Закон джоуля-ленца: определение, формулы

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​\( R_1 \)​ в четыре раза меньше сопротивления резистора ​\( R_2 \)​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​\( R_1 \)​ в 3 раза больше сопротивления резистора ​\( R_2 \)​. Количество теплоты, которое выделится в резисторе 1

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​\( A_1 \)​ и ​\( A_2 \)​ в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \)​ и ​\( A_2 \) в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

ФОРМУЛЫ
1) ​\( \frac{q}{t} \)​
2) ​\( qU \)​
3) \( \frac{RS}{L} \)​
4) ​\( UI \)​
5) \( \frac{U}{I} \)​

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Признание Джеймса Джоуля

Слава и признание все же настигли английского физика. В 50-х годах XIX века он становится членом Лондонского королевского общества и награждается Королевской медалью. В 1866 году он получает медаль Копли, а затем и медаль Альберта.

Несколько раз Джоуль становился президентом Британской научной ассоциации. Ему были присуждены научные степени доктора права в дублинском колледже, Эдинбургском и Оксфордском университетах.

В его честь установлена статуя в здании муниципалитета в Манчестере и мемориал в Вестминстерском аббатстве. На обратной стороне Луны существует кратер Джеймса Джоуля.

Работа и мощность постоянного тока. Закон Джоуля-Ленца

Подробности
Просмотров: 1170

Работа тока — это работа электрического поля по переносу электрических зарядов вдоль проводника;
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.

В системе СИ:

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

В системе СИ:

= 1 Дж

МОЩНОСТЬ ПОСТОЯННОГО ТОКА

— отношение работы тока за время t к этому интервалу времени.

В системе СИ:

Следующая страница «Электрический ток в металлах. Сверхпроводимость»

Назад в раздел «10-11 класс»

Электростатика и законы постоянного тока — Класс!ная физика

Электрический заряд. Электризация. Закон сохранения электрического заряда. Закон Кулона. Единица электрического заряда —
Близкодействие и дальнодействие. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Силовые линии электрического поля —
Проводники и диэлектрики
в электростатическом поле. Поляризация диэлектриков —
Потенциальная энергия тела в электростатическом поле. Потенциал электростатического поля и разность потенциалов. Связь между напряженностью электростатического поля и разхностью потенциалов —
Электроемкость. Конденсаторы. Энергия заряженного конденсатора —
Электрический ток
. Сила тока. Условия, необходимые для существования электрического тока. Закон Ома для участка цепи. Сопротивление —
Работа и мощность тока

Определение

Закон Ленца гласит, что ток, индуцируемый в цепи из-за изменения магнитного поля, направлен, чтобы противодействовать изменению магнитного потока и оказывать механическую силу, которая противодействует движению.

Закон Ленца содержится в строгой трактовке закона индукции Фарадея (величина ЭДС, индуцированной в катушке, пропорциональна скорости изменения магнитного поля), где он находит выражение через отрицательный знак:

Eзнак равно-∂ΦB∂т,{\ displaystyle {\ mathcal {E}} = — {\ frac {\ partial \ Phi _ {\ mathbf {B}}} {\ partial t}},}

что указывает на противоположные знаки индуцированной электродвижущей силы и скорости изменения магнитного потока .
E{\ displaystyle {\ mathcal {E}}} ΦB{\ displaystyle \ Phi _ {\ mathbf {B}}}

Это означает, что направление обратной ЭДС индуцированного поля противостоит изменяющемуся току, который является его причиной. Ди-джей Гриффитс резюмировал это следующим образом: Природа не терпит перемены в движении.

Если изменение магнитного поля тока i 1 индуцирует другой электрический ток , i 2 , направление i 2 противоположно направлению изменения i 1 . Если эти токи находятся в двух коаксиальных круглых проводниках 1 и 2 соответственно, и оба изначально равны 0, то токи i 1 и i 2 должны вращаться в противоположных направлениях. В результате встречные токи будут отталкивать друг друга.

Пример

Магнитные поля от сильных магнитов могут создавать токи встречного вращения в медной или алюминиевой трубе. Это демонстрируется падением магнита через трубу. Опускание магнита внутри трубы заметно медленнее, чем при падении за пределы трубы.

Когда напряжение генерируется изменением магнитного потока в соответствии с законом Фарадея, полярность индуцированного напряжения такова, что создается ток, магнитное поле которого противодействует изменению, которое его вызывает. Индуцированное магнитное поле внутри любой проволочной петли всегда поддерживает постоянный магнитный поток в петле. Направление индуцированного тока можно определить с помощью правила правой руки, чтобы показать, какое направление потока тока создаст магнитное поле, которое будет противодействовать направлению изменения потока через контур. В приведенных ниже примерах, если поток увеличивается, индуцированное поле действует против него. Если оно уменьшается, индуцированное поле действует в направлении приложенного поля, чтобы противодействовать изменению.

Сохранение импульса

Импульс должен сохраняться в процессе, поэтому, если q 1 толкается в одном направлении, тогда q 2 должно толкаться в другом направлении с той же силой в то же время. Однако ситуация усложняется, когда вводится конечная скорость распространения электромагнитной волны (см. Запаздывающий потенциал ). Это означает, что в течение короткого периода общий импульс двух зарядов не сохраняется, а это означает, что разница должна объясняться импульсом в полях, как утверждал Ричард П. Фейнман . Известный электродинамик 19 века Джеймс Клерк Максвелл назвал это «электромагнитным импульсом». Тем не менее, такая трактовка полей может быть необходима, когда закон Ленца применяется к противоположным обвинениям. Обычно предполагается, что рассматриваемые заряды имеют один и тот же знак. Если они этого не делают, например, протон и электрон, взаимодействие будет другим. Электрон, создающий магнитное поле, будет генерировать ЭДС, которая заставляет протон ускоряться в том же направлении, что и электрон

Сначала может показаться, что это нарушает закон сохранения импульса, но такое взаимодействие, как видно, сохраняет импульс, если принять во внимание импульс электромагнитных полей.

Где может пригодиться этот закон Джоуля-Ленца?

В электротехнике есть понятие длительно допустимого тока протекающего по проводам. Это такой ток, который провод способен выдержать длительное время (то есть, бесконечно долго), без разрушения провода (и изоляции, если она есть, потому что провод может быть и без изоляции). Конечно, данные вы теперь можете взять из ПУЭ (Правила устройства электроустановок), но получали эти данные исключительно на основе закона Джоуля-Ленца.

В электротехнике так же используются плавкие предохранители. Их основное качество – надёжность срабатывания. Для этого используется проводник определенного сечения. Зная температуру плавления такого проводника можно вычислить количество теплоты, которое необходимо, чтобы проводник расплавился от протекания через него больших значений тока, а вычислив ток, можно вычислить и сопротивление, которым такой проводник должен обладать. В общем, как вы уже поняли, применяя закон Джоуля-Ленца можно рассчитать сечение или сопротивление (величины взаимозависимы) проводника для плавкого предохранителя.

А ещё, помните, мы говорили про последовательное и параллельное соединение сопротивлений. Там на примере лампочки я рассказывал парадокс, что более мощная лампа в последовательном соединении светит слабее. И наверняка помните почему: падение напряжения на сопротивлении тем сильнее, чем меньше сопротивление. А поскольку мощность — это произведение силы тока и напряжения, а напряжение очень сильно падает, то и выходит, что большое сопротивление выделит большое количество тепла, то есть, току придется больше потрудиться, чтобы преодолеть большое сопротивление. И количество тепла, которое выделит ток при этом можно посчитать с помощью закона Джоуля-Ленца. Если брать последовательное соединение сопротивлений, то использовать лучше выражение через квадрат тока, то есть, изначальный вид формулы:

А для параллельного соединения сопротивлений, поскольку ток в параллельных ветвях зависит от сопротивления, в то время, как напряжение на каждой параллельной ветви одинаковое, то формулу лучше всего представить через напряжение:

Ну и наконец, если мы хотим посчитать, сколько тепла выделяет вся цепь, включая даже сопротивление проводов, нам достаточно взять напряжение цепи и ток цепи и формула будет выглядеть так:

Примерами работы закона Джоуля-Ленца вы все пользуетесь в повседневной жизни – в первую очередь это всевозможные нагревательные приборы. Как правило, в них используется нихромовая проволока и толщина (поперечное сечение) и длина проводника подбираются с учётом того, чтобы длительное тепловое воздействие не приводило к стремительному разрушению проволоки. Точно таким же образом добиваются свечения вольфрамовой нити в лампе накаливания. По этому же закону определяют степень возможного нагрева практически любого электротехнического и электронного устройства.

В общем, несмотря на кажущуюся простоту, закон Джоуля-Ленца играет в нашей жизни очень огромную роль. Этот закон дал большой толчок для теоретических расчётов: выделение тепла токами короткого замыкания, вычисление конкретной температуры дуги, проводника и любого другого электропроводного материала, потери электрической мощности в тепловом эквиваленте и т.д.

Вы можете спросить, а как перевести Джоули в Ватты и это довольно частый вопрос в интернете. Хотя вопрос несколько неверный, читая далее, вы поймёте почему. Ответ довольно прост: 1 дж = 0.000278 Ватт*час, в то время, как 1 Ватт*час = 3600 Джоулей. Напомню, что в Ваттах измеряется потребляемая мгновенная мощность, то есть непосредственно используемая пока включена цепь. А Джоуль определяет работу электрического тока, то есть мощность тока за промежуток времени. Помните, в законе Ома я приводил аллегорическую ситуацию. Ток – деньги, напряжение – магазин, сопротивление – чувство меры и денег, мощность – количество продуктов, которые вы сможете на себе унести (увезти) за один раз, а вот как далеко, как быстро и сколько раз вы сможете их увезти – это работа. То есть, сравнить работу и мощность никак не получается, но можно выразить в более понятных нам единицам: Ваттах и часах.

Думаю, что теперь вам не составит труда применить закон Джоуля-Ленца в практике и теории, если таковое потребуется и даже сделать перевод Джоулей в Ватты и наоборот. А благодаря пониманию, что закон Джоуля-Ленца это произведение электрической мощности на время, вы сможете более легко его запомнить и даже, если вдруг забыли основную формулу, то помня всего лишь закон Ома можно снова получить закон Джоуля-Ленца. А я на этом с вами прощаюсь.

Опыт Ленца

Для ответа на заданные вопросы проводится следующий опыт. На концах легко вращающегося коромысла закрепляются два проводящих кольца – одно сплошное, а другое с разрезом.

Рис. 1. Опыт демонстрирующий правило Ленца.

Теперь, если взять постоянный магнит и внести его в кольцо с разрезом – ничего не произойдет. Однако, если попытаться внести постоянный магнит в сплошное кольцо – коромысло начнет вращаться, уводя кольцо от магнита.

Данное явление можно объяснить только возникновением тока в сплошном кольце. Этот ток, в свою очередь, порождает новое магнитное поле, которое и начинает взаимодействовать с полем постоянного магнита. В кольце с разрезом ток не возникает, и взаимодействующего поля нет.

Правило Ленца

Определение 2

Согласно результатам опытов, индукционный ток, который возникает в замкнутом контуре в результате изменения магнитного потока, всегда направлен определенным образом. Создаваемое индукционным током магнитное поле препятствует изменению вызвавшего этот индукционный ток магнитного потока. Ленц сформулировал это правило в 1833 году.

Проиллюстрируем правило Ленца рисунком, на котором изображен неподвижный замкнутый проводящий контур, помещенный в однородное магнитное поле. Модуль индукции увеличивается во времени. 

Пример 1

Рисунок 1.20.2. Правило Ленца

Здесь ∆Φ∆t>, а δинд< < 0. Индукционный ток Iинд протекает навстречу выбранному положительному направлению l→ обхода контура.

Благодаря правилу Ленца мы можем обосновать тот факт, что в формуле электромагнитной индукции δинд и ∆Φ∆t противоположны по знакам.

Если задуматься о физическом смысле правила Ленца, то это частный случай Закона сохранения энергии.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Тепловое действие тока

Электрический ток, проходя через любой проводник, сообщает ему некоторое количество энергии. В результате этого проводник нагревается. Передача энергии происходит на молекулярном уровне, т. е., электроны взаимодействуют с атомами или ионами проводника и отдают часть своей энергии.В результате этого, ионы и атомы проводника начинают двигаться быстрей, соответственно можно сказать, что внутренняя энергия увеличивается и переходит в тепловую энергию.Данное явление подтверждается различными опытами, которые говорят о том, что вся работа, которую совершает ток, переходит во внутреннюю энергию проводника, она в свою очередь увеличивается. После этого уже проводник начинает отдавать её окружающим телам в виде тепла. Здесь уже в дело вступает процесс теплопередачи, но сам проводник нагревается. Этот процесс рассчитывается по формуле: А=U·I·tА – это работа тока, которую он совершает, протекая через проводник. Можно также высчитать количество теплоты, выделяемое при этом, ведь это значение равно работе тока. Правда, это касается, лишь неподвижных металлических проводников, однако, такие проводники встречаются чаще всего. Таким образом, количество теплоты, также будет высчитываться по той же форме: Q=U·I·t.История открытия явленияВ своё время свойства проводника, через который протекает электрический тока, изучали многие учёные. Особенно среди них были заметны англичанин Джеймс Джоуль и русский учёный Эмилий Христианович Ленц. Каждый из них проводил свои собственные опыты, а вывод они смогли сделать независимо друг от друга. На основе своих исследований, они смогли вывести закон, который позволяет дать количественную оценку выделяемого тепла в результате воздействия электрического тока на проводник. Данный закон получил название «Закон Джоуля-Ленца». Джеймс Джоуль установил его в 1842 году, а примерно через год Эмиль Ленц пришёл к тому же выводу, при этом их исследования и проводимые опыты никак не были связаны друг с другом.Применение свойств теплового действия токаИсследования теплового воздействия тока и открытия закона Джоуля-Ленца позволили сделать вывод, подтолкнувший развитие электротехники и расширить возможности применения электричества. Простейшим примером применения данных свойства является простая лампочка накаливания. Устройство её заключается в том, что в ней применяется обычная нить накаливания, сделанная из вольфрамовой проволоки. Этот металл был выбран не случайно: тугоплавкий, он имеет довольно высокое удельное сопротивление. Электрический ток проходит через эту проволоку и нагревает её, т. е. передаёт ей свою энергию. Энергия проводника начинает переходить в тепловую энергию, а спираль разогревается до такой температуры, что начинает светиться. Главным недостатком такой конструкции, конечно, является то, что происходят большие потери энергии, ведь только небольшая часть энергии преобразуется в свет, а остальная уходит в тепло.Для этого вводится такое понятие в техники, как КПД, показывающее эффективность работы и преобразования электрической энергии. Такие понятия как КПД и тепловое воздействие тока применяются повсеместно, так как существует огромное количество приборов основанных подобном принципе. Это в первую очередь касается нагревательных приборов: кипятильников, обогревателей, электроплит и т. д.Как правило, в конструкциях перечисленных приборах присутствует некая металлическая спираль, которая и производит нагревание. В приборах для нагревания воды она изолирована, в них устанавливается баланс между потребляемой из сети энергией (в виде электрического тока) и тепловым обменом с окружающей средой.В связи с этим, перед учёными стоит нелёгкая задача по снижению потерь энергии, главной целью является поиск наиболее оптимальной и эффективной схемы. В данном случае тепловое воздействие тока является даже нежелательным, так как именно оно и ведёт к потерям энергии. Самым простым вариантом является повышение напряжения при передаче энергии. В результате снижается сила тока, но это приводит к снижению безопасности линий электропередач.Другое направление исследований – это выбор проводов, ведь от свойств проводника зависят и тепловые потери и прочие показатели. С другой стороны, различные нагревательные приборы требуют большого выделения энергии на определённом участке. Для этих целей изготавливают спирали из специальных сплавов. Для повышения защиты и безопасности электрических цепей применяются специальные предохранители. В случае чрезмерного повышения тока сечение проводника в предохранителе не выдерживает, и он плавится, размыкая цепь, защищая, таким образом, её от токовых перегрузок.

Плагиат или нет?

Ещё в 1832-1833-х годах Эмилий Христианович Ленц обратил внимание на то, что проводимость проводника сильно зависит от его нагревания, это осложняло расчёты электрических цепей, так как не представлялось возможным вычислить зависимость тока от теплоты, которую он выделяет

Рис. 3. Опыт Ленца

Ленц сконструировал специальный прибор-сосуд, служивший для измерения количества тепла, выделявшегося в проволоке. В сосуд учёный заливал разбавленный спирт (спирт обладает меньшей электропроводностью, чем вода, которую использовал в своих опытах Джеймс Джоуль). В раствор спирта помещалась платиновая проволока, через которую пропускался электрический ток (см. Рис. 3). Была произведена большая серия опытов, в которых Ленц замерял время, затраченное на нагревание раствора на . Получив достаточное количество убедительных данных, в 1843 году учёный опубликовал закон: «нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока»

Однако аналогичный закон уже был опубликован Джоулем в 1841 году, но Ленц вполне обоснованно обратил внимание на то, что англичанин провёл свои эксперименты с большим количеством погрешностей. Именно поэтому закон о тепловом действии тока был назван в честь двух выдающихся учёных

Формула расчета и ее элементы

Суть явления понятна из упомянутого выше общего определения. Движущиеся электроны взаимодействуют с ионами вещества проводника с преобразованием механической энергии в теплоту. Увеличение силы тока повышает интенсивность процесса.

Наглядный пример – электролиз. При опускании в раствор подключенных к батарее пластин положительно заряженные ионы и электроны движутся в противоположных направлениях. Достаточно высокий ток провоцирует перемещение примесей с последующим осаждением на поверхности электродов. Одновременно происходит нагрев жидкости.

При подключении к источнику медного проводника химические реакции отсутствуют. Если исключить механические воздействия (электромагнитная индукция, движение ионов в растворе), вся работа тока в соответствующей цепи будет направлена только на увеличение внутренней энергии вещества.

Действие электрического тока при подключении к жидкому и металлическому проводнику

Следовательно, во втором примере работу (A) можно принять равной увеличению энергетического потенциала, который выражается соответствующим количеством теплоты (Q). Основная формула:

A = Q = U * I *t,

где:

  • U – напряжение;
  • I – ток;
  • t – время.

Для удобства расчетов можно использовать иные эквиваленты на основе формул закона Ома:

  • U = I * R;
  • R – электрическое сопротивление проводника;
  • значит, Q = I2 * R * t.