Погружной термометр
С соединительным кабелем
Погружной термометр модели TF45 главным образом используется для измерения температуры газообразных сред, а также температуры на поверхности твердых тел в диапазоне -50 … +260 °C (‑58 … +500 °F). В сочетании с дополнительной защитной гильзой погружной термометр может также использоваться для измерения температуры жидких сред.
Применение
- Солнечные теплоаккумулирующие системы, возобновляемые источники энергии
- Машиностроение
- Компрессоры
- Системы охлаждения, отопления, вентиляции и кондиционирования воздуха
- Производство промышленных печей и оборудования
Терморезисторы
Основная статья: Терморезистор
Терморезистор — полупроводниковый резистор, электрическое сопротивление которого зависит от температуры. Для терморезисторов характерны большой температурный коэффициент сопротивления, простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени. Они могут иметь весьма малые размеры, что существенно для измерений температуры малых объектов и снижения инерционности измерения. Обычно терморезисторы имеют отрицательный температурный коэффициент сопротивления, в отличие от большинства металлов и металлических сплавов.
Преимущества и недостатки термометров сопротивления
При сравнении с термопарой можно упомянуть следующие минусы ТС:
- высокую стоимость;
- обязательное использование внешнего источника стабилизированного электропитания;
- ограниченный рабочий диапазон.
Плюсы:
- линейный график измеряемых параметров;
- точность;
- корректная компенсация искажений от соединительных проводов.
Выбор подходящего датчика организуют на основе подготовленных критериев. Кроме базовых технических параметров, уточняют допустимые габариты, условия эксплуатации. Для продления срока службы необходимы регулярные проверки состояния термосопротивления и других компонентов измерительной схемы.
Сплиттер или размножитель сигнала.
Сплиттер или так называемый размножителя сигнала «размножает» один сигнал RTD в два независимых изолированных сигнала напряжения или тока. Гальваническая изоляция выходов друг от друга и от входа гарантирует, что не возникнет проблем с взаимным влиянием приборов друг на друга при подключении одного датчика к двум и более различным устройствам. Получается своего рода рассмотренный выше вариант с нормирующим преобразователем, но лишенный негативного взаимного влияния приборов друг на друга.
В качестве размножителя можно применить сплиттер модели APD 1393 RTD с двумя изолированными выходами.
Виды датчиков и их характеристики
Измерение температуры термометром сопротивления происходит с помощью одного или нескольких чувствительных элементов сопротивления и соединительных проводов, которые надежно спрятаны в защитном корпусе.
Классификация ТС происходит именно по типу чувствительного элемента.
Металлический термометр сопротивления по ГОСТ 6651-2009
Согласно ГОСТ 6651-2009 выделяют группу металлических термометров сопротивления, то есть ТС, чей чувствительный элемент — это небольшой резистор из металлической проволоки или пленки.
Платиновые измерители температуры
Платиновые ТС считаются самым распространёнными среди других видов, поэтому их часто устанавливают для контроля важных параметров. Диапазон измерения температуры лежит от -200 °С до 650 °С. Характеристика близка к линейной функции. Один из самых распространённых видов — Pt100 (Pt — платиновый, 100 — означает 100 Ом при 0 °С).
Никелевые термометры сопротивления
Никелевые ТС почти не используются в производстве за счет узкого температурного диапазона (от -60 °С до 180 °С) и сложностей эксплуатации, однако, следует отметить, что именно они имеют самый высокий температурный коэффициент 0,00617 °С-1.
Ранее такие датчики использовались в кораблестроении, однако, сейчас в этой отрасли их заменили на платиновые ТС.
Медные датчики (ТСМ)
Казалось бы, у медных датчиков диапазон использования еще уже, чем у никелевых (всего от -50 °С до 170 °С), но, тем не менее, именно они являются более популярным типом ТС.
Секрет в дешевизне прибора. Медные чувствительные элементы просты и неприхотливы в использовании, а также отлично подходят для измерения невысоких температур или сопутствующих параметров, например, температуры воздуха в цехе.
Срок службы такого устройства невелик, однако, и средняя стоимость медной ТС не слишком бьет по карману (около 1 тыс. рублей).
Терморезисторы
Терморезисторы — это термометр сопротивления, чей чувствительный элемент сделан из полупроводника. Это может быть оксид, галогенид или другие вещества с амфотерными свойствами.
Преимуществом данного прибора является не только высокий температурный коэффициент, но и возможность придать любую форму будущему изделию (от тонкой трубки до устройства длиной в несколько микрон). Как правило терморезисторы рассчитаны для измерения температуры от -100 °С до +200 °С.
Различают два вида терморезисторов:
- термисторы — имеют отрицательный температурный коэффициент сопротивления, то есть при росте температуры, сопротивление уменьшается;
- позисторы — имеют положительный температурный коэффициент сопротивления, то есть при увеличении температуры, сопротивление также возрастает.
Принцип действия измерительного устройства
Действие термопреобразователя основывается на свойстве различных материалов изменять свое электрическое сопротивление при разных температурных условиях – этот параметр называется температурным коэффициентом электрического сопротивления.
Измененная температура влечет за собой смену теплового колебания кристаллической решетки металла и изменение электрического сопротивления сенсора. Таким образом, чем выше температура чувствительного сенсора, тем значительнее колебания кристаллической решетки, и тем выше уровень электрического сопротивления.
Как вторичный температурный датчик, термоперобразователь нуждается в тщательной калибровке перед началом измерительного процесса. Это выполняется с помощью замеров сопротивления в реперных точках и последующем выстраивании временной зависимости от сопротивления. Сам термопреобразователь, при этом, должен приобрести температурный показатель, аналогичный среде измерения.
На точность показателей могут повлиять наличие примеси в металлах сенсора и возможные дефекты конструкции. Их неоднородная структура способна изменить сопротивление и скорость выхода на стационарные показатели для определенной температуры.
Для правильного измерения температур важно обеспечить грамотный тепловой контакт с измеряемым объектом
Габариты сенсора должны находиться на минимально необходимом уровне, что исключит вероятность увеличения срока замера и позволит зафиксировать быстроизменяющиеся процессы.
Применение NTC-термисторов
- Измерение и компенсация температуры
- Бытовая электроника: холодильники и морозильники, посудомоечные машины, фены и т.д.
- Автомобильная электроника: для измерения температуры охлаждения воды или масла; для слежения температуры выхлопных газов, крышки цилиндра, тормозной системы; для контроля температуры в салоне автомобиля.
- В кондиционерах: в распределителе тепла; для мониторинга температуры в комнате
- В нагревателях для пола и газовых котлах
- Для блокировки дверей в нагревательных приборах
- В промышленной электронике: для температурной стабилизации лазерных диодов и фотоэлементов, для компенсации температуры в медных катушках
- В телекоммуникации: для измерения и компенсации температуры в мобильных телефонах и HDD
- Ограничение пускового тока
- Промышленная электроника
- Ограничения пускового тока в флуоресцентных, проекционных и галогеновых лампах
- Ограничение скорости оборотов в кухонных комбайнах
- Плавный пуск моторов и импульсных источников питания
- Датчик уровня жидкости, измерение скорости потока и вакуума
- Определение уровня различных жидкостей (жидкий азот), измерение теплопроводности и скорости потока различных газов, определение вакуума и радиации
- В автомобильной промышленности: для индикации топлива
РТС-термисторы – это керамические компоненты, сопротивление которых мгновенно возрастает, когда температура превышает допустимый предел. Эта особенность делает их идеальными для различного применения в современном электронном оборудовании.
Преимущества и недостатки термометров сопротивления
Преимущества термометров сопротивления
- Высокая точность измерений (обычно лучше ±1 °C), может доходить до 13 тысячных °C (0,013).
- Возможность исключения влияния изменения сопротивления линий связи на результат измерения при использовании 3- или 4-проводной схемы измерений.
- Практически линейная характеристика.
Недостатки термометров сопротивления
- Относительно малый диапазон измерений (по сравнению с термопарами)
- Дороговизна (в сравнении с термопарами из неблагородных металлов, для платиновых термометров сопротивления типа ТСП).
- Требуется дополнительный источник питания для задания тока через датчик.
Советуем изучить Заземляющий контур
Конструкция и материалы
Большим преимуществом термисторов является разнообразие форм и миниатюрность. Основные конструктивные типы: бусинковые (0,1-1 мм), дисковые (2,5-18 мм), цилиндрические (3-40 мм), пленочное покрытие (толщина 0,2-1 мм). Выпускаются бусинковые термисторы диаметром до 0,07 мм с выводами толщиной 0,01 мм. Такие миниатюрные датчики позволяют измерять температуру внутри кровеносных сосудов или растительных клеток. Большинство термисторов – керамические полупроводники, изготовленные из гранулированных оксидов и нитридов металлов путем формирования сложной многофазной структуры с последующим спеканием (синтерация) на воздухе при 1100-1300 С.
Сложные двойные и тройные структуры оксидов переходных металлов, такие как (AB)3O4, (ABC)3O4 лежат в основе термисторов. Распространенной формулой является (Ni0.2Mn0.8)3O4. Наиболее стабильными термисторами при температурах ниже 250 С являются термисторы на основе смешанных оксидов мания и никеля или магния, никеля и кобальта, имеющие отрицательный ТКС. Удельная проводимость термистора r (25 C) зависит от химического состава и степени окисления. Дополнительное управление проводимостью осуществляется добавлением очень малых концентраций таких металлов как Li и Na.
Устройство терморезистора.
При изготовлении бусинковых термисторов бусинки наносятся на две параллельные платиновые проволоки при температуре 1100 С, проволоки разрезаются на куски для получения необходимой конфигурации выводов. На бусинки наносится стеклянное покрытие, спекаемое при 300 С, либо бусинки герметизируются внутри миниатюрных стеклянных трубок.
Советуем изучить — Война токов — Тесла против Эдисона
Для получения металлических контактов в дисковых термисторах, на диск наносится металлическое покрытие Pt-Pd-Ag и выводные проводники соединяются с покрытием пайкой или прессованием. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм. Поэтому может применяться двухпроводная схема включения.
Виды термодатчиков
Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):
-
Полупроводниковые датчики. Отличительные особенности этих приборов заключается в высокой точности и стабильной чувствительности, а также в возможности измерения быстротечных процессов. Благодаря низкому измерительному току имеется возможность работы со сверхнизкими температурами (до -270°С). Пример конструкции полупроводникового ТС.
Конструкция термистора
Обозначения:
- А – Выводы измерителя.
- В – Стеклянная пробка, закрывающая защитную гильзу.
- С – Защитная гильза, наполненная гелием.
- D – Электроизоляционная пленка, покрывающая внутреннюю часть гильзы.
- E – Полупроводниковый чувствительный элемент (далее ЧЭ), в приведенном примере это германий, легированный сурьмой.
- Металлические датчики. У таких измерителей в качестве ЧЭ выступает проволочный или пленочный резистор, помещенный в керамический или металлический корпус. Металл, используемый для изготовления чувствительного элемента, должен быть технологичен и устойчив к окислению, а также обладать достаточным температурным коэффициентом. Таким критериям практически идеально отвечает платина. Там, где не столь высокие требования к измерениям, может использоваться никель или медь. В качестве примера можно привести термодатчики: PT1000, PT500, ТСП 100 П, ТСП pt100, ТСП 50П, ТСМ 296, ТСМ 045, ТС 125, Jumbo, ДТС Овен и т.д.
Параметры выбора
Чтобы осуществить корректный выбор подходящего термометра, необходимо определить несколько условий, которые должны соответствовать для комфортной работы прибором.
Диапазон рабочей температуры
Необходимо знать, в каких температурах будет задействован термометр. Также нужно определить, какая погрешность будет приемлемой при получении результатов. Если диапазон температур небольшой, то подойдут термисторы. В самых суровых условиях работоспособны преимущественно шумовые приборы.
Условия проведения замеров
Возможно ли поместить термометр в среду или материал, который нужно заменить. Если нет, то получить данные можно при помощи радиационных термометров, которые замеряют температуру сквозь препятствия.
Время работы до калибровки или замены
Установить условия работы датчика. Окружающая обстановка может быть стандартной, с высокой влажность, окислительной, пожароопасной и так далее.
Величина сигнала выхода
Сигнал выхода должен соответствовать возможностям электроизмерительных приборов для дальнейшей обработки получаемых данных. Зависит это от полученных показателей температуры, преобразуемых в энергию.
Другие технические данные
Погрешность
Для получения самых точных результатов потребуется большое количество времени. Лучший показатель выдает биметаллический термометр, построенный по принципу ЯКР и цифровые. Первые – быстрее, а вторые – точнее.
Разрешение
Этот показатель позволяет получить от датчика более точные приращениям дискретности измерения температуры. Ярким представителем является DS18B20, который может работать в разрешении 9,10,11 и 12 бит. Самый малый режим даст 0.5°C, а максимальный — 0.0625°C.
Напряжение
На величину выходного напряжения будет влиять сопротивление резистора. В зависимости от этого напряжение может быть линейным (изменяться в зависимости от температуры) и нелинейным. Для каждого датчика существуют свои эталонные величины на выводах термометра, который зависит от температуры измеряемого объекта.
Время сработки
Показатель отвечает за скорость получения результатов замера. Как правило, быстрые замеры можно получить, имея крупную погрешность. Для устранения этого недостатка потребуется пренебречь временем сработки и увеличить его до необходимого показателя точности.
Классификация термисторов
Габариты и конструкция терморезисторов различны и зависят от области их применения.
Форма термисторов может напоминать:
- плоскую пластину;
- диск;
- стержень;
- шайбу;
- трубку;
- бусинку;
- цилиндр.
Самые маленькие терморезисторы в виде бусинок. Их размеры меньше 1 миллиметра, а характеристики элементов отличаются стабильностью. Недостатком является невозможность взаимной подмены в электрических схемах.
Классификация терморезисторов по числу градусов в Кельвинах:
- сверх высокотемпературные — от 900 до 1300;
- высокотемпературные — от 570 до 899;
- среднетемпературные — от 170 до 510;
- низкотемпературные — до 170.
Аналоговые и цифровые термометры
Аналоговые
Эти устройства обычно недороги и не требуют сложного ухода. Главная их проблема – шкала. Либо она показывает температуру с высокой точностью, но измерительный интервал при этом очень мал, либо охватывает широкий температурный диапазон, но точность показаний – приблизительна.
Цифровые
Такие устройства дороже, по сравнению с аналоговыми, но их точность гораздо выше. Позволяют производить измерения в широком интервале, применяются в быту и технике.
Конструктивные составляющие цифрового термометра:
- чувствительный элемент (обычно это терморезистор);
- аналогово-цифровой преобразователь, который трансформирует электрический сигнал от терморезистора в цифровой;
- дисплей;
- элемент питания;
- вводы-выводы сигналов, необходимые для взаимодействия с другими устройствами.
Что такое тиристор, его устройство и обозначение на схеме
Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.
Так выглядят тиристоры
По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.
Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.
Внешний вид
Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.
Два вида тиристоров — современные и советские, обозначение на схемах
Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.
Принцип работы
По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).
Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды
В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».
Медные датчики (ТСМ)
ТК медных измерительных приборов – 0,00428°С-1, диапазон измеряемых температур немного уже, чем у никелевых аналогов (от -50,0°С до 150°С). К несомненным преимуществам медных измерителей следует отнести их относительно невысокую стоимость и наиболее близкую к линейной характеристику «температура-сопротивление». Но, узкий диапазон измеряемых температур и низкие параметры удельного сопротивления существенно ограничивают сферу применения термопреобразователей ТСМ.
Внешний вид термопреобразователя ТСМ 1088 1
Но, тем не менее, медные датчики рано списывать, есть немало примеров удачных реализаций, например, ТХА Метран 2700, который предназначен как для различных видов промышленности, но также удачно используется в ЖКХ.
Учитывая, что платиновые терморезисторы наиболее востребованы, рассмотрим варианты их конструктивного исполнения.
Использование терморезисторов
Многие конструкции терморезисторов применяются в приборах, контролирующих и регулирующих температуру. У них имеется источник тока, чувствительный элемент и измерительный уравновешенный мост. В уравновешенное состояние мост приводится путем перемещения движка реостата. В результате, реостатная величина находится в пропорции с измеряемым сопротивлением, которое полностью зависит от температуры.
Кроме уравновешенных измерительных мостов, применяется неуравновешенный вариант, у который обладает повышенной надежностью. Однако, у такого прибора, точность измерений значительно ниже, поскольку на него влияют колебания напряжения в источнике тока. Например, термометр сопротивления на основе платины, позволяет измерять температуру в пределах от -10 до +120 градусов. Относительная влажность может доходить до 98%.
Принцип действия такого прибора основан на изменении сопротивления платины в зависимости от изменений температуры. Непосредственная фиксация результатов измерения сопротивления осуществляется с помощью вторичного прибора, оборудованного шкалой.
Терморезистор
был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году.
Терморезистор
— полупроводниковый резистор, в котором используется зависимость электрического сопротивления полупроводникового материала от температуры.
Главный параметр терморезистора это большой температурный коэффициент сопротивления (ТКС) (в десятки раз превышающий этот коэффициент у металлов)- то есть его сопротивление очень сильно зависит от температуры и может изменяться в десятки а то и сотни раз.
Достоинства терморезисторов
— простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, относительно невысокая долговременная стабильность характеристик.
Основная область применения терморезисторов
это температурные датчики в различных устройствах или защитные функции (при большом токе через него происходит разогрев и изменение сопротивления)
Терморезистор
изготавливают в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок преимущественно методами порошковой металлургии. Их размеры могут варьироваться в пределах от 1–10 мкм до 1–2 см.
Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления, интервал рабочих температур, максимально допустимая мощность рассеяния.
Терморезисторы по своим рабочим параметрам делятся на две категории:1. При нагреве сопротивление уменьшается. Такие терморезисторы называют термистор
или NTC-термисторы (Negative temperature coefficient).2. При нагреве сопротивление увеличивается. Такие терморезисторы называют позистор
или PTC-термисторы (Positive temperature coefficient). Они применяются в системе размагничивания кинескоп телевизоров
Градуировочные таблицы термометров сопротивления
Градуировочные таблицы — это сводная сетка, по которой можно легко определить при какой температуре термометр будет иметь определенное сопротивление. Такие таблицы помогают работникам КИПиА оценить значение измеряемой температуры по определённому значению сопротивления.
В рамках этой таблицы существуют специальные обозначения ТС. Их вы можете увидеть в верхней строчке. Цифра означает значение сопротивления датчика при 0°С, а буква металл, из которого оно создано.
Для обозначения металла используют:
- П или Pt — платина;
- М — медь;
- N — никель.
Например, 50М — это медный ТС, с сопротивлением 50 Ом при 0 °С.
Ниже представлен фрагмент градуировочной таблицы термометров.
Область применения термопреобразователей сопротивления
Данные приборы применяются в промышленной сфере для измерения показателей температуры в разнообразных рабочих средах (жидких, сыпучих, газообразных), в сфере автомобилестроения, печестроения, в нагревательной, холодильной и климатической электротехнике – везде, где требуется определение прямой зависимости электрического сопротивления от температуры.
Диапазон измерения температур устройств составляет от -272°С до +1000°С, в зависимости от типа терморезистора. Для точности полученных сенсором данных конструкция терморезистора должна быть стабильной и чувствительной, способной на проведение замеров в особых условиях (например, при наличии агрессивной среды, тряски, вибраций и т.д.).
Чаще всего при проведении замеров терморезистором дополнительно используется такие устройства, как потенциометры, логометры и измерительные мосты. Они помогают настроить высокую точность термопреобразователя.
Современные термопреобразователи сопротивления – это надежные и функциональные устройства, обеспечивающие проведение замеров на уровне, недоступном для других датчиков
Для оптимального результата измерений важно выбрать тип терморезистора с характеристиками, подходящими для работы в конкретных условиях и определенном температурном режиме
NTC
Основные сведения
Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.
Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.
Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.
Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров. Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже
Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.
Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.
Где используется
Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).
На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.
На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.
Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.
Принцип работы такой схемы:
Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.
Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.
Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.
Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.
Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.
Маркировка
Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:
На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:
5D-20
Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:
Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.
Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.
Обслуживание
Информация о ТО температурного датчика указана в паспорте прибора или инструкции эксплуатации, там же приводится типовые неисправности и способы их ремонта, рекомендуемая длина кабеля для подключения, а также друга полезная информация.
Термометры сопротивления не требуют специального ТО, в задачу обслуживающего персонала входит:
- Проверка условий, в которых эксплуатируется датчик.
- Внешний осмотр на предмет целостности конструкции и кабельных соединений, проверка хода подвижного штуцера (если таковой имеется).
- Помимо этого проверяется наличие пломб.
- Проверяется заземление.
Такой осмотр должен проводиться с периодичностью один раз в месяц или чаще.
Помимо этого должна проводиться поверка приборов, с использованием эталонного датчика, например, ЭТС 100.
Платиновый эталонный ПТС (датчик ЭТС 100)
Для градуировки датчиков используются специальные таблицы, в качестве примера приведена одна из них для термосопротивления pt100. Саму методику калибровки мы приводить не будем, ее описание несложно найти в сети.
Градуировочная таблица для терморезистора pt100 (фрагмент, без указания пределов градуировки измерений)
Что касается методики поверки эталонных платиновых датчиков, то она должна производиться на специальных реперных точках.