Как обозначается тепловое реле на схеме

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать. Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

  • В чем отличия между контактором и магнитным пускателем
  • Что такое релейная защита
  • Как собрать трехфазный щит

Сфера применения

Одним из важнейших условий прибыльной работы предприятия является долговечность используемого электрооборудования. Она зависит от условий, в которых приходится работать электроустановкам. Если оборудование часто подвергается токовым перегрузкам, то на его длительную и надёжную работу лучше не надеяться. Ведь электрооборудование способно работать продолжительное время только при условии протекания по нему номинальных токов. Превышение величины тока (перегрузка) ведёт к увеличению температуры оборудования и к преждевременному старению изоляции.

Виды тепловых реле

Для защиты электрических двигателей от токовой перегрузки на производстве успешно применяются тепловые или термореле. Наибольшее распространение получило реле с биметаллической пластиной, которая состоит из двух пластинок, изготовленных из разных металлов, имеющих неодинаковый коэффициент теплового расширения. Эти пластинки скреплены между собой методом горячей прокатки или сваркой. При нагревании биметаллической пластины она изгибается, так как один металл расширяется больше, другой меньше. На этом принципе и основана работа термореле. Чем больше разность температурных коэффициентов у металлов, тем больше они подходят для использования в биметаллической пластине. Наилучшими вариантами разного линейного расширения сегодня являются: немагнитная сталь – медь, никель – сталь, латунь – инвар.

Обычно, биметаллическая пластина нагревается протекающим через неё током нагрузки. Также существуют модели, в которых пластина разогревается специальным нагревательным элементом, через который течёт ток нагрузки. Но наилучшим считается комбинированный нагрев: и током нагрузки через пластину, и теплом от нагревательного элемента, через который также протекает нагрузочный ток. Изогнувшаяся от тепла пластина воздействует на контакты реле. Однако, учитывая, что изгиб пластины происходит довольно медленно, и как следствие, при размыкании контактов будет образовываться электрическая дуга, в конструкции реле предусматривается ускоряющее устройство. Наилучшим из них является «прыгающий контакт».

Пылебрызгонепроницаемое тепловое реле

Возврат реле в отправное состояние осуществляется специальной кнопкой или (в других моделях) – самопроизвольно после охлаждения биметаллической пластины. Отдельные версии термореле могут защищать электрооборудование от несимметрии токов разных фаз и от пропадания одной из фаз. Исполнительным механизмом теплового реле является, как правило, магнитный пускатель. Реле могут устанавливаться как вовнутрь пускателя, так и на стандартную крепёжную рейку. Диапазон номинальных токов тепловых элементов очень велик и составляет от 1 до 600 ампер.

При выборе теплового реле следует руководствоваться номинальным током нагрузки (как правило, это электродвигатель). Обычно ток термореле на 20-30% больше чем номинальный ток двигателя, так как реле срабатывает в течение 20 минут, если ток выше рабочего значения в 1,2-1,3 раза. Необходимо учитывать и время нагрева, так как при кратковременной перегрузке, нагревается только обмотка двигателя, а при долговременной – весь корпус целиком. Поэтому термореле рационально использовать в тех случаях, когда цикл работы оборудование составляет свыше получаса.

Также необходимо учитывать и температуру окружающей среды, в которой будет работать тепловое реле, так как с ростом окружающей температуры, снижается ток срабатывания термореле. Если в помещении, где установлено защищаемое электрооборудование, летом вентиляция не справляется с поддержанием нормальной температуры, необходимо отрегулировать термореле или подобрать к нему другой нагревательный элемент. Естественно, что устанавливать тепловое реле нужно в том же помещении, где установлен защищаемый объект. Категорически следует избегать соседства с концентрированными источниками тепла (системы отопления, нагревательные печи и т.п.).

Контакты теплового реле

Принцип работы

Во время перегрузки реле тепловое типа РТТ 211, 111, 5, 321, и РТТ 141 включает защиту при помощи тепловых чувствительных элементов или магнитного пускателя пмл (пм-1-12). Эти датчики способны реагировать на состояние текущего защищенного компонента в процессе его эксплуатации.

Схема: тепловое реле ТРТ

Протекание тока через электрическое устройство генерирует тепло. Увеличение тока приводит к пропорциональному увеличению количества тепла. Протекание тока через электрический прибор является продуктом нагрузки, которой подвергается определенный аппарат. Если нагрузка возрастает до точки, которая превышает расчетные характеристики прибора, он будет перегреваться и, в конечном счете, поломается.

Принцип работы теплового реле

Тепловые реле предназначены для предотвращения повреждения или разрушения электрических машин, и срабатывает, реагируя на увеличение тока, индуцированного температурами. При повышении температуры выше нормы, реле отключит основной источник питания и предотвратит повреждение оборудования. Это отклонение достигается либо через механическую блокировку между реле и основным источником питания, либо через электрическую. Чувствительным элементом в обоих случаях выступает би-металлическая полоса.

Видео: тепловое реле

https://youtube.com/watch?v=AE1uR9qTrzY

Би-металлическая полоса в тепловом реле состоит из двух разнородных металлов слитых вместе. Различные характеристики металла означают, что они нагреваются с разной скоростью, в результате чего полоса сгибается. Этот изгиб активирует отключение при перегреве. Электронное тепловое реле перегрузки использует датчик или зонд, чтобы «прочитать» ток, генерируемый температуры. Затем микропроцессор предписывает, когда схема будет открывать и перерезать основные поставки в зависимости от заданных параметров.

Биметаллические полосы могут быть нагреты непосредственно или косвенно. В первом случае ток проходит непосредственно через биметалл, во втором через изолированный слой обмотки вокруг полосы. Изоляция вызывает некоторое замедление потока тепла, инерция косвенно нагревает термореле сильнее при более высоких токах, чем при их непосредственном контакте, и пускатель пма задерживает сигнал. Часто оба этих принципа объединены.

Реле тепловое (РТ) электродвигателя и компрессора работает на принципе изменения температур. Из-за этого нужно очень внимательно следить за тем, чтобы температура в помещении, где находится прибор, не поднималась выше 30 градусов.

Схема подключения теплового реле

Чаще всего, подключение теплового реле осуществляется непосредственно к магнитному пускателю. Силовые контакты устройства позволяют выполнить его монтаж на МП без проводов. Также существуют модели тепловой защиты, которые можно установить как самостоятельный модуль на монтажную панель или DIN-рейку в электрический шкаф. На следующем рисунке представлена структурная схема подключения теплового реле в соответствии с действующим ГОСТом.

На следующем рисунке приведена схема управления электродвигателем, отключающим его от сети в случае возникновения аварийной ситуации: перегрузке по току или обрыву провода одной из фаз.

Для непосвященного человека все эти принципиальные схемы не значат ровно ничего, поэтому на следующей картинке будет представлена более доступная для понимания простым потребителем схема подключения электротеплового реле с фотографиями всех элементов, входящих в систему защиты электрических моторов от токовых перегрузок.

Коротко рассмотрим, как действует данная компоновка защиты электродвигателей. Входной автомат обеспечивает подачу одной фазы через нормально-замкнутую аварийную кнопку «Стоп» на разомкнутую кнопку «Пуск». При ее включении, напряжение питания попадается на обмотку магнитного пускателя, который последовательно включает электромотор. Все фазы питающей электросети, поступающие на электрический двигатель, проходят через обмотки реле с биметаллическими элементами. В случае увеличения тока нагрузки до максимальных значений срабатывает тепловая защита и силовая установка обесточивается.

Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:. Например.Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер

Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA

Например.Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

Реле тепловые РТЛ

Реле тепловые РТЛ предназначены для защиты от перегрузок электродвигателей переменного тока, а также для их защиты от асимметрии фаз, затянутого пуска и заклинивания ротора. Применяются в системах управления грузоподъемными механизмами (лифты, краны и т.д.), вентиляторами, насосами, тепловыми завесами, печами, станками, освещением, в системах автоматического ввода резерва (АВР).

• Номинальное напряжение – до 660 В переменный ток. • Номинальный ток – от 25 до 500 А. • Число полюсов – три. • Реле РТЛ монтируются непосредственно на контакторы ПМЛ, или на клеммники КРЛ для монтажа винтами или на DIN-рейку. • Реле РТЛ входят в состав пускателей ПМЛ и ПМ12.

Условия эксплуатации

Реле предназначены для работы в условиях воздействия на них следующих климатических факторов: • температура окружающего воздуха от -40 до +55°С; • высота над уровнем моря до 2000 м. Допускается применение реле в цепях с номинальным напряжением 380 В на высоте над уровнем моря до 4300 м, при этом температура окружающей среды не должна превышать 28°С, электрическая прочность изоляции уменьшается до 2000 В переменного тока (действующее значение), а токи срабатывания и несрабатывания снижены на 10%; • верхнее значение относительной влажности воздуха не более 98% при температуре 25°С; • окружающая среда – невзрывоопасная, не содержащая газов, жидкости и пыли в концентрациях, нарушающих работу реле; • Реле устойчивы при воздействии следующих механических факторов: • вибрация мест крепления реле в диапазоне частот 1-100 Гц при ускорении 9,8 м/с² (1g); • многократные удары с ускорением 29,4 м/с2 (3g) при длительности удара 2 – 20 мс. Рабочее положение реле в пространстве – на вертикальной плоскости регулятором тока несрабатывания вперед, крышкой вверх. Допускается отклонение от рабочего положения до 15° в любую сторону.

Структура условного обозначения реле

Реле перегрузки тепловое РТЛ-Х1Х2Х3-Х4-Х5…А-(Х6…А)-УХЛ4 Клеммник КРЛ-ХХ-УХЛ4 Реле перегрузки тепловое — Группа изделий РТЛ — Серия Х1 — Номинальный ток реле: 1 – до 25 А, 2 – до 100 А, 3 – до 250 А, 4 – до 510 А Х2 — Диапазон токовой уставки (условно) Х3 — Д – исполнение реле с уменьшенными габаритными размерами (на номинальный ток 36 А) Х4 — Способ возврата реле: 1 – ручной, 2 – самовозврат Х5…А — Номинальный ток, А (Х6…А) — Диапазон токовой уставки реле, А УХЛ4 — Климатическое исполнение по ГОСТ 15150 КЭАЗ — Торговая марка Клеммник — Группа изделий КРЛ — Буквенное обозначение ХХ — Номинальный ток и тип реле: 1 — 25А РТЛ-1000; 2Д — 36А РТЛ-2000Д; 2 — 100А РТЛ-2000 УХЛ4 — Климатическое исполнение и категория размещения по ГОСТ 15150

Пример записи обозначения реле на номинальный ток 100А с диапазоном токовой уставки 48 – 65 А, с самовозвратом, для установки непосредственно на контактор ПМЛ при его заказе и в документации другого изделия: Реле тепловое перегрузки РТЛ-2059-2-100А-(48-65А)- УХЛ4 Пример записи обозначения реле на номинальный ток до 100 А с диапазоном токовой уставки 48 – 65 А, с самовозвратом, для индивидуальной установки с клеммником КРЛ-2: Реле тепловое перегрузки РТЛ-2059-2-100А-(48-65А)- УХЛ4; Клеммник КРЛ-2-УХЛ4

Замена реле своими руками

Символьные идентификаторы проходных контактов помогут правильно подсоединить новое пусковое устройство. Если таковых нет, то при откручивании проводов рекомендуется обязательно их маркировать, в противном случае легко перепутать местами контакты, что приведет к поломке исправного механизма.

Холодильники Норд, Стинол, Аристон, Индезит имеют похожие конструкции, поэтому замена проводится по одной схеме:

  • отключить прибор от электросети, после чего рекомендуется выждать время для полного обесточивания прибора;
  • открутить крепежи, фиксирующие шланг водоснабжения, отодвинуть его в сторону во избежание повреждений;
  • открутить крепежи задней панели, снять защитную пластину задней панели холодильника;
  • отжать защелки, заклепки или выкрутить винты, удерживающие пусковой механизм на компрессоре;
  • аккуратно вытянуть деталь, сохраняя пространственную ориентацию;
  • отсоединить проводку от пускового реле, промаркировать каждый контакт во избежание перепутывания во время установки нового устройства;
  • ослабить зажим путем легкого нажатия, отсоединить разъем;
  • зачистить контакты проводов и разъема мягкой тряпкой, смоченной спиртом;
  • переместить пусковой конденсатор со старого на новое реле;
  • подключить очищенный разъем на отведенное под него место;
  • закрепить реле на конденсаторе в строго вертикальном положении;
  • пассатижами прикрутить проводку, проверить надежность соединения;
  • зафиксировать реле винтами, защелками, заклепками;
  • поставить заднюю панель на место, прикрутить;
  • поставить шланг водоснабжения на место, зафиксировать;
  • подключить холодильник к электрической сети, проверить работоспособность.

Замена пускового реле холодильников Атлант, Минск проводится по другой схеме, поскольку они имеют схожие конструкции:

  • отключить холодильное устройство от электрической сети, подождать некоторое время для полного обесточивания;
  • снять заднюю панель холодильника;
  • снять проволочный зажим, который фиксирует пусковой механизм;
  • отсоединить контакты, осмотреть их и при надобности обработать наждачной бумагой;
  • промаркировать провода во избежание перепутывания их при подключении нового устройства;
  • выкрутить крепежные элементы, если они проржавели, поддеть отверткой или смазать маслом;
  • немного отжать проволочный зажим для вынимания устройства;
  • переместить пусковой конденсатор со старого на новое реле путем простой перестановки;
  • установить механизма на место, отследить строгую горизонтальность и вертикальность;
  • подключить провода согласно маркировке, надежно прикручивая каждый пятачок;
  • накинуть проволочный зажим, зафиксировать;
  • поставить заднюю панель на место, закрутить винты;
  • подключить холодильник к электрической сети, проверить работоспособность.

Современные разновидности охладительной техники имеют схожие конструкции, но отличия все же имеются, что надо учитывать до начала самостоятельного ремонта. Специалисты рекомендуют ознакомиться с инструкцией производителя до того, как вскрывать оборудование в попытках исправить проблему.

Замена пускового реле холодильника Liebherr:

  • отключить холодильное устройство от электрической сети, подождать полного обесточивания;
  • выкрутить крепежные элементы, отодвинуть заднюю защитную панель;
  • снять пластмассовую крышку, осмотреть механизм;
  • контакты зачистить наждачной бумагой;
  • проверить исправность возвратной пружины;
  • открутить крепежные элементы, фиксирующие пусковое реле;
  • заменить устройство исправным, предварительно проверив его;
  • поставить прибор на место старого;
  • зафиксировать крепежными элементами;
  • вернуть заднюю стенку на место, закрутить винты.

Устройство и принцип действия теплового реле

Март 17th, 2016 admin

Тепловое реле – это аппарат защиты, отключающий электродвигатели при длительных перегрузках, а также при обрыве одной из фаз от сети. Тепловое реле, как правило, устанавливается после магнитного пускателя, для того, чтобы обесточить электродвигатель, отключая питание с катушки магнитного пускателя своим размыкающим контактом в цепях управления.

Чаще всего на предприятиях используются тепловые реле серии ТРЛ, РТЛ, РТТ и другие. В этой статье рассмотрим устройство и принцип действия реле РТТ-111 УХЛ 4, которое используется с магнитными пускателями серии ПМЕ.

Технические характеристики теплового реле РТТ-111 УХЛ4

номинальный ток теплового расцепителя – 10 А;

-напряжение силовой цепи – 220 В, 400 В, 660 В;

-один нормально замкнутый контакт 95-96;

-уставка тока срабатывания от 5,35 А до 7,35 А.

Устройство и принцип действия теплового реле

Тепловые реле устроены аналогично друг другу и состоят из следующих основных деталей. Главным чувствительным элементом является биметаллическая пластина, состоящая из двух металлов: сплавов железа с никелем и латуни, соединенных пайкой и имеющих разные по величине коэффициенты линейного теплового расширения. Этот коэффициент характеризует то, насколько может удлиняться, в данном случае, металлическая пластина при ее нагревании. Для сравнения, коэффициент линейного теплового расширения латуни составляет 18,7 () по сравнению с сплавом железа и никеля 1,5 (), поэтому при нагреве латунь будет быстрее увеличиваться в длине, изгибая, тем самым, биметаллическую пластину в свою сторону. Это свойство и используется в тепловом реле!

1-корпус теплового реле;

2-биметаллическая пластина с нагревательным элементом;

5-пружина замыкающего контакта;

6-винт регулировки пластины температурного компенсатора;

7- пластина температурного компенсатора;

9-эксцентрик с движком уставки тока срабатывания;

10- кнопка возврата реле в рабочее состояние.

По закону Джоуля-Ленца электрический ток, протекающий по проводнику вызывает его нагрев, то есть часть электрической энергии уходит на тепловые потери. И чем больше по значению сила тока в проводника одного и того же поперечного сечения, тем больше он нагревается (перегрузка). Но в тепловых реле биметаллическая пластина нагревается непосредственно от нагревательного элемента-проводника, по которому протекает электрический ток к электродвигателю. Нагретая и изогнутая биметаллическая пластина воздействует через толкатель на исполнительную пластину температурного компенсатора, которая, в свою очередь, выводит из зацепления замкнутые контакты в цепи катушки магнитного пускателя и кнопку включения реле в рабочее состояние(наиболее наглядно изображено на этом рисунке).

Так как на работу теплового реле влияет температура окружающей среды (дополнительный нагрев), то в качестве «противовеса» используется также биметаллическая пластина температурного компенсатора, которая изгибается в противоположную сторону и регулируется специальным винтом.

На эксцентрике или регуляторе тока срабатывания есть шкала с 5 делениями влево(уменьшение тока) и с 5 делениями вправо (увеличение тока) от начальной риски. Ток срабатывания регулируется путем изменения зазора между толкателем и исполнительной пластиной с помощью воздействия движка эксцентрика на пластину температурного компенсатора.

При обрыве питания одной из фаз трехфазного электродвигателя нагрузка переходит на две другие фазы, что приводит к возрастанию в них электрического тока, нагреву обмоток и срабатыванию, в итоге, теплового реле- защита от неполнофазного режима!

Рекомендации:

-при срабатывании теплового реле, необходимо дать время для остывания тепловому расцепителю и обязательно найти причину его срабатывания (произвести тщательный осмотр электродигателя);

— в зависимости от температурных условий эксплуатации электродвигателей советую регулировать эксцентрик влево или вправо;

-периодически производить технический осмотр и ремонт теплового реле во избежание преждевременного выхода из строя!

Спасибо за внимание!

Нюансы при установке прибора

На скорость срабатывания теплового модуля могут повлиять не только токовые перегрузки, но и показатели внешней температуры. Защита сработает даже в условиях отсутствия перегрузок.

Бывает и так, что под воздействием принудительной вентиляции двигатель подвержен тепловой перегрузке, но защита не срабатывает.

Чтобы избежать таких явлений, нужно следовать рекомендациям специалистов:

  1. При выборе реле ориентироваться на максимально допустимую температуру срабатывания.
  2. Защиту монтировать в одном помещении с защищаемым объектом.
  3. Для установки выбирать места, где нет источников тепла или вентиляционных устройств.
  4. Нужно настраивать тепловой модуль, ориентируясь на реальную температуру окружения.
  5. Лучший вариант — наличие в конструкции реле встроенной термокомпенсации.

Дополнительной опцией термореле является защита при обрыве фазы или полностью питающей сети. Для трехфазных моторов этот момент особо актуален.


Ток в тепловом реле движется последовательно через его нагревательный модуль и дальше к двигателю . С обмоткой пускателя прибор соединяют дополнительные контакты (+)

При неполадках в одной фазе две остальные принимают на себя ток большей величины. В результате быстро происходит перегрев, а далее — отключение. При неэффективной работе реле может выйти из строя и двигатель, и проводка.

Как выбрать тепловое реле

Без сложных расчетов можно подобрать подходящий номинал электротеплового реле для двигателя по мощности (таблица технических характеристик устройств тепловой защиты).

Основная формула для расчета номинального тока ТР:

Iнтр = 1.5 * Iнд.

Например, нужно рассчитать Iн ТР для асинхронного электродвигателя мощностью 1,5 кВт, запитанного от трехфазной сети переменного напряжения со значением 380 В.

Это сделать достаточно просто. Для вычисления значения номинального тока двигателя необходимо воспользоваться формулой мощности:

P = I * U.

Отсюда, Iнд = P / U = 1500 / 380 ≈ 3.95 А. Значение номинального тока ТР вычисляется следующим образом: Iнтр = 1.5 * 3.95 ≈ 6 А.

Исходя из расчетов, выбирается ТР типа РТЛ-1014-2 с регулируемым диапазоном тока уставки от 7 до 10 А.

Watch this video on YouTube

При повышенном значении температуры окружающей среды следует устанавливать значение уставки на минимальное. При пониженной температуре окружающей среды следует учитывать о возрастании нагрузки на обмотки статора двигателя и по возможности не включать. Если обстоятельства требуют использования электродвигателя при неблагоприятных условиях, то необходимо начинать настройку с низкого тока уставки, а после этого увеличивать его до необходимого значения.

Схема работы устройства плавного пуска, его назначение и конструкция

Что такое электромагнитное реле, их виды и принцип работы

Что такое импульсное реле — схема подключения для управления освещением

Что такое реле напряжения и для чего оно нужно в квартире

Что такое термостат и какой у него принцип работы

Для чего нужен магнитный пускатель и как его подключить