Выбираем цифро-аналоговые преобразователи (цап) с лучшим звуком

Содержание

Театр начинается с вешалки?

Театр, может быть, начинается и с вешалки, а конвертер точно начинается с коммутации. У вас с ней как вообще? Если круче CD-транспорта в качестве источника не предвидится, то выбор предопределен. В любом ЦАПе по умолчанию стоят и оптика, и коаксиальный входы, так что вам остается только определиться, где лучше будет звучать ваша фонограмма. Как правило, все выбирают коаксиал, но иногда полная гальваническая развязка оптической связи оказывается полезнее. Но как быть, если вы нацелились на хайрезы?

Что TosLink, что S/PDIF даже по балансному разъему XLR все равно не в состоянии передать РСМ аудиосигнал свыше 24 бит/192 кГц. Существует еще протокол I2S, но пока он встречается довольно редко. Поэтому если вы интересуетесь еще более высокими материями, включая формат DSD, то следует надеяться на USB-интерфейс. Вот через него научились проталкивать 32 бит/768 кГц и DSD512. И здесь получается любопытный анекдот, как в той истории про часовой магазин, где непонятно, который все-таки час и лишь одни поломанные дважды в сутки правильное время показывают. В отличие от более-менее предсказуемых старых вариантов, широта и качество реализации USB-входа оказываются несколько гадательными.

Примерно так выглядит полный набор цифровых входов у серьезного ЦАП. Здесь приведено схематическое изображение модели Mytek Manhattan, у которой помимо стандартного набора присутствуют разъемы для внешнего сигнала синхронизации и Firewire

Прошло более десяти лет со времени первых конвертеров, оснащенных USB-входами, а ведь до сих пор некоторые производители, как ни в чем ни бывало, ставят чип на базе старенького Burr-Brown 2704, который не может работать выше 16 бит / 48 кГц!

Но вообще ответственные разработчики обычно стараются использовать USB-приёмники от компании XMOS, которой тоже, кстати, едва исполнилось десять лет. Сила микроконтроллеров XMOS, как это ни похабно звучит, именно в ядрах, которых так много, что под конкретную задачу можно настроить много чего — и число каналов, и асинхронную передачу, и аудио самого высшего полета. Если вы не уверены в добросовестном USB-входе своего ЦАПа, приобретайте USB-S/PDIF конвертеры, которые, как правило, уже заточены строго под эту задачу.

xCORE-AUDIO Hi-Res 2 — платформа с полной поддержкой аудио 32 бит / 384 кГц и DSD 5,6 Мгц

Итак, перечислим основных производителей цифроаналоговых чипов, которые используются в современных конвертерах. Многие слухачи с опытом утверждают, что именно эти «сердечки» задают темп и тембр вашему ЦАПу.

Типы ЦАП (цифро аналоговый преобразователь)

Наиболее общие типы электронных ЦАП:

широтно-импульсный модулятор— простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром низких частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi (класс аппаратуры) аудиотехнике;
ЦАП передискретизации, такие как дельта-сигма ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным

На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра высоких частот для шума квантования

Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность — до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот и улучшается подавление шума квантования;
взвешивающий ЦАП, в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов. По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;
цепная R-2R схемаявляется вариацией взвешивающего ЦАП. В R-2R ЦАП взвешенные значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R. Это позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. Недостатком метода является более низкая скорость вследствие паразитной емкости;
сегментный ЦАПсодержит по одному источнику тока или резистору на каждое возможное значение выходного сигнала. Так, например, восьмибитный ЦАП этого типа содержит 255 сегментов, а 16-битный — 65535. Теоретически, сегментные ЦАП имеют самое высокое быстродействие, так как для преобразования достаточно замкнуть один ключ, соответствующий входному коду;
гибридные ЦАПиспользуют комбинацию перечисленных выше способов. Большинство микросхем ЦАП относится к этому типу; выбор конкретного набора способов является компромиссом между быстродействием, точностью и стоимостью ЦАП.

Схема цифро-аналогового преобразователя.

5.4. Интеллектуальные датчики

В настоящее время все чаще применяют «интеллектуальные датчики». Интеллектуальный датчик имеет встроенный микропроцессор, выполняющий некоторую обработку сигнала, и поэтому может давать более точные показания благодаря применению числовых вычислений для компенсации нелинейностей чувствительного элемента или температурной зависимости. В круг возможностей некоторых приборов входит измерение нескольких параметров и пересчет их в одно измерение (например, объемный расход, температуру и давление – в массовый расход, т.н. многопараметрические датчики), функции встроенной диагностики, автоматическая калибровка.

Некоторые интеллектуальные приборы (например, семейство приборов Rosemount SMART FAMILY) позволяют посылать в канал передачи аналоговый сигнал, и цифровой. В случае одновременной трансляции обоих видов сигналов, аналоговый используется для трансляции значения измеренного параметра, а цифровой – для функций настройки, калибровки, а также позволяет считывать измеряемый параметр. d = 0,075%. Эти устройства обеспечивают преимущества цифровой связи и, в то же время, сохраняют совместимость и надежность аналоговых средств, которые требуются для существующих систем.

Считывание измеряемого параметра в цифровой форме повышает точность за счет ограничений операций цифро-аналогового и аналого-цифрового преобразований сигнала 4..20 мА. Но цифровой способ измерения вносит задержку в измерения (время, затраченное на последовательную передачу информационной посылки), которая может быть неприемлема для управления быстродействующими контурами.

Цифровой датчик позволяет хранить последовательную информацию о процессе (тэг, описатель позиции измерения, диапазон калибровки, единицы измерения), записи о процедурах его обслуживания и т.п., считываемой по запросу. Многопараметрические приборы содержат базу данных по физическим свойствам измеряемых жидкостей и газов. Для сильно распределенных объектов интеллектуальному датчику нет альтернативы. благодаря встроенному интерфейсу с промышленной локальной сетью.

В класс интеллектуальных цифровых устройств входят и специализированные микросхемы, например контроллеры для работы с термопарами.

Фирма Analog Device выпускает AD596/AD597 – монолитные контроллеры, оптимизированные для использования в условиях любых температур в различных случаях. В них осуществляется компенсация напряжения холодного спая и усиление сигналов с J- и К-термопары таким образом, чтобы получить сигнал, пропорциональный температуре. Схемы могут быть подстроены так, чтобы обеспечить выходное напряжение 10 мВ/°С непосредственно от термопар типа J или К. Каждый из чипов размещен в металлическом корпусе с десятью выводами и настроен на работу при температуре окружающей среды от 25°С до 100°С.

AD596 усиливает сигналы термопары, работающей в температурном диапазоне от 200°С до +760°С, рекомендованном для термопар типа J, в то время как AD597 работает в диапазоне от -200°С до +1250°С (диапазон термопар типа К). Усилители откалиброваны с точностью ±4°С при температуре окружающей среды 60°С и характеризуются температурной стабильностью 0,05°С/°С при изменении температуры окружающей среды в пределах от 25°С до 100°С.

Все вышеописанные усилители не в состоянии компенсировать нелинейность термопары: они способны лишь корректировать и усиливать сигнал с термопарного выхода. АЦП с высокой разрешающей способностью, входящие в семейство AD77xx, могут использоваться для прямой оцифровки сигнала с выхода термопары, без предварительного усиления. Преобразование и линеаризацию осуществляет микроконтроллер. Два мультиплексируемых входа АЦП используются для прямой оцифровки сигнала с термопары и с теплового датчика, находящегося в контакте с ее холодным спаем. Вход PGA (программируемого усилителя) программируется на усиление от 1 до 128, и разрешающая способность АЦП лежит в пределах от 16 до 22 бит в зависимости от того, какая из микросхем выбрана пользователем. Микроконтроллер осуществляет как компенсацию напряжения холодного спая, так и линеаризацию характеристики.

Как выбрать цифро-аналоговый преобразователь?

Какой ЦАП лучше купить? Довольно сложный, на первый взгляд, вопрос легко разрешается, если следовать приведенным ниже рекомендациям. Перед совершением покупки необходимо четко определиться с назначением нового устройства и ожиданиями от него. Стоит ли задумываться о приобретении профессионального преобразователя, не имея столь же качественной аудиосистемы? Имеет ли смысл покупать бюджетный конвертер и ожидать от него качественного звучания? Современный рынок предлагает большое разнообразие для подбора необходимой модели с различными характеристиками и стоимостью. Критерии выбора достаточно просты

На что нужно обратить внимание в первую очередь:

  1. Число и вид цифровых входов.

Данный параметр напрямую зависит от устройств, которые планируются к использованию в качестве источника звука. Современные преобразователи чаще всего подключаются к компьютеру с помощью USB-порта. Кроме этого используются оптические и электрические (коаксиальные) типы соединения. В профессиональных устройствах также применяют «продвинутый» вариант подключения AES/EBU с использованием балансных кабелей, не подвергающимся наводкам внешней среды. Последнее время все чаще появляются модели с возможностью подключения к внешним устройствам при помощи Bluetooth или Wi-Fi.

  1. Оптимальной разрядность и частота дискретизации

Эти характеристики определяют качество воспроизведения, т. к. отвечают за точность преобразования сигнала. Разрядность — показатель числа уровней сигнала на выходе преобразователя. Для аудиозаписей на CD-дисках разрядность составляет 16 бит, а у звука высокого разрешения (Hi-Res) – 24 бит и выше. Частота дискретизации – число отчетов в период времени при оцифровке. Для звуковой дорожки CD-диска этот показатель составляет 44,1 кГц, DVD – 48 кГц, Hi-Res – 96 кГц или 192 кГц и т.д.

  1. Вид аналоговых выходов

Тип выходов определяется входами акустической системы. Например для подключения к аудиосистеме с симметричными входами, необходимо наличие у ЦАП таких выходов. Большинство конвертеров оснащено одним или несколькими выходами для наушников (jack или mini-jack).

  1. Размеры

Габариты устройства, прежде всего, зависят от его предназначения. Последнее время набирают популярность модели с компактными размерами. Такие девайсы легко умещаются в кармане и чаще всего используются для преобразования звукового сигнала со смартфона или планшета. Для особо требовательных ценителей качественной музыки больше подойдут более объемные стационарные варианты с расширенным функционалом.

  1. Дополнительные функции

Среди дополнительных функций, которые могут быть весьма востребованными стоит выделить:

  • наличие аналоговых входов и возможность регулировки исходящего сигнала (использование устройства в режиме предусилителя);
  • наличие лампового выхода;
  • наличие выхода для наушников;
  • возможность подключения к устройству при помощи беспроводных сетей;
  • управление с помощью пульта и т.д.
  1. Стоимость устройства

В данном случае предельная цена устройства определяется не только финансовыми возможностями покупателя, но и тем, какая звуковая аппаратура и источник цифрового сигнала будут использоваться. Нет смысла покупать дорогой ЦАП в случае использования слабенькой аудиосистемы. При этом не следует экономить, если в дальнейшем планируется ее замена или модернизация до более качественного уровня.

  1. Влияние бренда

Преобразователь какой фирмы лучше? По мнению покупателей, лучше ориентироваться на проверенные годами бренды. Среди признанных мировых лидеров в производстве цифро-аналоговых конвертеров — японская компания Teac, британская Cambridge Audio, австрийская Pro-Ject и многие другие. Это те производители, которые смогли завоевать популярность по всему миру и наверняка не позволят потенциальному покупателю разочароваться в своей продукции.

  1. Прослушивание

Крайне важно перед покупкой в живую услышать потенциальное приобретение. Если такая возможность отсутствует, то обязательно необходимо ознакомится с отзывами реальных владельцев подобных устройств или экспертов

Ниже представлен рейтинг популярных моделей цифро-аналоговых преобразователей с описанием их технических характеристик, а также достоинств и недостатков.

ЦАП с передискретизацией (дельта-сигма ЦАП)

ЦАП передискретизации, такие, как дельта-сигма-ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным

На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования.

Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчётов в секунду, разрядность — до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот, и улучшается подавление шума квантования;

iFi xDSD

Цена: 28 900 рублей

По качеству преобразования звука iFi xDSD и его ближайший конкурент Chord Mojo идут совсем рядом, однако по ряду причин первое место в нашей подборке занимает xDSD.

Это портативный ЦАП и усилитель в одном флаконе. Выглядит он очень стильно. Ребристый корпус выполнен из металла с глянцевой отделкой. В комплекте с xDSD покупатель получает бархатный чехол-мешочек, несколько полосок текстильной липучки, чтобы крепить устройство к задней панели смартфона, и набор переходников для подключения к различным источникам звука.

Доступны два варианта подключения – проводной и беспроводной. Соединение по Bluetooth использует формат сжатия aptX для потоковой передачи аудиоданных без потерь в качестве. Универсальный USB Type-A пригодится для подключения к самым разным источникам звука – от смартфонов до проигрывателей.

С xDSD вы откроете для себя музыкальные форматы продвинутого уровня. В отличие от Mojo, xDSD может обрабатывать MQA (Master Quality Authenticated) – формат студийного качества, используемый сервисом Tidal Masters. Девайс способен воспроизводить как DSD, так и PCM аудио без преобразования в другой формат с неизбежными потерями.

Девайс дает ощущение полного контроля над звуком. Этому способствуют аналоговое колесико регулировки громкости и различные режимы прослушивания: Listen для оптимизированных средних частот, имитация концертного исполнения 3D+Matrix и мягкое усиление басов.

Есть и более дешевый вариант – усилитель для наушников iFi xCAN, он предлагает по большей части те же самые характеристики, но лишен USB.

Многих пользователей в xDSD привлекает именно возможность экспериментов со звуком

Если же вы из тех, кто предпочитает подход попроще, обратите внимание на популярный Chord Mojo. Эта модель приведет вас к идеальному звуку за минимальное количество шагов

Преимущества:

  • Футуристичный дизайн.
  • Аналоговый регулятор громкости.
  • Встроенная батарея.

Недостатки:

  • К элементам управления нужно привыкать.
  • Сложнее в использовании, чем Chord Mojo.

Что такое битность записи, динамический диапазон и на что они влияют

Если вы послушаете старые mp3 файлы или плохие MIDI записи вы заметите, что вам сложно различать музыкальные инструменты, если они играют одновременно, они просто сливаются в «звуковую кашу» и разобрать в ней ничего невозможно.

Это происходит от того, что у записи узкий динамический диапазон. Чем он больше, тем более глубоким слышится звук, более приятным и реалистичным. Узкий динамический диапазон просто не позволяет разным инструментам, которые звучат одновременно, иметь различную громкость и один инструмент глушит другой, от этого возникает мутный неприятный звук и слушать такую музыку совершенно не хочется.

Теоретически за динамический диапазон отвечает битность звука во время его кодирования в цифровой вид. Чем выше битность, тем больше значений может принимать звуковая волна за единицу времени и тем шире может быть динамический диапазон. Но это в теории, т.к. это кроме битности на громкость могут влиять много других факторов и битность начинает влиять на динамический диапазон тогда, когда все другие факторы исключены.

Например, почти вся современная музыка выпускается со значительной компрессией, чтобы увеличить базовую громкость всего материала, от этого сильно страдает динамический диапазон, т.к. все тихие места композиции подтягиваются и становятся более громкими, а очень громкие пики инструментов срезаются до среднего значения

Таким образом, после процедуры компрессии уже почти не важно какой была битность записи. Но в том случае если вы слушаете качественный материал, который не испортили на студии, битность действительно начинает играть значительную роль в динамическом диапазоне

Самое распространённое значение сегодня это 16 битная запись, но уже набирает популярность 24 битная музыка, а в скором времени в общее пользование начнут попадать 32 битные записи музыкальных произведений. При качественной обработки музыкального материала на студии и без ужасающей компрессии 16 битная точность записи, в общем, достаточна для того, чтобы не испытывать проблем с динамическим диапазоном.

Но в определении качества звука мы снова сталкиваемся с особенностями человеческого восприятия звука. Что такое 16 битная запись звука? Это значит, что одно измерение изменения амплитуды звуковой волны может принимать 65536 значений, что даёт нам динамический диапазон до 96,33 Дб. В свою очередь это означает, что звук с громкостью до 96,33 Дб должен быть записан без искажений по уровню громкости.

Если вы похожи на меня, то в большинстве случаев вы слушаете музыку в наушниках, а в наушниках довольно опасно долго слушать громкую музыку и, поверьте, 96,33 Дб это очень громко. Я стараюсь не превышать 60-65 Дб при прослушивании, этого вполне достаточно чтобы в полной мере насладиться звуком, но недостаточно чтобы повредить слух. И, как видите, у меня остается значительный запас по громкости до заветных 96,33 дб. По этой причине записи с 24 битной точностью для меня не дадут никакого преимущества, я просто не буду слышать разницы из-за того, что не слушаю музыку достаточно громко. Если кто-то из ваших знакомых, слушающий музыку в наушниках, говорит вам, что есть разница между 16 битной записью и 24 битной — не верьте ему. Он стал жертвой маркетинга и просто верит, что разница есть, хоть он её и не слышит. Добавим к этому тот факт, что наш слух имеет разную чувствительность по громкости к разным частотам звука, поэтому 16 битных записей для прослушивания в наушниках хватит для любых ситуаций.

Так почему многие люди верят, что 24 битная запись музыки значительно превосходит 16 битную? Для некоторых ситуаций это действительно так. Например, если вы слушаете живую запись симфонического оркестра, вам действительно нужна 24 битная запись, т.к. вам придется значительно повышать громкость, чтобы услышать все нюансы. Вы повышаете громкость технически, на вашем устройстве, но та громкость, которую вы услышите будет нормальной, потому что записи симфонической музыки делаются довольно тихими как раз для того, чтобы можно было расслышать все нюансы звука. Но это правило не работает для современных записей поп музыки, т.к. уже на студии записи делают предельно громкими и если вы будете слушать её на той же громкости, что и качественную запись оркестра, вы просто рискуете повредить свой слух.

Также 24 битная запись подходит для записи звука. Гораздо эффективнее сделать запись в более высокой битности и потом, при финальной обработке снизить её до 16, чем наоборот. Если вы сделаете запись в 16 битах и потом искусственно увеличите её до 24, то качество будет даже ниже, чем при исходных 16 битах, а возможно и такое, что в звуке появится посторонний фоновый шум.

Мультиплексирование или один АЦП на канал

Очень часто в недорогих системах сбора данных, таких как регистраторы данных или промышленные системы управления, используются мультиплексные АЦ-платы, поскольку они дешевле, чем реализация отдельных чипов АЦП на каждый входной канал.

В мультиплексной системе АЦП один аналого-цифровой преобразователь оцифровывает сразу несколько аналоговых сигналов. Это достигается путем мультиплексирования аналоговых сигналов по одному в АЦП.

Это более экономичный подход, однако невозможно точно выровнять сигналы по оси времени, поскольку только один сигнал может быть преобразован за один раз. Поэтому между каналами всегда существует временной перекос. Если небольшие искажения некритичны в данной сфере применения, то это необязательно плохо. То же самое относится и к аналоговым устройствам, используемым в системе: важен выбор оптимального решения с учетом функциональности и срока службы.

Кроме того, поскольку максимальная частота выборки всегда делится на количество считываемых каналов, максимальная частота выборки на канал в мультиплексных системах обычно ниже, за исключением случаев, когда регистрируется только один или небольшое число каналов.

Что касается современных систем сбора данных, мультиплексные АЦП используются в основном в бюджетных решениях, где стоимость важнее точности или скорости.

Итак, что такое ЦАП?

ЦАП преобразует цифровой сигнал в аналоговый, чтобы ваши наушники могли создавать звук. Вот так просто! Большинство чипов ЦАП находятся в источниках того, к чему вы подключаете наушники, и обычно стоит для производителя от 3 до 30 долларов США. Это очень простой и постоянный компонент любого смартфона, хотя разъем для наушников и пытаются убить, в основном компания Apple.

Подобно усилителям для наушников, отдельные ЦАП стали появляться в продаже для того, чтобы хоть как-то компенсировать низкий уровень качества воспроизведения звука. Вы удивитесь, но в 80-е и даже в 90-е годы далеко не всё потребительское оборудование могло справится даже с простыми наушниками, не говоря уже о более серьезном оборудовании. Довольно часто, даже если ЦАП был встроен в готовый прибор, он был неправильно к нему подключен или плохо экранирован, поэтому во время прослушивания вы могли слышать помехи или наводки от работы самого оборудования. Добавим сюда далеко не лучшее качество музыкального материала с низкой частотой дискретизацией первых mp3 файлов и вы можете вообразить на что была похожа музыка 90-х. Согласитесь, никто не захочет слушать такое для собственного удовольствия.

Но с тех пор цифровая музыка прошла долгий путь. Значительно возросшая культура производства музыкального оборудования привела к тому, что даже дешевые чипы стали давать довольно хорошее качество звучания, да и музыкальный материал стал гораздо более качественным. Сегодня музыка в формате mp3 почти везде записана с битрейтом в 320 кб/сек, а многие перешли на прослушивание материала в формате FLAC или в новомодном формате MQA. И там, где раньше требовалось серьезное оборудование для достижение хорошего качества звука, сейчас в большинстве случаев достаточно возможностей обычного хорошего смартфона.

Выводы

Каждая технология АЦП имеет свои преимущества. И поскольку сферы применения слишком различны, нельзя сказать, что одна из них лучше другой в целом. Тем не менее, можно утверждать, что одна из них лучше другой по ряду критериев современных систем:

Критерий АЦП последовательного приближения Дельта-сигма (ΔΣ) АЦП
Требуется максимальное разрешение амплитудной оси (даже для медленных сигналов, таких как термопары) Обычно максимум 16 или 18 бит Предпочтительнее. Разрешение 24 бита фактически является современным стандартом среди дельта-сигма плат.
Необходимо использовать недорогую мультиплексную АЦ-плату Единственный вариант. Можно мультиплексировать один АЦП РПП на нескольких каналах для создания недорогих систем сбора данных, если небольшие искажения не критичны. Н/Д
Требуется максимально возможная частота выборки Предпочтительнее. Существуют АЦП последовательного приближения для сбора данных с частотой выборки до 10 Мвыб./с. Встроенный ЦОС-процессор ограничивает макс. частоту выборки дельта-сигма АЦП по сравнению с АЦП РПП.
Желательна фильтрация-сглаживание Дорого и сложно добавить в АЦП последовательного приближения. Предпочтительнее, поскольку фильтрация сглаживания встроена в дельта-сигма АЦП.
Требуется максимальное соотношение «сигнал-шум»   Единственный вариант. Возможно достижение 160 дБ с помощью запатентованной технологии DualCoreADC компании Dewesoft.
В основном будут регистрироваться искусственные сигналы (например, прямоугольные) Лучше воспроизводит прямоугольные волны.  

Хотя знаковыми решениями Dewesoft являются 24-битные дельта-сигма АЦП и технология DualCoreADC, компания также использует 16-битные АЦП последовательного приближения для достижения максимальной частоты выборки 1 Мвыб./с в линейке систем сбора данных SIRIUS. Мощная фильтрация-сглаживание в форме фильтров 100 кГц 5-го порядка реализована в системах Dewesoft на базе последовательного приближения. В цифровой области предусмотрен дополнительный фильтр (Бесселя, Баттерворта (или обходной) на выбор) вплоть до 8-го порядка.

Выбор технологии АЦП должен основываться на условиях применения. Если вы в основном имеете дело со статическими и квазистатическими (медленными) сигналами, вам нужна не сверхскоростная система, а как можно большее разрешение амплитудной оси. 

Фиксированные системы, используемые в промышленности, как правило, имеют стандартные требования, что упрощает задачу выбора.

Выбор в случае систем сбора данных сложнее: одна и та же система должна удовлетворять разным сферам применения. Прежде всего необходимо учитывать оптимальную производительность и защиту от шума, искажения и износа.