Формула сопротивления при параллельном и последовательном соединении
Течение тока в электрической цепи осуществляется по проводникам, в направлении от источника к потребителям. В большинстве подобных схем используются медные провода и электрические приемники в заданном количестве, обладающие различным сопротивлением.
В зависимости выполняемых задач, в электрических цепях используется последовательное и параллельное соединение проводников. В некоторых случаях могут быть применены оба типа соединений, тогда этот вариант будет называться смешанным.
Каждая схема имеет свои особенности и отличия, поэтому их нужно обязательно заранее учитывать при проектировании цепей, ремонте и обслуживании электрооборудования.
Последовательное соединение проводников
В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.
Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.
Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:
- Сила тока на всех участках цепи будет одинаковой.
- Общее напряжение цепи составляет сумму напряжений на каждом участке.
- Общее сопротивление включает в себя сопротивления каждого отдельного проводника.
Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.
Если соединить последовательно одинаковые элементы в количестве n, то получится R = n х R1, где R – общее сопротивление, R1 – сопротивление одного элемента, а n – количество элементов. Напряжение U, наоборот, делится на равные части, каждая из которых в n раз меньше общего значения. Например, если в сеть с напряжением 220 вольт последовательно включаются 10 ламп одинаковой мощности, то напряжение в любой из них составит: U1 = U/10 = 22 вольта.
Проводники, соединенные последовательно, имеют характерную отличительную особенность. Если во время работы отказал хотя-бы один из них, то течение тока прекращается во всей цепи. Наиболее ярким примером является елочная гирлянда, когда одна перегоревшая лампочка в последовательной цепи, приводит к выходу из строя всей системы. Для установления перегоревшей лампочки понадобится проверка всей гирлянды.
Параллельное соединение проводников
В электрических сетях проводники могут соединяться различными способами: последовательно, параллельно и комбинированно. Среди них параллельное соединение это такой вариант, когда проводники в начальных и конечных точках соединяются между собой. Таким образом, начала и концы нагрузок соединяются вместе, а сами нагрузки располагаются параллельно относительно друг друга. В электрической цепи могут содержаться два, три и более проводников, соединенных параллельно.
Если рассматривать последовательное и параллельное соединение, сила тока в последнем варианте может быть исследована с помощью следующей схемы. Берутся две лампы накаливания, обладающие одинаковым сопротивлением и соединенные параллельно. Для контроля к каждой лампочке подключается собственный амперметр. Кроме того, используется еще один амперметр, контролирующий общую силу тока в цепи. Проверочная схема дополняется источником питания и ключом.
После замыкания ключа нужно контролировать показания измерительных приборов. Амперметр на лампе № 1 покажет силу тока I1, а на лампе № 2 – силу тока I2. Общий амперметр показывает значение силы тока, равное сумме токов отдельно взятых, параллельно соединенных цепей: I = I1 + I2. В отличие от последовательного соединения, при перегорании одной из лампочек, другая будет нормально функционировать. Поэтому в домашних электрических сетях используется параллельное подключение приборов.
Закон Ома для электрической цепи
В основе расчёта входного и выходного напряжения цепи лежит закон Ома, знакомый ещё со школы по курсу физики. Базовая формула расчёта напряжения на участке цепи выглядит так:
Определить напряжение в цепи переменного тока можно по следующей формуле:
U=I/ Z, где
в этой формуле Z означает сопротивление (Ом), которое было получено на протяжении всей цепи.
В ряде случаев показатели не могут быть рассчитаны по этим фармулам напрямую.
- В случаях нахождения проводников или диэлектриков под воздействием высокого напряжения.
- В случаях быстро изменяющихся электромагнитных полей при прохождении токов высокой частоты. В этом случае требуется учитывать также инерцию переносящих заряд частиц.
- В условиях возникновении свойств сверхпроводимости, если цепи работают при экстремально низких температурах.
- При нагреве проводника протекающим по нему током.
- Для светодиодов. Зависимость между током и падением напряжения в этом случае нелинейная.
- Для процессов в устройствах на основе полупроводников.
Обзор
Данный калькулятор предназначен для расчета волнового сопротивления (импеданса) двухпроводной микрополосковой линии с боковой связью. Такая микрополосковая линия состоит из двух дорожек, привязанных к одной опорной плоскости, отделенной от них диэлектрическим материалом. Одной из особенностей этого типа микрополосковых линий является связь между линиями.
Для использования данного калькулятора просто введите значения толщины дорожки, высоты подложки, ширины дорожки, расстояния между дорожками и относительной диэлектрической проницаемости и нажмите кнопку «Расчет». Выходное значение импеданса может быть нечетным, четным, синфазным и дифференциальным. Определение этих импедансов смотрите ниже.
Рисунок 1 – Размеры микрополосковой линии
Сила тока – что это
Рассматривая количество электроэнергии, которое протекает через определенный проводник за различные временные интервалы, станет ясно, что за малый промежуток ток протечет более интенсивно, поэтому нужно ввести еще одно определение. Оно означает силу тока, протекающую в проводнике за секунду времени.
Если сформулировать определение на основе всего вышеперечисленного, то сила электротока – это количество электроэнергии, проходящее через поперечное сечение проводника за секунду. Маркируется величина латинской буквой «I».
Важно! Специалисты определяют силу электротока, равную одному амперу, когда через поперечное сечение проводника проходит один кулон электричества за одну секунду. Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее
Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль
Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее. Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль.
Если известно количество электроэнергии, которое прошло через проводник за конкретный промежуток времени, то силу (не мощность) можно вычислить по формуле, изображенной на картинке.
Когда электросеть замкнута и не имеет никаких ответвлений, через каждое поперечное сечение за секунду протекает одно и то же количество электричества. Теоретически это обосновывается так: заряд не может накапливаться в определенном месте, и сила электротока везде одинакова.
Индуктивное сопротивление катушки
Сопротивление тока: формула
Катушка индуктивности – пассивный компонент электросхем, который имеет возможность сохранять электроэнергию посредством превращения ее в магнитное поле. Такой процесс является главной функцией такого электрического компонента.
Разновидности обозначения катушек индуктивности на электросхемах
По своим свойствам и основным техническим характеристикам индуктивная катушка напоминает конденсатор, какой преобразует энергию в электрополе.
Индуктивность заключается в том, что вокруг проводникового элемента с током образуется магнитное поле. Связано это с ЭДС, что противодействует силе тока и приложенному электронапряжению в катушке. Это свойство есть индуктивное сопротивление катушки. Ее индуктивность можно увеличить посредством увеличения количества витков в ней.
Внешний вид сверхмощной катушки индуктивности
Интересно знать. Согласно закону Ома, сила электротока обратно пропорциональна сопротивлению и прямо пропорциональна электронапряжению в цепи. Если принять сопротивление катушки току переменного типа за величину ωL, то получится закон Ома для электрической цепи с чистой индуктивной нагрузкой. Формула будет выглядеть так: U0=I0*ωL.
Для выяснения количественной характеристики индуктивного сопротивления катушки стоит помнить, что оно противодействует электротоку переменного типа. На практике же индуктивная катушка имеет свое собственное некоторое сопротивление.
Переменный синусоидальный электроток, проходящий через катушку, приводит к возникновению ЭДС, или синусоидального электронапряжения переменного типа
Зная такое важное понятие, как индуктивное сопротивление, а также формулы и зависимости этой величины, можно производить верные расчеты во многих отраслях промышленности, электротехнике и энергетике
§ 2.9. Закон Ома для электрической цепи переменного тока
Рассмотрим теперь более общий случай электрической цепи, в которой последовательно соединены проводник с активным сопротивлением R и малой индуктивностью, катушка с большой индуктивностью L и малым активным сопротивлением и конденсатор емкостью С (рис. 2.20).
Рис. 2.20
Чему равна амплитуда силы тока в такой цепи (колебательном контуре), если на ее концах поддерживается напряжение u(t) = U sin ωt?
Мы видели, что при включении по отдельности в цепь проводника с активным сопротивлением R, конденсатора емкостью С или катушки с индуктивностью L амплитуда силы тока определяется соответственно формулами (2.6.2), (2.7.3) и (2.8.4). Амплитуды же напряжений на резисторе, катушке индуктивности и конденсаторе связаны с амплитудой силы тока так:
В цепях постоянного тока напряжение на концах цепи равно сумме напряжений на отдельных последовательно соединенных участках цепи. Однако, если измерить результирующее напряжение на контуре и напряжения на отдельных элементах цепи переменного тока, окажется, что напряжение на контуре (действующее значение) не равно сумме напряжений на отдельных элементах.
Почему это так? Дело в том, что гармонические колебания напряжения на различных участках цепи сдвинуты по фазе друг относительно друга.
Действительно, квазистационарный ток в любой момент времени одинаков во всех участках цепи. Это значит, что одинаковы амплитуды и фазы токов, протекающих по участкам с емкостным, индуктивным и активным сопротивлением. Однако только на участке с активным сопротивлением колебания напряжения и силы тока совпадают по фазе. На конденсаторе колебания напряжения отстают по фазе от колебаний силы тока на π/2 (см. § 2.7), а на катушке индуктивности колебания напряжения опережают колебания силы тока на π/2 (см. § 2.8).
Векторная диаграмма электрической цепи
Для вывода закона Ома в случае электрической цепи переменного тока, изображенной на рисунке 2.20, нужно уметь складывать мгновенные колебания напряжений, сдвинутых по фазе друг относительно друга. Проще всего выполнять сложение нескольких гармонических колебаний с помощью векторных диаграмм, о которых было рассказано в § 1.11. Векторная диаграмма электрических колебаний в цепи позволит нам определить амплитуду силы тока в зависимости от амплитуды напряжения и сдвиг фаз между силой тока и напряжением.
Так как сила тока одинакова во всех участках цепи, то построение векторной диаграммы удобно начать с вектора силы тока m. Этот вектор изобразим в виде вертикальной стрелки (рис. 2.21). Напряжение на резисторе совпадает по фазе с силой тока. Поэтому вектор mR должен совпадать по направлению с вектором m. Его модуль равен UmR = ImR.
Рис. 2.21
Колебания напряжения на катушке индуктивности опережают колебания силы тока на π/2 и соответствующий вектор и mL должен быть повернут относительно вектора m на π/2. Его модуль равен UmL = IωL. Если считать, что положительному сдвигу фаз соответствует поворот вектора против часовой стрелки, то вектор mL следует повернуть налево на π/2. (Можно было бы, конечно, поступить и наоборот.)
Вектор напряжения на конденсаторе mC отстает по фазе от вектора m на π/2 и поэтому повернут на этот угол относительно вектора m направо. Его модуль равен .
Для нахождения вектора суммарного напряжения m нужно сложить три вектора: mR, mL и mC. Вначале удобнее сложить два вектора mL и mC (рис. 2.22).
Рис. 2.22
Модуль этой суммы равен , если . Именно такой случай изображен на рисунке. После этого, сложив вектор mL + mC с вектором mR, получим вектор m, характеризующий колебания напряжения в сети.
По теореме Пифагора (из треугольника АОВ):
или
Из равенства (2.9.2) можно найти амплитуду силы тока в цепи:
Это и есть закон Ома для электрической цепи переменного тока, изображенной на рисунке 2.20.
Благодаря сдвигу фаз между напряжениями на различных участках цепи полное сопротивление Z цепи (см. рис. 2.20) выражается так:
От амплитуд силы тока и напряжения можно перейти к действующим значениям этих величин. Они связаны друг с другом точно так же, как и амплитуды в формуле (2.9.3):
Мгновенное значение силы тока меняется со временем гармонически:
где φc, — разность фаз между силой тока и напряжением в сети. Она зависит от частоты со и параметров цепи R, L, С.
Сдвиг фаз между током и напряжением
Сдвиг фаз φc, между колебаниями силы тока и напряжения равен по модулю углу φ между векторами m и m (см. рис. 2.22). Как следует из этого рисунка,
Согласно рисунку 2.22, сила тока отстает от напряжения по фазе при условии . Поэтому сдвиг фаз φc = -φ и
В частных случаях цепей с активным, емкостным и индуктивным сопротивлениями из этой формулы получаются правильные значения сдвига фаз.
Мощность в цепи с реактивными радиоэлементами
Для дальнейшего объяснения этого явления нам потребуется наша осциллограмма с катушки индуктивности:
Итак, давайте выделим на ней один период и разделим его на 4 части, то есть по 90 градусов каждая или π/2.
Давайте начнем с такого понятия, как мощность. Если не забыли, мощность – это сила тока помноженное на напряжение, то есть P=IU. Итак, в первую четвертинку периода t1 у нас напряжение принимает положительные значения и сила тока тоже положительное. Плюс на плюс дает плюс. В эту четверть периода энергия поступает из источника в реактивное сопротивление.
Теперь давайте рассмотрим отрезок времени t2. Здесь ток со знаком “плюс”, а напряжение со знаком “минус”. В итоге плюс на минус дает минус. Получается мощность со знаком “минус”. А разве так бывает? Еще как бывает! В этот промежуток времени реактивный радиоэлемент отдает запасенную энергию обратно в источник напряжения. Для лучшего понимания давайте рассмотрим простой житейский пример.
Представим себе кузнеца за работой:
Не знаю, какое было у вас детство, но я когда был пацаном, брал свинец с аккумуляторов и плющил его в металлические пластинки. И что думаете? Свинец нагревался. Не так, чтобы прям обжигал, а был тепленький на ощупь. То есть моя энергия удара превращалась в тепло, можно даже сказать, в полезную энергию.
А что если взять пружину от стоек ВАЗа и ударять по ней?
С пружиной не станет НИ-ЧЕ-ГО! Она ведь не свинец. Но… заметьте вот такую вещь: как только мы начинаем “плющить” пружину кувалдой, у нас она начинает сжиматься. И вот она сжалась до упора и… выстрелила вверх, подхватив с собой тяжелую кувалду, которая только что пыталась ее расплющить. То есть в данном случае энергия вернулась обратно в источник энергии, то есть обратно к кузнецу. Он вроде как и пытался расплющить пружину, но пружина вернула энергию обратно своим разжатием. То есть кузнецу не надо уже было подымать тяжелый молот, так как за него это уже сделала пружина.
Разжатие пружины и возврат ею энергии обратно – это и есть отрицательная мощность. В этом случае энергия возвращается обратно в источник. Хорошо ли это или плохо – это уже другая история.
В третий промежуток времени t3 и ток и напряжение у нас со знаком “минус”. Минус на минус – это плюс. То есть реактивный элемент снова поглощает энергию, ну а на t4, снова ее отдает, так как плюс на минус дает минус.
В результате за весь период у нас суммарное потребление энергии равно чему?
Правильно, нулю!
Так что же это получается тогда? На катушке и конденсаторе не будет выделяться никакой энергии? Получается так. Поэтому в схемах они чаще всего холодные, хотя могут быть и слегка теплыми, так как реальные параметры катушки и конденсатора выглядят совсем по другому.
Эквивалентная схема реальной катушки индуктивности выглядит вот так:
где
RL – это сопротивление потерь. Это могут быть потери в проводах, так как любой провод обладает сопротивлением. Это могут быть потери в диэлектрике, потери в сердечнике и потери на вихревые токи. Как видите, раз есть сопротивление, значит на нем может выделяться мощность, то есть тепло.
L – собственно сама индуктивность катушки
С – межвитковая емкость.
А вот и эквивалентная схема реального конденсатора:
где
r – сопротивление диэлектрика и корпуса между обкладками
С – собственно сама емкость конденсатора
ESI (ESL) – эквивалентная последовательная индуктивность
Здесь мы тоже видим такие параметры, как r и ESR, которые на высоких частотах будут еще лучше себя проявлять, благодаря скин-эффекту. Ну и, соответственно, на них будет выделяться мощность, что приведет к небольшому малозаметному нагреву.
Расчёт сопротивления проводника
Выше были рассмотрены упрощенные методики, которые надо корректировать с учетом реальных условий. Так, существенное влияние на проводимость материалов оказывает температура. В серийных проводниках (медь, алюминий) значение данного параметра увеличивается в пропорции 0,3-0,5% на каждый градус. В составах на основе угля и электролитах наблюдается обратный эффект – уменьшение сопротивления.
Без удерживающих струн и других приспособлений для фокусов обеспечивается настоящая левитация с применением сверхпроводимости
Показанный на рисунке эксперимент можно воспроизвести, понизив температуру металла до «абсолютного нуля» (-273°C). При таком экстремальном охлаждении атомарная решетка фиксируется в стабильном положении.
Это состояние создает идеальные условия для перемещения электронов. Отсутствие препятствий сопровождается минимальными потерями, что объясняет перспективность направления для создания эффективных линий передачи энергии. Пример на рисунке демонстрирует улучшенные эксплуатационные параметры транспортных коммуникаций. В данном случае можно исключить силы трения.
Комбинация трубы с безвоздушным пространством и сверхпроводимости улучшает характеристики перспективных транспортных систем
Понятно, что для улучшения экономических показателей необходимо повысить рабочую температуру при сохранении хорошей проводимости. Однако новейшие научные достижения в соответствующей области позволяют рассчитывать на положительный результат в близком будущем.
Следует подчеркнуть! На практике могут понадобится разные технологии вычислений. Например, материал неизвестен. Сложно идентифицировать его по внешним признакам. Для качественного химического лабораторного анализа, кроме соответствующих навыков, необходимо специальное оснащение.
Однако при необходимости нетрудно вывести удельный показатель:
Rуд = R * S /L.
Геометрические параметры измеряют стандартными инструментами (линейкой, штангенциркулем). По типовой схеме измерений с помощью мультиметра уточняют электрическое сопротивление. Для вычисления Rуд пользуются представленной выше формулой. В справочнике выбирают позицию, соответствующую результату расчета. По такой же методике можно определить иные неизвестные значения, например, длину кабеля в подземной трассе.
В реальных расчетах для повышения точности учитывают реактивные компоненты проводников. Например, индуктивность длинной прямой линии определяют по формуле:
И = (m0/2π) * L *(mc * ln(L/r) +1/4m,
где:
- m – магнитная проницаемость материала (о – постоянная, с – окружающей среды);
- r и L – радиус и длина проводника, соответственно.
При повышении частоты приходится учитывать растекание тока в поверхностной зоне и вихревые изменения.
Представленные теоретические знания пригодятся для расчета и создания реостата – прибора с регулируемым сопротивлением. Они нужны для предотвращения электротравм с применением точного расчета защитных цепей и специализированных автоматов (предохранителей).
Советуем изучить Реактивное сопротивление
Заказать решение ТОЭ
- Метрология Электрические измерения
- Пигарев А.Ю. РГЗ по электротехнике и электронике в Multisim
-
Теория линейных электрических цепей ТЛЭЦ
-
—
Теория линейных электрических цепей железнодорожной автоматики, телемеханики и связи: задание на контрольные работы № 1 и 2 с методическими указаниями для студентов IV курса специальности Автоматика, телемеханика и связь на железнодорожном транспорте-
—
Контрольная работа №1 -
—
Контрольная работа №2
-
—
-
—
-
Электротехника и основы электроники
-
—
Электротехника и основы электроники: Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей высших учебных заведений / Соколов Б.П., Соколов В.Б. – М.: Высш. шк., 1985. – 128 с, ил-
—
Контрольная работа № 1 Электрические цепи -
—
Контрольная работа № 2 Трансформаторы и электрические машины -
—
Контрольная работа № 3 Основы электроники
-
—
-
—
-
Теоретические основы электротехники ТОЭ
-
—
Артеменко Ю.П., Сапожникова Н.М. Теоретические основы электротехники: Пособие по выполнению курсовой работы МГТУ ГА 2009 -
—
Переходные процессы Переходные процессы в электрических цепях -
—
Теоретические основы электротехники Методические указания и контрольные задания для студентов технических специальностей вузов-
—
Задание 1 Линейные электрические цепи постоянного и синусоидального тока-
—
Задача 1.1 Линейные электрические цепи постоянного тока -
—
Задача 1.2 Линейные электрические цепи синусоидального тока
-
—
-
—
Задание 2 Четырехполюсники, трехфазные цепи, периодические несинусоидальные токи, электрические фильтры, цепи с управляемыми источниками
-
—
-
—
Теоретические основы электротехники сб. заданий Р.Я. Сулейманов Т.А. Никитина Екатеринбург УрГУПС 2010 -
—
Трехфазные цепи. Расчет трехфазных цепей -
—
УГТУ-УПИ Решение ТОЭ Билеты по ТОЭ -
—
Электромагнитное поле Электростатическое поле Электростатическое поле постоянного тока в проводящей среде Магнитное поле постоянного тока
-
—
Физика для средней школы
Сопротивление проводников. Удельное сопротивление
Как уже отмечалось, сила тока в цепи зависит не только от напряжения на концах участка, но также и от свойств проводника, включенного в цепь. Зависимость силы тока от свойств проводников объясняется тем, что разные проводники обладают различным электрическим сопротивлением.
Электрическое сопротивление R — физическая скалярная величина, характеризующая свойство проводника уменьшать скорость упорядоченного движения свободных носителей зарядов в проводнике. Обозначается сопротивление буквой R. В СИ единицей сопротивления проводника является ом (Ом).
1 Ом — сопротивление такого проводника, сила тока в котором равна 1 А при напряжении на нем 1 В.
Применяются и другие единицы: килоом (кОм), мегаом (МОм), миллиом (мОм): 1 кОм = 103 Ом; 1 МОм = 106 Ом; 1 мОм = 10-3 Ом.
Физическую величину G, обратную сопротивлению, называют электрической проводимостью
Единицей электрической проводимости в СИ является сименс: 1 См — это проводимость проводника сопротивлением 1 Ом.
Проводник содержит не только свободные заряженные частицы — электроны, но и нейтральные частицы и связанные заряды. Все они участвуют в хаотическом тепловом движении, равновероятном в любых направлениях. При включении электрического поля под действием электрических сил будет преобладать направленное упорядоченное движение свободных зарядов, которые должны двигаться с ускорением и их скорость должна была бы со временем возрастать. Но в проводниках свободные заряды движутся с некоторой постоянной средней скоростью. Следовательно, проводник оказывает сопротивление упорядоченному движению свободных зарядов, часть энергии этого движения передается проводнику, в результате чего повышается его внутренняя энергия. Из-за движения свободных зарядов искажается даже идеальная кристаллическая решетка проводника, на искажениях кристаллической структуры рассеивается энергия упорядоченного движения свободных зарядов. Проводник оказывает сопротивление прохождению электрического тока.
Сопротивление проводника зависит от материала, из которого он изготовлен, длины проводника и площади поперечного сечения. Для проверки этой зависимости можно воспользоваться той же электрической схемой, что и для проверки закона Ома (рис. 2), включая в участок цепи MN различные по размерам проводники цилиндрической формы, изготовленные из одного и того же материала, а также из разных материалов.
Результаты эксперимента показали, что сопротивление проводника прямо пропорционально длине l проводника, обратно пропорционально площади S его поперечного сечения и зависит от рода вещества, из которого изготовлен проводник:
где — удельное сопротивление проводника.
Удельное сопротивление проводника — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника, изготовленного из данного вещества и имеющего длину 1 м и площадь поперечного сечения 1 м2, или сопротивлению куба с ребром 1 м. Единицей удельного сопротивления в СИ является ом-метр (Ом·м).
Удельное сопротивление металлического проводника зависит от
- концентрации свободных электронов в проводнике;
- интенсивности рассеивания свободных электронов на ионах кристаллической решетки, совершающих тепловые колебания;
- интенсивности рассеивания свободных электронов на дефектах и примесях кристаллической структуры.
Наименьшим удельным сопротивлением обладает серебро и медь. Очень велико удельное сопротивление у сплава никеля, железа, хрома и марганца — «нихрома». Удельное сопротивление кристаллов металлов в значительной степени зависит от наличия в них примесей. Например, введение 1 % примеси марганца увеличивает удельное сопротивление меди в три раза.
Импеданс цепи
Немецкий физик, проводя эксперименты, смог обнаружить зависимость между током и напряжением. Их связь определялась через постоянную величину, которая после была названа сопротивлением. Так, формула закона Ома для полной цепи может быть записана в виде выражения:
I = E/Z, где:
- I — сила тока цепи;
- E — электродвижущая сила, приложенная к цепи;
- Z — постоянная величина (полное сопротивление).
Полное сопротивление (импеданс) электрической цепи важный параметр, определяющий силу тока и полезную мощность. Состоит она из нескольких составляющих: внутреннего сопротивления источника тока и сопротивления элементов, из которых состоит схема.
https://youtube.com/watch?v=SKUTFftg1Lc
Активная составляющая
Такое сопротивление называется активным, так как оно забирает на себя часть мощности, поступающей от источника питания. Эта забираемая энергия, проходя через проводник, превращается в тепло. При этом можно обнаружить, что если проводник подключить к переменному источнику сигнала, то его сопротивление будет немного больше. Связано это с тем, что индуцируемая ЭДС в материале в любой его точке неодинаковая. Ближе к центру она будет больше, чем у поверхности. То есть при переменном сигнале как бы происходит уменьшение полезного сечения проводника.
Вам это будет интересно Принцип работы и применение управляемого тиристора
Сопротивление зависит от физических параметров материала. Математически это может быть описано выражением: R = p*L/S, где L — длина проводника, S — поперечное сечение, p — удельное сопротивление (табличное значение). Активное сопротивление слабо зависит от частоты сигнала, но при его увеличении возрастает.
Реактивное сопротивление
Индуктивное сопротивление связано с ЭДС самоиндукции. При протекании через элемент, обладающий индуктивностью, переменного тока, возникает магнитное поле, создающее ЭДС. Эта сила противодействует внешнему полю и препятствует его распространению. Затрачиваемая энергия увеличивает мощность магнитного поля. Как только ток уменьшается, значение магнитного поля начинает тоже снижаться, индуцируя ток самоиндукции. Его направление совпадает с убывающим током. В результате энергия, отобранная магнитным полем, начинает отдаваться обратно в цепь. То есть фактически, в отличие от активного сопротивления, потерь энергии не возникает.
Величина индуктивного сопротивления находится по формуле X L = 2 p * f * L, где: f — частота сигнала, L — значение индуктивности. Напряжение, приложенное к индуктивности и ток, поступающий от источника энергии, сдвинуты относительно друг друга по фазе на 90, при этом ток отстаёт от напряжения.
Ёмкостное же сопротивление обусловлено возникновением электродвижущей силы. При прохождении через ёмкость энергия, поступающая от источника питания должна преодолеть ёмкостное сопротивление, затрачивая часть мощности для её заряда. Но как только подаваемый сигнал изменит знак, весь накопленный заряд ёмкостью начнёт возвращаться в цепь, увеличивая энергию электрического поля.
Другими словами, ёмкость становится источником ЭДС. Ёмкостное сопротивление описывается выражением: X c = 1/ (2 p * f * C), где: C — величина ёмкости. При таком роде сопротивления ток будет опережать напряжение по фазе на 90.
Таким образом, реактивное сопротивление зависит от частоты сигнала. Общий же импеданс определяется не как сумма всех сопротивлений, а по формуле Z = (R2+ X l2+ X c2)½.
Вам это будет интересно Виды однополюсных и двухполюсных указателей напряжения до 1000 В
Приложенное напряжение и падение напряжения на участке цепи.
Напряжения, действующие в электрических цепях, условно можно разделить на два типа: — приложенное к цепи напряжение; — падение напряжения на участках цепи или на всей цепи. Приложенное напряжение это напряжение, подведенное к цепи (рис. 1.).
Рисунок 1. Приложенное напряжение и падение напряжения на участке цепи.
Источник напряжения подключен к цепи, поток электронов перемещается от минуса к плюсу источника напряжения. Если источник напряжения имеет значение напряжения 12 вольт (например, автомобильная аккумуляторная батарея), то приложенное напряжение будет иметь значение так же 12 вольт. При движении потока электронов по цепи они встречает, как мы знаем, сопротивление. Таким образом, когда электроны проходят через нагрузку (или другие элементы цепи), то они теряют энергию. Та энергия, которую электроны отдали в нагрузку, называется падением напряжения на участке цепи . В основном эта энергия выделяется на нагрузке в виде тепла. Энергия, которая отдается в нагрузку, равна энергии сообщаемой электронам источником напряжения. Если автомобильный аккумулятор напряжением 12 вольт подключить к автомобильной 12 вольтовой лампе, то приложенное к цепи напряжение будет равно 12 вольт, а падение напряжения на лампе так же будет 12 вольт (рис. 2.). Энергия в объеме 100% потребляется в цепи.
Рисунок 2. Пример приложенного напряжения в 12 В и падения напряжения на лампе.
Если к тому же 12-вольтовому автомобильному аккумулятору подключить две соединенные последовательно 6-вольтовые лампочки, то при том же приложенном напряжении в 12 В падение напряжение на лампочках будет по 6 вольт (рис. 3.). В этом случае все равно общее падение напряжение будет 12 вольт.
Рисунок 3.
В другом случае если взять две лампочки на разное напряжение, к примеру на 9 и 3 вольта, и включить их последовательно в цепь с источником напряжения 12 вольт, то соответственно на 9-ти вольтовой лампочке будет падать 9 вольт, а на 3-х вольтовой 3 вольта (рис. 4.). Как и всегда общее падение напряжения на лампочках равно 12 вольт.
Рисунок 4.
Комментарии
Ростислав 12.07.2016 22:03 Неспроста после прочтения материала не один раз задают вопрос про то что будет если к 12 вольтовому аккумулятору подсоединить ещё одну 12 вольтовую лампочку . Тему надо раскрывать с короткого замыкания Нет сопротивления в цепи и получается короткое замыкание а если сопротивление появляется то оно препятствует моментальному разряду того же аккумулятора .Cопротивление препятствует моментальному разряду источника .
Цитировать
Ростислав 05.07.2016 23:30 Если две лампочки по 12 вольт подсоединить к 12 вольтовому аккумулятору то какие будут изменения по сравнению с подключением одной 12 вольтовой лампочки?Дело в том что именно тема о падении напряжения самая трудная для понимания Можно выучить наизусть но при этом не понять происходящий процесс . Если короткое замыкание то падение напряжение будет равняться -0 .И как тут быть ? чем больше сопротивление тем большее падение напряжение или чем меньше сопротивление тем большее падение напряжения ? Немало тех кто перестаёт понимать электронику так и не осилив тему о падении напряжения .А ведь ещё и повышающая трансформация напряжения и увеличение тока при снижении напряжения при одинаковой мощности
Цитировать
Рома 06.02.2015 03:32 Цитирую Евгений Cherniy:
например мощность каждой лампочки 36 вт. когда мы подключаем одну лампу, то она потребляет эту мощность и ток равен 3 А. когда же добавляется ещё одна лампа, то общее сопротивление возрастает, ток уменьшается и обе лампочки светятся тусклее. примерно вполовину своей мощности. если же мощности различны, то лампа с большей мощностью будет гореть ярче, чем вторая лампа. Цитировать ренат 25.09.2014 09:45 Падение напряжения будет 6 вольт на каждой лампочке
Цитировать
Ivan 15.09.2014 06:56 Цитирую Евгений Cherniy:
Вторая лампочка гореть не будет Цитировать Евгений Cherniy 12.06.2014 19:37 Если к аккомулятору в 12 V подключить 2 лампочки по 12V — первая будет потреблять 100% напряжения. Что будет со второй лампой?
Цитировать
+1 Бука 22.06.2013 18:10 Я в 6 классе,сижу,пыт аюсь понять
Цитировать
Обновить список комментариев