Параметрические стабилизаторы напряжения для микроконтроллеров

Содержание

Исследование параметрического стабилизатора постоянного напряжения. Приобретение навыков выбора элементов параметрического стабилизатора постоянного напряжения

Министерство образования Республики Беларусь

Гомельский государственный технический университет

им. П.О.Сухого

по  расчётно-лабораторной работе № 6.3

«Исследование параметрического стабилизатора постоянного напряжения»

,                                                                                                                                      

Принял преподаватель

Гомель 2004

Цель работы: 1. Приобретение навыков выбора элементов параметрического стабилизатора постоянного напряжения.

2.  Исследование свойств стабилизатора в зависимости от изменения величины входного напряжения или сопротивления нагрузки.

Программа работы

1.  Снять ВАХ стабилитрона.

2.  Рассчитать и выбрать балластное сопротивление Rб.

3.  Собрать схему параметрического стабилизатора на стенде и снять зависимости:

а) U2 = f(U1) при RH = const, б) U2 = f(RH) при U1 = U1Н= const.

4.  Рассчитать коэффициенты стабилизации по входному напряжению (KU) и по сопротивлению нагрузки (KR).

Порядок и методика проведения исследований

В работе используются:

— регулируемый стабилизируемый источник постоянного напряжения ИР;

— блок переменного сопротивления БПС;

— кремниевый стабилитрон (элемент 24);

— линейные резисторы (элементы 01…06).

Измерение напряжений и токов производится измерительными приборами, установленными на стенде.

1.  Снятие ВАХ стабилитрона производится по схеме рис. 3.1 а.

https://www.youtube.com/watch?v=g1yGx1wX-wU

К источнику ИР, напряжение которого равно нулю, подключены БПС (сопротивление максимально и равно 999 Ом) и кремниевый стабилитрон Д.

Далее, увеличивая напряжение БПС до тех пор, пока ток стабилитрона не достигнет значения Iст ≈ (0,6…0,7)∙Iст. max, где  Iст. max– максимально допустимый обратный ток стабилитрона (см. табл. 3.1). При этом производим 6…8 измерений тока и напряжения на стабилитроне как в прямом, так и в обратном его включении.

 Таблица 3.1

№ п/п Тип Uст, В Iст.min Iст.max
мА
19 КС156А 5,6 3 55

Данные измерений заносим в таблицу 3.2.

Таблица 3.2

№ п/п Прямое включение Обратное включение
Uпр, В Iпр, мА Uобр, В Iобр, мА
12345678910 0,70,650,60,510,4 3,750,360,2350,0450,005 1344,555,25,45,455,65,7 00,0250,260,843,356,2516,62056,5123

По данным табл. 3.2 чертим на миллиметровке ВАХ стабилитрона.

2.  Используя обратную ветвь ВАХ, рассчитайте величину балластного сопротивления Rб. При расчете необходимо выполнить условие, согласно которому при максимальном напряжении источника ИР и любой нагрузке стабилизатора его ток не должен превышать значения Iст ≈ (0,6…0,7)∙Iст. max. Затем из элементов 01…06 выбираем резистор (или комбинацию резисторов), сопротивление которого (которых) близко к расчетному значению Rб.

Iст = 0,6∙Iст. max = 0,6∙0,055 = 0,033 (А); 

Примем максимальное напряжение источника ИР: U1 = 20 B;

По графику определяем ток к.з. (когда U2 = 0): I=0,045 (А);

По закону Ома определяем балластное сопротивление:

Выбираем комбинацию резисторов: R02 + R03 = 153 +286 = 439 (Ом), сопротивление которой близко к расчётному значению Rб.

3.  Собираем параметрический стабилизатор постоянного напряжения по схеме рис. 3.1 б. В качестве Rб используем выбранный по п. 2 резистор (резисторы), а в качестве сопротивления нагрузки RH — блок БПС.

4.  При экспериментальном снятии зависимости U 2 = f (U1) сопротивление RH задаём в диапазоне 200…500 Ом и поддерживаем в процессе эксперимента неизменным. Напряжение U1 изменяем в диапазоне от 0 до максимального значения, измеряя при этом 8…10 значений U1 и U2. Результаты измерений занесите в табл. 3.3.

Таблица 3.3

Напряжение 1 2 3 4 5 6 7 8 9 10 RН=300Ом
U1, В 2 4 6 8 10 12 14 16 20
U2, В

5. Устанавливаем величину U1 = Ulном (где Ulном соответствует напряжению стабилизации стабилитрона при некоторой выбранной величине Rн.ном), задаём 8…10 значений значения RH в диапазоне от 0 до 2∙Rн.ном и измеряем соответствующие им значения U2. Результаты измерений заносим в табл. 3.4.

Таблица 3.4

1 2 3 4 5 6 7 8 9 10 U1=U1ном== 6 В
RH, Ом 50 100 150 200 250 300 400 500 600
U2, В

6. Используя данные таблиц 3.3 и 3.4, строим в разных осях зависимости U2 = f(U1)│Rн=constи U2 = f(RН)│U1=const. Определяем коэффициенты стабилизации стабилизатора KU и KR.

Вывод:  Результатом выполнения данной расчётно-графической работы стало приобретение навыков выбора элементов параметрического стабилизатора постоянного напряжения. В данной работе мы исследовали свойства стабилизатора в зависимости от изменения величины входного напряжения или сопротивления нагрузки; а также определили значения коэффициентов стабилизации стабилизатора KU и KR.

Импульсные стабилизаторы

Использование простых конструкций на транзисторах имеет недостаток – на ключевом элементе выделяется большая мощность рассеивания, которая тем больше, чем больше разница между входным и выходным параметром.

Главное отличие импульсных устройств – в том, что транзисторы работают в ключевом режиме, управляя накоплением и отдачей энергии реактивными элементами. Энергия, запасенная дросселем или конденсатором, позволяет не только стабилизировать напряжение, но и повышать его или инвертировать полярность.

Собранные на дискретных элементах импульсные преобразователи сложны в конструировании и регулировке. Сейчас выпускаются схемы, выполненные в виде интегральных микросхем, которым требуется импульсный ключ только для увеличения мощности. Устройства практически не требуют регулировки и обладают высокой надежностью.


Микросхема импульсных устройств

Принцип работы стабилитрона

Полупроводниковые приборы отличаются нелинейной реакцией при работе с разными токами (напряжениями). Для изучения функциональности пользуются вольтамперной характеристикой (ВАХ), которая наглядно демонстрирует взаимное влияние базовых параметров и особенности определенной конструкции.


ВАХ диода

Так как стабилитрон является одной из разновидностей диода, изучение принципов работы можно начать с рассмотрения типичного электронно-дырочного (n-p) полупроводникового перехода. В правой части показано включение диода в прямом направлении. Хорошо видно, как от порогового уровня Uп дальнейшее повышение напряжения сопровождается практически линейным увеличением тока в цепи. Определенные потери можно учесть при составлении электрической схемы.

При обратном включении источника питания (левая часть рисунка) увеличение напряжения до показанного значения незначительно изменяет ток. Далее (при значении Uпр) возникает пробой, который определяется особенностями перехода:

  1. тепловой,
  2. лавинный;
  3. туннельный.

Первый из отмеченных в перечне вариантов означает чрезмерное повышение температуры и разрушение полупроводникового прибора. Третий – сопровождается увеличением тока, образованного парными зарядами. Для стабилизации подходит лавинная реакция в переходе. Как показано на графике, напряжение в этом режиме изменяется незначительно.

Реле времени

TL431 нашел свое применение не только как источник опорного напряжения, а и во многих других применениях. Например благодаря тому что входной ток TL431 составляет 2-4мкА, то на основе этой микросхемы можно построить реле времени: при размыкании контакта S1 C1 начинает медленно заряжаться через R1, а когда напряжение на входе TL431 достигнет 2,5 В выходной транзистор DA1 откроется и через светодиод оптопары PC817 начнет протекать ток, соответственно откроется и фототранзистор и замкнет внешнюю цепь.
В этой схеме резистор R2 ограничивает ток через оптрон и стабилизатор (например 680 Ом), R3 нужен чтобы предупредить зажигание светодиода от тока собственных нужд TL431 (например 2 кОм).

Инверторный стабилизатор напряжения (стабилизатор напряжения с двойным преобразованием)

Начнем с принципа работа. Входное напряжение сети поступает на пассивный сетевой фильтр (СФ). Он сглаживает пиковые выбросы сетевого напряжения и практически полностью убирает высокочастотные помехи. После чего напряжение попадает на выпрямитель (В), преобразующий переменный ток в постоянный. Далее выпрямленное напряжение поступает на инвертор (И) и на блок конденсаторов (К). Конденсаторы необходимы для сглаживания моментов, связанных с кратковременными провалами или всплесками напряжения на входе изделия. Инвертор же преобразует поступающую энергию в стабильное выходное напряжение необходимой частоты. К сожалению инвертор не может создать выходное напряжение с идеальной синусоидой, из-за особенностей технологи там будут присутствовать высокочастотные искажения. Поэтому на выходе еще ставят выходной фильтр (ВФ). Все этим хозяйством управляет микропроцессорный контроллер (М).

По своей сути инверторный стабилизатор напряжения — это источник бесперебойного питания (ИБП) технологии онлайн, но без батарей.

Достоинства данного типа стабилизатора:

  • защищает практически от всех проблем с питающей сетью кроме пропадания напряжения;
  • мгновенная регулировка напряжения с погрешностью не более 1%;
  • очень широкий диапазон входного напряжения;
  • существенное легче и компактнее других стабилизаторов соизмеримой мощности, так как построен на безтрансформаторной схеме;
  • имеет ОЧЕНЬ большой ресурс работы так почти не имеет движущихся частей (чаще всего это вентиляторы охлаждения, которые можно при необходимости быстро заменить);
  • почти бесшумный (напоминаю про вентилятор охлаждения, но обычно до 1кВА их не ставят);
  • высокий КПД до 97%;
  • высокая устойчивость к загрязнениям – нет рабочих контактов.

Недостатки:

  • ЦЕНА. Данные стабилизаторы являются самыми дорогими среди всех видов подобных устройств;
  • по мере увеличения нагрузки на стабилизаторе происходит уменьшение предельного диапазона входного напряжения. К примеру, когда нагрузка меньше 50%, входной диапазон 115…300В, а когда нагрузка находится в пределах 50…70%, то входной диапазон становится 140…300В. При нагрузке, которая превышает 70% входной диапазон вообще становиться 160…300 вольт;
  • к сожалению, как и все устройства с двойным преобразованием (например, промышленные преобразователи частоты и ИБП) может выдавать высокочастотные помехи в сеть и нагрузку, что возможно будет влиять на чувствительные приборы;
  • максимальная мощность не больше 20 кВА
  • мощные модели под полной нагрузкой могут существенно греться – необходимо позаботиться об утилизации тепла.

↑ Схема и описание конструкции


Резистором R6 можно регулировать напряжение стабилизации от 6 до 16 В. Было изготовлено два таких устройства. В первом варианте в качестве транзисторов VT1 и VT2 применены КТ803, но внутреннее сопротивление было слишком велико, так при токе 2 А напряжение стабилизации составило 12 В, а при 8 А – 16 В.

Во втором варианте использованы составные транзисторы КТ827, так при токе 2 А напряжение стабилизации составило 12 В, а при 10 А – 12,4 В.

Коллекторы транзисторов VT1 и VT2 электрически можно соединить с корпусом. Вентилятор М1 служит для охлаждения радиатора, на котором установлены транзисторы VT1 и VT2, при замыкании контактов выключателя SA1 увеличивается производительность вентилятора. Светодиод HL1 служит для индикации работы устройства.

Само устройство собрано в корпусе от компьютерного блока питания, использован штатный вентилятор М1, транзисторы VT1 и VT2 установлены на радиаторе площадью не менее 250 см кв. Диод VD1 на ток 10 – 20 А служит для защиты схемы от переполюсовки. Стабилитрон VD1 на напряжение стабилизации 3 – 6 В.

Расчёт последовательного стабилизатора

Пример расчёта простого компенсационного стабилизатора напряжения последовательного типа

Начальные условия: входное напряжение U0 = 24 В, нестабильность входного напряжения ΔU0 = ± 2 В, максимальный ток нагрузки IНmax = 1,5 А, коэффициент стабилизации КСТ ≥ 103. Предусмотреть плавную регулировку выходного напряжения в пределах от UНmin = 12 В до UНmax = 16 В.

1. Определим максимальное напряжение коллектор – эмиттер регулирующего транзистора VT1:

2. Определим максимальную мощность, рассеиваемую на транзисторе VT1:

3. По данным расчёта выбираем транзистор VT1, который удовлетворяет условиям:

Этим условиям удовлетворяет транзистор типа П216В с параметрами: UCEmax = 35 В, IC max = 7,5 А, PC max = 24 Вт, h21e = 30.

4. Для создания опорного напряжения UОП выберем стабилитрон типа Д814А с параметрами UСТ = 8 В, IСТ = 20 мА, rDIF = 6 Ом.

5. Определим максимальное напряжение коллектор – эмиттер усилительного транзистора VT2:

6. Исходя из условия UCE2max < UCE max выбираем в качестве усилительного элемента транзистор типа П416 с h21e = 90 … 250.

7. Полагая, что IK2 ≈ IЕ2 = 10 мА < IC max, найдём сопротивление резистора R2:


8. Учитывая, что IR1 = IC(VT2) + IB(VT1), IB(VT1) = IHmax / (1 + h21e(VT1)) = 1,5/(1 + 30) ≈ 48 mA, определим сопротивление R1:

9. Определим сопротивления резисторов R3, R4, R5. Условимся считать, что если движок потенциометра R4 стоит в крайнем верхнем положении, то выходное напряжение стабилизатора имеет заданное по условию минимальное значение UНmin. В крайнем нижнем положении движка выходное напряжение максимально. Тогда можно записать уравнения

Полагая

получим

Последовательный стабилизатор

Это стабилизатор, установленный последовательно по отношению к нагрузке. Последовательный стабилизатор состоит из стабилитрона (VR1), ограничивающего ток сопротивления (R1), и сопротивления нагрузки (RL).

Стабилитрон и ограничивающее ток сопротивление соединены последовательно, чтобы образовался делитель напряжения. База транзистора подсоединена к делителю напряжения. Контур транзистора «эмиттер-коллектор» соединён последовательно с сопротивлением нагрузки.

Схема последовательного стабилизатора, соединённого с мостовым выпрямителем

Поскольку транзистор в последовательном стабилизаторе напряжение, воздействующее на базу транзистора, равно падению напряжения в стабилитроне. Этот потенциал положителен относительно эмиттера транзистора. Так как стабилитрон поддерживает падение напряжения на постоянном уровне, потенциал, воздействующий на базу транзистора, будет оставаться постоянным.

Последовательный стабилизатор поддерживает постоянный уровень напряжения, подаваемого на нагрузку, изменяя величину падения напряжения в транзисторе. Возрастание тока через нагрузку может быть вызвано либо повышением напряжения источника питания, либо снижением сопротивления нагрузки. Когда ток возрастает, возрастает также и падение напряжения на нагрузке. В результате, напряжение, приложенное к эмиттеру транзистора, возрастает, делая его более положительным. Это означает, что разность электрических потенциалов между эмиттером и базой становится меньше, поэтому возрастает внутреннее сопротивление транзистора.

Стабилизаторы на микросхемах

Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

Последовательный стабилизатор

  • 1 – источник напряжения;
  • 2 – Элемент регулировки;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – определитель напряжения выхода;
  • 6 – сопротивление нагрузки.

Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

Параллельный стабилизатор

  • 1 – источник напряжения;
  • 2 –элемент регулирующий;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – измерительный элемент;
  • 6 – сопротивление нагрузки.

Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

Принцип действия

Рассмотрим, как функционирует стабилизатор напряжения, выполненный своими руками.

После подключения питания емкость С1 находится в состоянии разряда, транзистор VТ1 открытый, а VТ2 закрытый. VТ3 транзистор также остается закрытым. Через него поступает ток на все светодиоды и оптитрон на основе симисторов.

Так как этот транзистор пребывает в закрытом состоянии, то светодиоды не горят, а каждый симистор закрыт, нагрузка выключена. В этот момент ток поступает через сопротивление R1 и приходит на С1. Дальше конденсатор начинает заряжаться.

Диапазон выдержки идет три секунды. За этот период производятся все процессы перехода. После их окончания срабатывает триггер Шмитта на основе транзисторов VТ1 и VТ2. После этого открывается 3-й транзистор и подключается нагрузка.

Напряжение, выходящее с 3-й обмотки Т1, выравнивается диодом VD2 и емкостью С2. Далее ток поступает на делитель на сопротивлениях R13-14. Из сопротивления R14, напряжение, величина которого прямо зависит от величины напряжения, включена в каждый неинвертирующий компараторный вход.

Число компараторов становится равным 8. Они все выполнены на микросхемах DА2 и DА3. В то же время на инвертируемый вход компараторов подходит постоянный ток, подающийся с помощью делителей R15-23. Дальше вступает в действие контроллер, осуществляющий прием входного сигнала каждого компаратора.

Parametric stabilizer

Инженерная программа, предназначенная для расчёта параметрических стабилизаторов на кремниевых или газоразрядных стабилитронах, используемых в источниках питания. Методика расчёта была разработана автором программы и опубликована в статье «Москатов Е. Расчет параметрических стабилизаторов. — Радиомир, 2006, №7, с. 22 — 25».

В справке по программе даны ответы на типовые вопросы, приведены справочные данные кремниевых и газоразрядных стабилитронов. Статус лицензии — donationware (класс freeware), то есть программу можно использовать свободно, и оплата не обязательна. Все представленные для скачивания материалы выполнены на русском языке.

Загрузить материалы

Дополнительная информация

В данной финальной версии программы были введены дополнительные проверки на переполнение исходных данных. Введено сохранение данных. Интерфейс программы стал более эргономичным. Все доступные рисунки, пиктограммы и значки были переделаны с целью удаления из исполняемого файла, файла справки и инсталлятора любых материалов, созданных другими авторами.

Программа создана в ОС Windows XP Home Edition с использованием лицензионного ПО. Были использованы программы: Borland C++Builder 6.0 personal (для написания части кода и отлаживания реализации алгоритма), Borland Turbo C++ 10.0 (для компиляции исполняемого файла), Microsoft Office Visio (для начертания принципиальных схем и рисунков), OpenOffice.org (для написания справки по программе), Sea Monkey (для создания html-файлов справки при помощи «компоновщика»), htm2chm (для компиляции html-файлов в chm-файл справки), IrfanView (для уменьшения числа цветов в растровых изображениях), Slow View (для придания эффекта 3D-кнопки на рисунках), Inno Setup (для создания инсталлятора), FET XP Authenticode (для электронной подписи файлов).

Расширение запакованного файла — EXE, размер — 782 Кбайт.

Известные проблемы и особенности работы.

1. В безопасном режиме текст меню на русском языке отображается не верно (спецсимволами); в остальных частях программы текст отображается корректно. Решение проблемы: не использовать программу в безопасном режиме или использовать англоязычную версию программы, если такая существует.

2. В Windows 95 программа работать будет, однако будет нельзя просмотреть файл справки встроенными в ОС средствами. Использование средства просмотра chm-файла решит данную проблему.

3. Если разрешение изображения монитора будет менее 800 × 600 точек, то элементы интерфейса программы будут сдвинуты на форме. Решение проблемы: не использовать программу при столь низком разрешении монитора.

Файл справки по программе «Parametric stabilizer 4.0.0.0». Его можно распечатать. Расширение файла — PDF, размер — 135 Кбайт.

Исходные тексты программы «Parametric stabilizer 4.0.0.0», которые можно проанализировать в среде Borland Developer Studio. Расширение файла — ZIP, размер — 134 Кбайт.

История основных версий программы «Parametric stabilizer». Расширение файла — TXT, размер — 3,5 Кбайт.

Рекомендуемые требования к оборудованию

Компьютер с процессором семейств Intel Pentium / Celeron или совместимым с ними процессором, тактовая частота которого составляет не менее 200 МГц, или более мощным.

Оперативная память: 32 Мбайт.

Свободное место на диске: 2 Мбайт.

Видеоплата и монитор с разрешением не менее 800 × 600 точек.

Клавиатура, мышь или другое указательное устройство.

Рекомендуемые требования к системному программному обеспечению

Операционная система Microsoft Windows 98 Second Edition, Microsoft Windows Millennium, Windows 2000 Professional, Windows XP Home Edition, Windows XP Professional, Windows 2003 Server, Windows Vista Starter, Windows Vista Home Basic, Windows Vista Home Premium, Windows Vista Business, Windows Vista Enterprise, Windows Vista Ultimate.

Так как программа имеет русскоязычный интерфейс, операционная система должна обеспечивать необходимую языковую поддержку.

Скриншот программы «Parametric stabilizer 4.0.0.0»

Основные технические характеристики LM338

Простой регулируемый источник питания

Первая схема — типовое подключение обвязки LM338. Схема обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.

Переменный резистор R1 используется для плавного регулирования выходного напряжения.

Простой 5 амперный регулируемый источник питания

Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.

Регулируемый источник питания на 15 ампер

Как уже было сказано ранее микросхема LM 338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:

В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.

Переменный резистор R8 предназначен для плавной регулировки выходного напряжения

Источник питания с цифровым управлением

В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.

Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.

Схема контроллера освещения

Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.

Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.

Зарядное устройство 12В на LM338

Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.

Схема плавного включения (мягкий старт) блока питания

Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С1 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.

Схема термостата на LM338

LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.

Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.

Информация взята с joyta.ru

Купить Регулируемые стабилизаторы напряжения LM338 за $2.65

Схема на транзисторе и стабилитроне

Подключение ключевого элемента к простейшему устройству на стабилитроне позволяет с минимальными затруднениями увеличить ток нагрузки. Применение полевого транзистора вместо биполярного позволяет уменьшить рассеиваемую мощность, снизить падение на полупроводниковых переходах, увеличивая таким образом КПД конструкции.

Какой выбрать стабилизатор напряжения, зависит от предъявляемых требований по значению тока нагрузки, коэффициенту стабилизации, габаритам конструкции.

Во многом это зависит от личных предпочтений. Компенсационные и параметрические устройства просты для понимания, легко собираются и настраиваются. Импульсные устройства более сложные технически. Хотя существует множество готовых интегральных микросхем импульсных стабилизаторов, отсутствие четкого понимания их работы может затруднить поиск неисправностей. Выбранная с некоторым запасом по току конструкция может простоять под нагрузкой неограниченное время.

Компенсационный стабилизатор последовательного типа

В стабилизаторах последовательного типа регулирующий элемент включён последовательно с источником входного напряжения U0 и нагрузкой RH. Если по некоторым причинам напряжение на выходе U1 отклонилось от своего номинального значения, то разность опорного и выходного напряжений изменяется. Это напряжение усиливается и воздействует на регулирующий элемент. При этом сопротивление регулирующего элемента автоматически меняется и напряжение U0 распределится между Р и RH таким образом, чтобы компенсировать произошедшие изменения напряжения на нагрузке.

Регулирующий элемент в компенсационных стабилизаторах напряжения выполняется, как правило, на транзисторах. Выбирая которые исходят из значений коэффициента передачи тока h21e, напряжения насыщения между коллектором и эмиттером UКЭнас.

Схемы элементов сравнения и усилители постоянного тока очень часто совмещают и выполняются на обычных усилителях, дифференциальных усилителях или операционных усилителях.

Рассмотрим схему компенсационного стабилизатора напряжения последовательного типа.



Схема простого компенсационного стабилизатора напряжения последовательного типа

В этой схеме транзистор VT1 выполняет функции регулирующего элемента, транзистор VT2 является одновременно сравнивающим и усилительным элементом, а стабилитрон VD1 используется в качестве источника опорного напряжения. Напряжение между базой и эмиттером транзистора VT2 равно разности напряжений UОП и UРЕГ. Если по какой-либо причине напряжение на нагрузке возрастает, то увеличивается напряжение UРЕГ, которое приложено в прямом направлении к эмиттерному переходу транзистора VT2. Вследствие этого возрастут эмиттерный и коллекторный токи данного транзистора. Проходя по сопротивлению R1, коллекторный ток транзистора VT2 создаст на нем падение напряжения, которое по своей полярности является обратным для эмиттерного перехода транзистора VT1. Эмиттерный и коллекторные токи этого транзистора уменьшатся, что приведёт к восстановлению номинального напряжения на нагрузке. Точно так же можно проследить изменения токов при уменьшении напряжения на нагрузке.

Ступенчатую регулировку выходного напряжения можно осуществить, используя опорное напряжение, снимаемое с цепочки последовательно включённых стабилитронов. Плавная регулировка обычно производится с помощью делителя напряжения R3, R4, R5, включённого в выходную цепь стабилизатора.

Если пренебречь падением напряжения на эмиттерном переходе транзистора VT2, то выходное напряжение стабилизатора


где R4’ и R4’’ соответственно верхняя и нижняя по схеме часть резистора R4.

Простой СН, сделанный своими руками

Параметрический стабилизатор напряжения

Стабилизатор напряжения 12 вольт для светодиодов, подсветок автомобильных бортовых систем быстро и удобно выполнять, используя для этого микросхемы: LM317, LD1084, L7812, КРЕН 8Б и им подобные устройства. Несколько диодов, сопротивление и сама микросхема – вот составляющие такого СН.

Стабилизатор на LM317

В зависимости от варианта изготовления корпуса LM317 подбирают расположение деталей на плате.

LM317 с креплением на теплоотвод

Изготовление стабилизатора сводится к следующему:

  • к выходу (Vout) припаивают сопротивление с номинальным значением 130 Ом;
  • к контакту входа (Vin) присоединяют провод, подающий напряжение для стабилизации;
  • регулировочный вход (Adj) подключают ко второму выводу резистора.

При подключении в качестве нагрузки светодиодных фонарей, лент и т.д. радиатор не требуется. Сборка занимает 15-20 минут при минимуме деталей. Используя несложную формулу, можно рассчитывать величину сопротивления R для получения определённой величины допустимого тока нагрузки.

Схема СН на LM317

Схема на микросхеме LD1084

Поддержанию напряжения 12 В неизменным для устройств светодиодной иллюминации, подключённой к бортовой сети автомобиля, поможет применение данной микросборки.

Даташит LD1084

Здесь для сборки самодельного СН в цепь обвязки микросхемы включаются:

  • два электролитических конденсатора по 10 мкФ * 25 В;
  • резисторы: 1 кОм (2 шт.), 120 Ом, 4,7 кОм (можно постоянный);
  • диодный мост RS407.

Устройство собирается следующим образом:

  • напряжение, снимаемое с диодного моста выпрямителя, подаётся на вход LD1084;
  • на контакт, управляющий режимом стабилизации (Adj), присоединяют эмиттер транзистора КТ818, база которого соединена через два одноколонных сопротивления с цепями питания света фар (ближнего и дальнего);
  • выходная цепь микросхемы соединена с резисторами R1 и R2, а также с конденсатором.

Кстати. Резистор R2 можно брать не переменный, а подстроечный, выставив с его помощью величину выходного напряжения 12 В.

СН для бортовой сети

Стабилизатор на диодах и сборке L7812

Подобная микросхема в связке с диодом и конденсаторами может снабжать светодиоды стабильным напряжением 12 В.

Схема построена по ниже изложенному принципу:

  • диод Шоттки 1N401 пропускает через себя ток от плюсовой клеммы аккумулятора и подаёт его на вход микросхемы. При этом «+» электролита (конденсатора на 330 мкФ) также соединён с катодом диода;
  • на выход L7812 присоединяют цепь нагрузки и «+» конденсатора ёмкостью 100 мкФ;
  • все минусовые клеммы (от аккумулятора и обоих электролитических конденсаторов) соединяются с управляющим входом микросхемы.

Электролитические конденсаторы подбирают на напряжение не ниже 25 В.

Схема стабилизатора 12 В на ИМС L7812

Самый простой стабилизатор – плата КРЕН

Схемы с использованием крен довольно популярны. Так называют ИМС, в маркировку которых входят сочетания букв КР и ЕН. Это мощные СН, позволяющие выдавать на нагрузку ток до 1,5 А. Они имеют на выходе стабильные 12 В при подаче на вход напряжения до 35 В.

Схема с использованием этой микросхемы собирается так:

  • напряжение с плюсовой клеммы АКБ (аккумуляторной батареи) на вход крен подаётся через диод 1N4007, он защищает цепь аккумулятора от обратных напряжений;
  • минусовая клемма АКБ соединяется с управляющим электродом КРЕН;
  • напряжение с выхода подаётся на нагрузку.

При необходимости микросхему прикручивают к радиатору.

КР142ЕН8Б, схема подключения

Сборка своими руками стабилизаторов напряжения на 12 В с использованием схем линейных и интегральных СН не составляет особого труда. При этом необходимо следить за температурой нагрева корпуса элементов и при Т0С выше допустимой устанавливать их на теплоотводы (радиаторы).

Схема параметрического стабилизатора

Представленный ниже базовый вариант можно модернизировать. На втором рисунке показано последовательное расположение стабилитронов. Так можно составлять несколько приборов для получения необходимого значения напряжения Uст. Встречное соединение применяют для стабилизации переменного напряжения, когда действие функциональных компонентов ограничено соответствующими периодами волнового колебательного процесса.

К сведению. Этот пример создан с применением классических принципов деления напряжения элементами Rогр и VD. Если правильно рассчитать рабочий режим, изменения на выходе источника питания будут сглажены.