу при замыкании на одной из них.

В случае же, если для частотного преобразователя свойственно однофазное питание, то следует применить одинарный автомат, который подходит для работы с утроенным однофазным током.

Однако, при любых обстоятельствах установку частотного преобразователя нельзя осуществлять через включение автомата в месте разрыва нулевых или заземляющих проводов. В таких условиях подразумевается только прямое включение автомата.

Дальнейшую настройку преобразователя частоты осуществляют через соединение с контактами электрического двигателя. Используются при этом фазные провода. Но предварительно производится соединение обмоток электрического двигателя по схеме «звезда» или «треугольник».

Работа по той или иной схеме базируется на том, каков тип преобразователя частоты и характер производимого им напряжения.

По стандарту корпус каждого двигателя имеет отметку с двумя значениями, которым может равняться напряжение. Если частотник продуцирует напряжение соответствующее нижней границы, то соединение осуществляется по типу «треугольник». В остальных случаях для использования принцип «звезды».

Месторасположение управляющего пульта, обязательно прилагающегося при покупке частотного преобразователя, следует подбирать тщательно, чтобы обеспечить наибольшее удобство пользования.

Подключения пульта управления осуществляется по схеме обозначенной в прилагаемой к преобразователю инструкции. После рукоятка фиксируется на нулевом уровне, и автомат включается. В этот момент должно наблюдаться свечение светового индикатора.

Для использования частотного преобразователя, следует надавить кнопку «RUN» (она уже запрограммирована надлежащим образом). Далее делается лёгкий поворот рукоятки, провоцирующий старт постепенного вращения электрического двигателя. Если вращение осуществляется в направлении, противоположном необходимому, то следует нажать реверс. После при помощи рукоятки настраивается требуемая частота вращения устройства. При этом следует учитывать, что на корпусе пульта управления зачастую прописаны не уровни частоты вращения двигателя, выражаемые в оборотах в минуту, а частоты, которую имеет питающее напряжение, выражаемое в герцах.

Чтобы ограничить пусковой ток и снизить пусковой момент в момент пуска асинхронного двигателя с уровнем мощности больше 5000Вт, используется подключение типа «звезда-треугольник». До достижения номинала скорости задействуется схема подключения частотного преобразователя «звезда», а после питание осуществляется по схеме «треугольник». В момент переключения уровень пускового тока уменьшается в три раза относительно прямого пуска. При начале работы по второй схеме до момента разгона двигателей ток возрастёт до уровня прямого пуска. Такой варианты наиболее актуален для, имеющих большую маховую массу, позволяя после разгона сбросить нагрузку.

Логично, что использование такой схемы возможно только с двигателями, рассчитанными на подключения обоих типов.

Проведение работы по схеме «звезда-треугольник» всегда чревато резкими скачками уровня тока в противовес плавному нарастанию в условиях прямого пуска. В момент смены соединения скорость резко снижается и увеличить её можно только увеличив силу тока.

Частотный преобразователь.Как подключить трёхфазный электродвигатель от 220В.

Watch this video on YouTube

Необходимые материалы для самодельного частотника

Изготовить частотник своими руками практически возможно. Для этого нужно определиться с основными деталями, приобрести их, изучить схему сборки. Затем приступить к процессу изготовления.

В начале работы необходимо запастись двумя платами. На одной из плат необходимо установить микроконтроллер и индикатор. На второй — транзисторы, диодный мост, входные клеммы, блок питания и драйвер. Между собой платы необходимо соединять гибким проводом.

Питания будет производиться с помощью импульсного блока.

Для управления маломощным мотором достаточно будет установки токового шунта и подключённого к нему усилителя DA-1. Сечение жил токового шунта составляет полмиллиметра. Для двигателей с более высокой мощностью установки токового шунта недостаточно и поэтому необходимо устанавливать трансформатор.

При мощности двигателей более 0,4 КВт необходима установка термодатчиков.

Микросхема IL300 с линейной развязкой позволяет контролировать параметры электродвигателя.

Оптроны типа ОС2–4 необходимы для дубляжа управляющих кнопок.

Обновление программы

При появлении новых опций программисты Danfoss Drives выпускают очередную версию МСT 10. В частности, версия 4.0 получила ряд дополнительных инструментов. Например, мотор-плагин упрощает ввод в эксплуатацию электродвигателя в автономном режиме. В нем зашиты четыре набора параметров на разные типы электроприводов – синхронные и асинхронные, такие как мощность, напряжение, частота, сила тока и другие характеристики. Новинка дает быструю подсказку, подходит ли выбранный преобразователь частоты к существующему двигателю.

Удобный интерфейс получил статус-плагин, который работает в режиме онлайн. На верхней панели экрана отображены семь вкладок, чтобы точно оценивать статус ошибок и вести журнал технического обслуживания. После настроек на экране частотного преобразователя появится значок «гаечный ключ».

Способы контроля

Многие люди, работающие в сфере автоматизации, но не сталкивающиеся вплотную с процессами разработки и внедрения систем электроприводов полагают, что управление электродвигателем состоит из последовательности команд, вводимых с помощью интерфейса от пульта управления или ПК. Да, с точки зрения общей иерархии управления автоматизированной системой это правильно, однако есть еще способы управления самим электродвигателем. Именно эти способы и будут оказывать максимальное влияние на производительность всей системы.

Для асинхронных электродвигателей, подключенных к преобразователю частоты, существует четыре основных способа управления:

  • U/f – вольт на герц;
  • U/f с энкодером;
  • Векторное управление с разомкнутым контуром;
  • Векторное управление с замкнутым контуром;

Все четыре метода используют широтно-импульсную модуляцию ШИМ, которая изменяет ширину фиксированного сигнала путем изменения длительности импульсов для создания аналогового сигнала.

Широтно-импульсная модуляция применяется к преобразователю частоты путем использования фиксированного напряжения шины постоянного тока. Транзисторы с изолированным затвором (IGBT) путем быстрого открытия и закрытия (правильней сказать коммутации) генерируют выходные импульсы. Варьируя ширину этих импульсов на выходе получают «синусоиду» нужной частоты. Даже если форма выходного напряжения транзисторов импульсная, то ток все равно получается в виде синусоиды, так как электродвигатель имеет индуктивность, которая влияет на форму тока. Все методы управления основываются на ШИМ модуляции. Разница между методами управления заключается лишь в методе вычисления подаваемого напряжения на электродвигатель.

В данном случае несущая частота (показана красным) представляет собой максимальную частоту коммутации транзисторов. Несущая частота для инверторов, как правило, лежит в пределах 2 кГц – 15 кГц. Опорная частота (показана синим) представляет собой сигнал задания выходной частоты. Для инверторов применимых в обычных системах электроприводов, как правило, лежит в пределах 0 Гц – 60 Гц. При накладывании сигналов двух частот друг на друга, будет выдаваться сигнал открывания транзистора (обозначен черным цветом), который подводит силовое напряжение к электродвигателю.

Функциональная схема подключения частотного преобразователя

При ее использовании получается произвести достаточно хорошую синусоидальную ШИМ с возможностью изменять напряжение. Крутим мотор-колесо коляски рукой, нажимаем кнопку «Пуск». Можно делать копии содержимого данной папки в родительской, переименовывать её и одноименные файлы с расширениями ewp, ewd, dep.

Обычный инвертор тока промежуточной цепи изменяющегося напряжения.


Способ ограничения зависит от вида модуляции. А так же функцию обработки прерывания таймера.


А так же функцию обработки прерывания таймера. Они обеспечивают широкий диапазон регулировки частот, обладают высоким КПД и другими отличными техническими характеристиками. Справа от моста изображены операционные усилители нормирующие сигналы датчиков тока.


Преимуществом управляемых выпрямителей является их способность возвращать энергию в питающую сеть. Имеются три основных варианта задания режимов коммутации в инверторе с управлением посредством широтно-импульсной модуляции.


При этом амплитуда и частота напряжения на выходе преобразователя регулируются по скольжению и нагрузочному току, но без использования обратных связей по скорости вращения ротора. ПОДКЛЮЧЕНИЕ ЧАСТОТНИКА к однофазному асинхронному двигателю.

Рекомендации по выбору преобразователей частоты для управления асинхронными электродвигателями

Для обеспечения надёжной и долговременной эксплуатации преобразователя частоты необходимо правильно подбирать оборудование.

Исходная информация: тип нагрузки, номинальный ток двигателя, напряжение питания, условия окружающей среды, требования по ЭМС, необходимость быстрого торможения, точность поддержания скорости/момента, способ управления преобразователем.

Результат: тип преобразователя частоты, например, VACON NXS 00455 F2H1 SSS A1A2000000.

Выбор типа нагрузки.

Наиболее распространены 2 типа нагрузок:

  • с постоянным нагрузочным моментом («ПМ») в рабочем диапазоне скоростей (конвейеры, лифты, экструдеры и т.п.). Для данного типа нагрузки характерны перегрузки до 10…50%.
  • с квадратичным нагрузочным моментом («КМ») в рабочем диапазоне скоростей (насосы, вентиляторы, лопастные компрессоры). Для данного типа агрегатов характерны перегрузки не более 10%. Благодаря тому, что в агрегатах с квадратичным нагрузочным моментом не бывает перегрузок, на данные агрегаты допускается установка ПЧ более низкого типономинала.

Выбор мощности преобразователя частоты.

Сначала определяется номинальный выходной ток ПЧ. Он должен быть равен, либо может превышать номинальный ток двигателя. В случае, если преобразователь частоты рассчитан для асинхронного двигателя, эксплуатируемого многие годы, то рекомендуется выбирать ПЧ с заведомо завышенным выходным током.

Условия окружающей среды.

Наличие пыли и влажность определяют степень защиты (IP) преобразователя:

  • IP00
  • IP20
  • IP21
  • IP54

В случае эксплуатации преобразователей частоты в условиях повышенной влажности и агрессивной среды, для дополнительной защиты привода компания Vacon рекомендует применять лакированные платы.

Требования по электромагнитной совместимости (ЭМС).

Все преобразователи частоты компании Vacon изготавливаются со встроенным фильтром ЭМС, что позволяет соответствовать всем мировым и российским требованиям и стандартам по электромагнитной совместимости для промышленного применения.

Необходимость быстрого торможения.

Определяется наличием или отсутствием тормозного прерывателя и тормозного резистора. Для снижения скорости вращения электродвигателя до нуля используются три способа: торможение самовыбегом, сброс энергии на тормозной резистор и возврат энергии торможения в сеть (рекуперация).

Для того, чтобы осуществить торможение более быстрым способом, понадобится тормозной модуль («чоппер») и тормозной резистор, на котором сбрасывается энергия. Тормозной модуль может быть уже встроен в ПЧ или поставляется отдельно.

7. Точность поддержания скорости/момента.

Определяется типом модуля управления ПЧ:

  • для стандартных применений могут быть использованы преобразователи частоты серий VACON 10, VACON 20, NX(RV)L и NX(RV)S
  • для насосно — вентиляторных применений специальный привод премиум класса VACON 100 HVAC.
  • для увеличения точности поддержания момента и скорости на валу двигателя в реализовано векторное управление, позволяющее работать с полным моментом двигателя в области нулевых частот, поддерживать скорость при переменной нагрузке без датчиков обратной связи, точно контролировать момент на валу двигателя.
  • для высокоточных применений (станки, краны, упаковочные линии и т.п.) используется преобразователь частоты серии NX(RV)P с датчиком обратной связи по скорости.

Способ управления двигателем.

Определяется типом и количеством интерфейсных плат преобразователя.

Современные преобразователи могут работать в режимах «внешнего управления», когда преобразователь управляется внешними сигналами, «управления с пульта», «комбинированного управления» и «управления по последовательному интерфейсу». В современной технике наиболее распространены два управляющих (задающих) сигнала: 0-10 В и 4-20 В.

Преобразователь частоты сам способен управлять скоростью вращения. Для этого в ПЧ встроен ПИД-регулятор, а также существует возможность подключения датчика обратной связи какого-либо технологического параметра.

Пульт управления

Частотный регулятор управляется с пульта (ПУ), который идет в комплекте с прибором. Для подключения ПУ частотника необходимо монтировать в удобном месте по схеме в инструкции пользователя. После монтажа рукоять ПУ ставится в нулевое положение и дается команда RUN. Следующий шаг – плавный поворот рукояти на минимальный градус:

  • Если после подключения частотного преобразователя к двигателю, последний вращается в правильную сторону, можно регулировать скорость. Здесь стоит разобраться, как этот показатель отображается на ПУ частотника. Есть 2 варианта – в оборотах/минуту или герцах. В первом случае показывается скорость вращательного движения электрического двигателя, во втором – питающее напряжение.
  • Если двигатель запустился в обратную сторону, включаем реверс на частотнике.

Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко называются инверторами. Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.