Параметрический стабилизатор

Huter 400 GS

Один из самых надежных релейных стабилизаторов стоимость 3000-3500 рублей. Предназначен для работы в помещениях, выдерживая температуру окружающей среды от 0 до +40 °С, компенсирует изменение напряжения в пределах 110-260 В. Модель легко крепится на стене с помощью расположенных в верхней части отверстий и отличается современным дизайном. Поэтому ее часто применяют для защиты котельного оборудования и устанавливают на кухне.

Для управления прибором применяется удобная панель и электронный дисплей. Охлаждение естественное, есть защита от попадания воды и пыли (класс IP20), короткого замыкания, перегрева и высокого напряжения. Мощность подключаемых приборов может достигать 350 Вт, а точность стабилизации — 8%. Еще одна причина попадания техники в рейтинг — небольшой вес и компактные размеры.

Ремонт электромеханического стабилизатора АСН-10000/1-ЭМ

Принципиальная электрическая схема стабилизатора АСН-10000/1 ЭМ показана на рис.1, печатная плата контроллера этого стабилизатора – на фото 1.

Принцип действия электромеханических стабилизаторов основан на плавном и точном регулировании выходного напряжения.
Изменение напряжения происходит за счёт скольжения электрического контакта по обмотке автотрансформатора с помощью электропривода.
В стабилизаторе вырабатывается напряжение ошибки, которое усиливается операционным усилителем и транзисторным выходным каскадом (усилителем мощности),
а затем оно подаётся на двигатель. В зависимости от полярности сигнала ошибки ось двигателя вращается в ту или иную сторону.
На оси двигателя закреплён ползунок, который перемещается по обмотке автотрансформатора, тем самым, нормализуя выходное напряжение.

Рассмотрим одну характерную неисправность, возникающую в процессе эксплуатации электромеханических стабилизаторов,
на примере АСН-10000/1-ЭМ фирмы «Ресанта» и методы ее устранения.

Отсутствует стабилизация выходного напряжения.

Уровень выходного напряжения может быть различным и находиться в неизменном состоянии.
Ощущается запах перегретых компонентов. «Ахиллесовой пятой» электромеханических стабилизаторов является реверсивный двигатель.
Контроллер стабилизатора постоянно отслеживает уровень выходного напряжения. В результате этого, ротор двигателя находится почти в постоянном вращении,
что приводит к преждевременному износу двигателя. После остановки двигателя может выйти из строя выходной каскад управления двигателем,
собранный на комплементарной паре транзисторов Q1 TIP42C и Q2 TIP41C. Кроме этих транзисторов от перегрева выгорают резисторы R45 и R46,
включенные в их коллекторную цепь. Их сопротивление 10 Ом, а мощность 2 Вт. Не лишним будет проверить также линейный стабилизатор,
собранный на транзисторе Q3 TIP41C и стабилитроне DM4.

Безусловно, изношенный двигатель требует замены, но при невозможности замены можно попытаться его отреставрировать.

Один из простых способов реанимации неисправного двигателя следующий:
• отключить двигатель от схемы;
• подать на его выводы постоянное напряжение 5 В от мощного источника питания, например от компьютерного блока питания ATX.

При этом происходит отжиг мелких частиц «мусора» на щётках двигателя.
Нормальный ток потребления двигателя должен быть в пределах 90.. .160 мА.
Поскольку двигатель реверсивный, напряжение на двигатель следует подавать дважды со сменой полярности.
После этих нехитрых манипуляций работоспособность двигателя временно восстанавливается.

Виды стабилизаторов

Стабилизаторы различаются по конструктивным особенностям, техническим характеристикам и цене.

Релейные. Регулировка напряжения ступенчатая. Чем выше количество обмоток у вольтодобавочного трансформатора, тем модель точнее стабилизирует и дороже стоит, при этом увеличение числа обмоток снижает скорость срабатывания.

Преимущества таких приборов следующие:

  • высокая скорость срабатывания;
  • компактные габариты;
  • работа в широком диапазоне (140 — 270 В);
  • возможность эксплуатации при температуре от -20 до +40°С;
  • низкий уровень шума при работе;
  • доступная цена.

К недостаткам можно отнести сам принцип ступенчатого переключения – электрические лампочки (накаливания и галогенные) меняют уровень накала при срабатывании устройства, что может вызывать дискомфорт.

Если вы решили приобрести релейный стабилизатор, выберите модель, мощность которой на 20-30% превышает расчетные показатели для вашего дома, поскольку производители недорогих устройств часто указывают завышенное значение мощности.

Электронные ступенчатые. Отличаются от релейных отсутствием механических деталей, склонных к износу. Переключение производится симисторами или тиристорами. Это обеспечивает долговечность устройства, но и повышает его чувствительность к помехам в электросети. В остальном плюсы и минусы такого стабилизатора те же, что и у релейного.

Электромеханические. Регулировка вольтодобавочного трансформатора выполняется поворотным щеточным контактом под управлением сервопривода. Характеристики (скорость срабатывания, точность стабилизации и т.д.), а также цена устройства значительно варьируются, они зависят от количества трансформаторов и щеточных узлов.

Основные преимущества электромеханических стабилизаторов:

  • плавная регулировка (отсутствуют перепады степени накаливания лампочек);
  • высокие показатели точности стабилизации;
  • устойчивость к помехам и искажениям в электросети;
  • устойчивость к перегрузкам (устройство способно выдержать перегрузку в 200% в течение нескольких секунд);
  • относительно низкая цена.

К недостаткам можно отнести:

  • механический износ движущихся элементов устройства – щетки и сервоприводы требуют регулярной замены;
  • ограниченный температурный режим эксплуатации (не ниже -5°С);
  • сравнительно невысокую скорость срабатывания моделей с одной щеткой на трансформатор (двухщеточные стабилизируют напряжение быстрее, но стоят заметно дороже);
  • звуки срабатывания сервоприводов.

Электродинамические стабилизаторы. Разновидность электромеханического устройства, но надежность таких приборов выше за счет замены щетки на ролик и они более устойчивые к износу.

Преимущества электродинамических устройств:

  • возможность эксплуатации при температуре воздуха -15°С и выше;
  • способность выдерживать перегрузку в 200% на протяжении 2 минут;
  • долговечность.

Недостаток – более высокая стоимость по сравнению с классическими электромеханическими моделями.

Гибридные (комбинированные). Электромеханическое устройство с добавлением двух релейных стабилизаторов – они задействуются при аномально низких или высоких показателях сетевого напряжения, с которыми не справляется электромеханическая часть. Преимущества устройства – широкий диапазон рабочих напряжений и надежность.

Электромагнитные. Напряжение на выходе регулируется за счет локального подмагничивания сердечника трансформатора при помощи тиристорного регулятора.

Преимущества устройства:

  • высокая скорость срабатывания;
  • температурный диапазон эксплуатации от -40 до +50°С;
  • долговечность благодаря отсутствию механических деталей.

Данный вид стабилизаторов не лишен и недостатков, к которым относится:

  • узкий рабочий диапазон (входное напряжение 170-250В);
  • неустойчивость к перегрузкам (выдерживает не более 50% на протяжении нескольких секунд);
  • относительно большой вес;
  • непрерывный шум при работе;
  • требует использования фильтра для компенсации помех, способных повлиять на работку компьютеров и другой электроники;
  • при нагрузке менее 15-20% от номинальной устройство не может работать, т.к. не хватает силы тока для намагничивания сердечника;
  • трехфазные модели отличаются от стабилизаторов других типов чувствительностью к перекосу фаз.

Выбирая тип стабилизатора, сравните характеристики и стоимость моделей, их способность работать в конкретных условиях, в том числе температурный диапазон.

Для тех, кто ищет вариант подешевле, подойдут релейные, электромеханические или гибридные модели. Если на первом месте стоит надежность и долговечность, лучше остановить свой выбор на электронном или электродинамическом устройстве.

Компенсационный стабилизатор

Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность подключать питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

Колодка подключения

Самостоятельному подсоединению стабилизатора к щитку электропитания должно предшествовать тщательное изучение электрической схемы его клеммных контактов. Для этого потребуется развернуть прибор задней стенкой наружу и изучить расположенные на ней контактные элементы.

Колодка подключения

На ней располагается несколько групп соединений, предназначенных для следующих подключений:

  • Фаза и земля входного линейного напряжения 220 Вольт;
  • Отдельная заземляющая клемма;
  • Земляной и фазный контакты, к которым подключается вся нагрузочная линия квартиры или помещения.

Для подсоединения устройства к сетевым клеммам дополнительно потребуется разобраться с порядком их расположения на домашнем щитке. Кроме того, необходимо будет определиться с кабелем, посредством которого осуществляется такое подсоединение. Его тип и рабочие параметры (сечение жил, в частности) выбираются с учётом мощности, потребляемой самим прибором и подключаемыми к нему бытовыми нагрузками.

Дополнительная информация. Обычно для этих целей выбирается типовой кабель ВВГ 3х1.5 (2,5), которого должно хватить для нагрузки средней мощности.

Кабель ВВГ

Далее будет рассмотрен порядок подключения СА непосредственно к электрическому шкафу (щитку).

Мощность стабилизатора

Как правило, мощность стабилизатора указывается прямо в названии модели (и, само собой, в паспортных данных).

Прикиньте суммарную мощность всех, подключаемых через стабилизатор, устройств, надбавьте сверху некоторый запас и вы получите мощность стабилизатора, которая вам нужна. Запас нужен из-за того, что на границах рабочего диапазона мощность стабилизатора гораздо ниже заявленной, а ведь именно в таких условиях ему и придется работать.

Узнать, как сильно падает мощность стабилизатора при пониженном входном напряжении можно из этой таблицы:

Входное напряжение, В 140 150 160 170 180 190
Коэффициент мощности 0.67 0.71 0.77 0.83 0.91 1

Таким образом, при напряжение в сети 140 вольт, стабилизатор способен выдать в нагрузку всего 2/3 от своей номинальной мощности (то есть, 1000-ваттный стаб превращается в 670-ваттный).

При расчетах нужно иметь в виду, что производители стабилизаторов указывают в технических характеристиках полную мощность, а производители бытовых устройств, наоборот, только активную. Полная измеряется в Вольт-Амперах (ВА), а активная — в Ваттах (Вт). Если нигде в паспорте на стабилизатор вы не найдете мощность в Ваттах, то ее можно получить, умножив мощность в Вольт-Амперах на поправочный коэффициент 0.7.

Еще есть небольшой нюанс, связанный с бытовыми приборами, в состав которых входят мощные двигатели (холодильники, кондиционеры, стиралки). Дело в том, что в момент пуска, двигатели потребляют очень большие токи. Например, обычный домашний холодильник может иметь номинальную мощность 150-200 Вт, а пусковую мощность — аж 700-1000 Вт. Поэтому, при выборе стабилизатора либо ищите такой, для которого такие мощности не являются запредельными, либо такой, который выдерживает большие кратковременные перегрузки.

А нужен ли?

Как понять, нужен ли вам стабилизатор напряжения? Если возьмете мультиметр и измерьте напряжение в сети, в 99% случаев там будут положенные 210-230 В. На первый взгляд, всё отлично, стабилизатор не нужен – я тоже так думал

Напомню, что стабилизатор защищает от резких скачков напряжения, которые случаются в момент включения/выключения мощных потребителей. На производстве качество электроэнергии определяют специальными приборами. Они непрерывно снимают показатели электроэнергии в течение семи суток, чтобы выявить критические скачки напряжения. На основе показаний принимается решение об установке стабилизаторов.

На производстве опасные скачки могут произойти из-за включения крупных промышленных печей, насосов, станков. В городской сети они практически исключены – стиральная машина или перфоратор соседа не просадят напряжение так сильно.

Для защиты квартиры достаточно реле напряжения или нелинейного ограничителя перенапряжения – об этом в отдельной статье. Для квартиры оправдан стабилизатор только для газового котла поквартирного отопления.

В частном секторе стабилизатор обязателен по двум причинам:

  1. Владельцы частных домов имеют привычку использовать опасные для сети сварочники, крупные циркулярки и другие мощные станки.
  2. В коттеджных поселках чаще всего старые сети: частный сектор быстро растет, поэтому потребление электроэнергии пропорционально увеличвается. Старая ТПшка начинает работать без запаса по мощности – отсюда и появляются скачки просадки напряжения.

Параметрический стабилизатор

Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

Импульсный стабилизатор тока

Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.

Схемы импульсных преобразователей

Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема «а»). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема «б»), включенного последовательно с нагрузкой.

В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.

Понижающий преобразователь

Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.

Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.

Повышающий преобразователь

Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.

В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.

Инвертирующий преобразователь

Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.

Применение импульсного конвертера в качестве стабилизатора тока

Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения. Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя. Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.

Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor:

Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1. Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора. В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель. При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.

Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201:

Источник

Расчет параметрического стабилизатора

Качество работы стабилизатора напряжения оценивается по его коэффициенту стабилизации, определяемого по формуле: КстU= (ΔUвх/Uвх) / (ΔUвых/Uвых). Далее расчет параметрического стабилизатора напряжения на стабилитроне осуществляется в соответствии с сопротивлением балластного резистора Ro и типом используемого стабилитрона.

Для расчета стабилитрона применяются следующие электрические параметры: Iст.макс – максимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Iст.мин – минимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Rд – дифференциальное сопротивление на рабочем участке вольтамперной характеристики. Порядок расчета можно рассмотреть на конкретном примере. Исходные данные будут следующие: Uвых= 9 В; Iн= 10 мА; ΔIн= ± 2 мА; ΔUвх= ± 10%Uвх.

Работа стабилизаторов тока

Качественное питание всех электротехнических устройств можно гарантированно обеспечить лишь, используя стабилизатор тока. С его помощью компенсируются скачки и перепады в сети, увеличивается срок эксплуатации приборов и оборудования.

Основной функцией стабилизатора является автоматическая поддержка тока потребителя с точно заданными параметрами. Кроме скачков тока, удается компенсировать изменяющуюся мощность нагрузки и температуру окружающей среды. Например, с увеличением мощности, потребляемой оборудованием, произойдет соответствующее изменение потребляемого тока. В результате, произойдет падение напряжения на сопротивлении проводки и источника тока. То есть, с увеличением внутреннего сопротивления, будут более заметны изменения напряжения при увеличении токовой нагрузки.

В состав компенсационного стабилизатора тока с автоматической регулировкой входит цепь отрицательной обратной связи. Изменение соответствующих параметров регулирующего элемента позволяет достичь необходимой стабилизации. На элемент оказывает воздействие импульс обратной связи. Данное явление известно, как функция выходного тока. В зависимости от регулировок, стабилизаторы разделяются на непрерывные, импульсные и смешанные.

Среди множества стабилизаторов очень популярны стабилизаторы тока на полевых транзисторах. Подключение транзистора в данной схеме осуществляется последовательно сопротивлению нагрузки. Это приводит к незначительным изменениям тока нагрузки, в то время, как входное напряжение подвержено существенным изменениям.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.