Какая мощность рассеивается на полупроводнике в виде тепла?

Материалы, из которых изготавливаются резисторы

В мире можно найти резисторы, изготовленные из самых разных материалов, каждый из которых имеет свои свойства и определенные области применения. Большинство инженеров-электронщиков используют типы, указанные ниже.

Проволочные резисторы

Рисунок 9 – Проволочные резисторы

Проволочные резисторы изготавливаются путем наматывания по спирали проволоки с высоким сопротивлением вокруг непроводящего сердечника. Обычно они применяются там, где нужна высокая точность или большая мощность. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивная проволока из никель-хромового сплава, которая не подходит для приложений с частотами выше 50 кГц. Достоинствами проволочных резисторов являются низкий уровень шума и устойчивость к колебаниям температуры. Доступны резисторы со значениями сопротивления от 0,1 до 100 кОм и с точностью от 0,1% до 20%.

Металлопленочные резисторы

Рисунок 10 – Металлопленочные резисторы

Для металлопленочных резисторов обычно используют нитрид нихрома или тантала. Резистивный материал обычно составляет комбинация керамического материала и металла. Значение сопротивления изменяется путем вырезания с помощью лазера или абразива спирального рисунка в пленке, очень похожей на углеродную пленку. Металлопленочные резисторы обычно менее стабильны при изменениях температуры, чем проволочные резисторы, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

Рисунок 11 – Металлооксидные пленочные резисторы

В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлопленочных резисторов. Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. По этой причине металлооксидные пленочные резисторы используются в приложениях, требующих высокой износостойкости.

Фольговые резисторы

Рисунок 12 – Фольговые резисторы

Фольговый резистор, разработанный в 1960-х годах, по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете, и которые используются в приложениях с высокими требованиями к точности. Резистивный элемент составляет тонкая объемная металлическая фольга, которая приклеена на керамическую подложку. Фольговые резисторы имеют очень низкий температурный коэффициент сопротивления (ТКС).

Углеродные композиционные резисторы

Рисунок 13 – Углеродные композиционные резисторы

До 1960-х годов углеродные композиционные резисторы были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Для резистивного элемента углеродных резисторов используется смесь мелких частиц углерода и непроводящего керамического материала. Резистивному веществу придают форму цилиндра и запекают. Величину сопротивления определяют размеры корпуса и соотношение углерода и керамики. Использование большего количества углерода в процессе означает более низкое сопротивление. Углеродные композиционные резисторы по-прежнему полезны для определенных приложений из-за своей способности выдерживать мощные импульсы, хорошим примером применения может быть источник питания.

Углеродные пленочные резисторы

Углеродные пленочные резисторы представляют собой тонкую углеродную пленку (разрезанную по спирали для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике. Такая конструкция позволяет получить более точное значение сопротивления, а также увеличивает величину сопротивления. Углеродные пленочные резисторы намного точнее, чем углеродные композиционные резисторы. В приложениях, требующих стабильности на высоких частотах, используются специальные углеродные пленочные резисторы.

Мощность резистора

Номинальная мощность резистора определяется для определенной температуры окружающей среды на открытом воздухе

Обратите внимание, что на практике количество энергии, которую резистор может рассеять без повреждения  сильно зависит от условий эксплуатации и, следовательно, не равна номинальной мощности

Например, повышение температуры окружающей среды может значительно уменьшить номинальную мощность резистора.

Hantek 2000 — осциллограф 3 в 1
Портативный USB осциллограф, 2 канала, 40 МГц….

Подробнее

Это следует учитывать при разработке схем. Обычно резисторы рассчитаны для работы при температуре до 70°С, выше этого значения резистор значительно снижает свою номинальную рассеиваемую мощность. Это иллюстрируется кривой ухудшения параметров.

Наряду с влиянием температуры окружающей среды, есть еще несколько факторов, влияющих на изменение номинального значения мощности резистора. Наиболее важные факторы приведены ниже:

Корпус

Скорость теплоотдачи ограничивается из-за установки резистора в корпус прибора. Корпус ограничивает воздушный поток и, следовательно, отвод тепла путем конвекции. Излучаемое тепло будет удаляться неэффективно, потому что стенки корпуса действуют как тепловой барьер. Влияние корпуса на степень потери тепла сильно зависит от размера, формы, материала и толщины стенок.

Принудительное охлаждение

Увеличение теплопередачи посредством принудительной конвекции позволяет получить более высокую рассеиваемую мощность, чем путем обычной естественной конвекции.

Это может быть достигнуто путем создания воздушного потока, или даже жидкостным охлаждением. Некоторые мощные резисторы имеют ребристый корпус, чтобы создать большую поверхность для рассеивания тепла.

Группировка компонентов

На печатной плате резисторы зачастую расположены близко друг к другу. В таком случае тепловое излучение одного резистора будет оказывать влияние на показатель мощности рядом расположенных резисторов.

В заключении хотелось бы отметить, что для большинства электронных схем номинальная мощность резисторов не является ключевым параметром, поскольку эти резисторы рассеивают малое количество энергии от одного ватта и меньше.

Однако в силовой электронике мощность является важной характеристикой. Типичной областью применения мощных резисторов являются источники питания, динамические тормоза, преобразователи мощности, усилители и нагреватели

Виды резисторов

Корпусы рассматриваемого типа изделий могут иметь цилиндрическую или прямоугольную форму. По характеристикам поведения можно выделить следующие типы этих элементов:

  1. Постоянные – обладают константным (не меняющимся) сопротивлением. Используются, если фрагмент цепи требует поддержания некоторого значения напряжения или токовой силы. Для подбора такого устройства приходится проводить замеры мультиметром и рассчитывать нужные значения параметров.
  2. Переменные – с возможностью регулировки сопротивления. Контроль может иметь вид ступеней или быть плавным. Могут быть применены, например, для регуляции уровня звука.
  3. Подстраивающиеся – вариация предыдущего типа, весьма нечасто нуждающаяся в ручной регулировке.
  4. Устройства, сопротивляемость которых вариабельна и зависит от температуры окружающей среды или освещенности.

Нестандартные цветовые маркировки

Помимо типовой цветовой кодировки обозначений сопротивлений, есть и нестандартные разновидности маркировки. В основном, нестандартные варианты встречаются у некоторых известных изготовителей электроники, имеющих свои подразделения по созданию и выпуску электронных элементов.

Необычные цветовые обозначения, чаще всего встречаются у Филипс и Панасоник, они кодируют элементы, произведенные на внутренних предприятиях отличной от классической, маркировкой, для которой используются специальные справочники и компьютерного типа программы.

Необычная маркировка используется для отличия, к примеру, резисторов, созданных по стандартам MIL определенной марки, от стандартов промышленного и бытового типа, указывает на огневую стойкость и многое другое.

Источники

  • https://www.RadioElementy.ru/articles/tsvetovaya-markirovka-rezistorov-kak-chitat/
  • http://www.radiodetector.ru/kak-markirujutsya-rezistory/
  • https://poweredhouse.ru/kalkulyator-cvetovoj-markirovki-rezistorov-onlajn/
  • https://www.RusElectronic.com/markirovka-rjezistorov/
  • http://www.joyta.ru/7951-smd-rezistory-markirovka-smd-rezistorov-kalkulyator/
  • https://onlineelektrik.ru/eoborudovanie/kondensatori/markirovka-smd-rezistorov-tablitsa-oboznachenij.html
  • https://slarkenergy.ru/oborudovanie/datchiki/cvetnaya-markirovka-rezistorov.html
  • http://arduino.on.kg/kalkulyator-cvetovoy-markirovki-rezistorov
  • https://onlineelektrik.ru/eoborudovanie/kondensatori/tsvetovaya-markirovka-rezistorov-kak-opredelit-po-poloskam.html

Янв 25, 2021

Как определить силу тока. Как узнать, вычислить какой ток в схеме, цепи.

Тема: по какой формуле можно найти силу тока, как правильно измерить ток.

Известно, что электрический ток заряженных частиц лежит в основе работы всей электротехники. Знание его величины дает понимание о режиме работы той или иной цепи, схемы. Если для специалиста электрика, электронщика не составит особого труда определить силу тока, то для новичка это может оказаться проблемой. В этой теме давайте с вами рассмотрим, какими именно способами можно узнать, вычислить, найти электрический ток используя как непосредственные измерения так и формулы. Основными электрическими величинами являются напряжение, ток, сопротивление, мощность. Пожалуй главной формулой электрика является формула закона Ома. Она имеет вид I=U/R (ток равен напряжение деленное на сопротивление). Данную формулу приходится использовать повсеместно. Из нее можно вывести две другие: R=U/I и U=I*R. Зная любые две величины всегда можно вычислить третью. Напомню, что при использовании формул нужно пользоваться основными единицами измерения. Для тока это амперы, для напряжения это вольты и для сопротивления это омы.

К примеру, вам нужно быстро определить силу тока, которую потребляем электрочайник. Напряжение нам известно, это 220 вольт. Берем в руки мультиметр, электронный тестер, меряем сопротивление в омах. Далее мы просто напряжение перемножаем на это сопротивление. В итоге мы получаем искомую силу тока в амперах. Хочу уточнить, что данная форума работает только для цепей с активной нагрузкой (обычные нагреватели, лампы накаливания, светодиоды и т.д.). Для реактивной нагрузки формула имеет иной вид, где уже используется такие величины как индуктивность, емкость, частота.

Силу тока можно определить и по другой формуле, которая в себе содержит напряжение и мощность. Она имеет вид: I=P/U (сила тока равна электрическая мощность деленная на напряжение). То есть, 1 ампер равен 1 ватт деленный на 1 вольт. Две других формулы, выходящие из этой, имеют такой вид: P=U*I и U=P/I. Если вам известны любые две величины из тока, напряжения и мощности, всегда можно вычислить третью.

Помимо формул силу тока можно определить и практическим путем, через обычное измерение тестером, мультиметром. Для новичков сообщаю, что силу тока нужно измерять в разрыв электрической цепи. То есть, к примеру, у нас схема, прибор, с него выходит кабель с двумя проводами питания. Берем измеритель, выставляем на нем нужный диапазон измерения. Далее, один щуп измерителя мы прикладываем к одному из проводов питания устройства, а другой щуп измерителя к одному из контактов самого электропитания. Ну, и оставшийся провод, идущий от устройства мы также подсоединяем ко второму контакту питания. После включения самого устройства на измерителе появится величина тока, которую он потребляет при своей работе.

При измерении силы тока нужно помнить, что имеет значение какой вид тока течет по цепи (переменный или постоянный). Допустим, на большинство электротехники подается переменное напряжение, следовательно и измерять на входе ток нужно переменного типа. Внутри устройств обычно стоят блоки питания, которые снижают сетевое напряжение до меньших величин и делают его постоянным. Значит ту часть электрической цепи, что стоит после выпрямляющего диодного моста (делающая из переменного тока постоянный) уже нужно измерять как постоянный ток. Если вы попытаетесь измерить силу тока не своего типа, то и показания вы получите неверные.

Напряжение измеряют по другому. Измерительные щупы уже прикладываются не в разрыв цепи, как это делается у тока, а параллельно контактам питания. И в этом случае тип напряжения имеет значение (переменное или постоянное). Так что будьте внимательны, когда выставляете тип тока (напряжения) и их предел на тестере.

P.S. Именно сила тока в электротехнике делает всю работу, что мы воспринимаем как свет, тепло, звук, движение и т.д. Для облегчения понимания, что такое ток, а что такое напряжение можно привести аналогию с обычной водой. Так вот давление в воды в водопроводе будет соответствовать примерно электрическому напряжению, а движение самой воды это будет ток.

Разновидности резисторов

Несмотря на простоту принципа работы, существует целый ряд классификаций устройств. По способу монтажа различают:

  • Выводные – один из наиболее популярных вариантов, крепление осуществляется сквозь основу электрической платы; используется, если применение новой технологии SMD нецелесообразно или невозможно;
  • SMD – следующее «поколение» резисторов; у элементов данного типа отсутствуют боковые «усики»; применяются при сборке системных плат роботизированными системами – технология проще, крепление надежнее.

Вам это будет интересно Какой электрический ток опаснее для человека и почему


Резистор SMD

Кроме этого, учитывают методику изготовления прибора. Различают следующие варианты:

  • Проволочные – в качестве основного элемента выступает обмотка проволокой бифилярным способом, металл используют с малым удельным сопротивлением и способностью выдерживать высокие температуры;
  • Металлопленочные, композитные – основой выступают пленки из определенных сплавов (манганин, никелин, нихрон, углерод, оксиды металлов и другие).

Металлопленочные резисторыВажно! Пленка в моделях последнего типа наматывается разной толщины (тонко или толсто). Технология применяется для элементов типа SMD и чипов

Дополнительное деление – по конструкции сборке. Возможны следующие варианты:

  • Постоянные – мощность сопротивления задается на заводе при сборке, не меняется в процессе использования;
  • Переменные – модели «подстроечного» типа, оснащены дополнительным блоком управления, который регулирует мощность сопротивления;
  • Нелинейные – параметры не настраиваются вручную, а зависят от внешних данных (температуры, напряжения, света и других).

Кроме этого, существуют специализированные токовые модели – высокоомные, с повышенным уровнем частоты работы, прецизионные (позволяющие рассчитывать более точные данные).

Сопротивление сильно

Теперь мы охватили всю информацию о резисторах, которая может вам понадобиться для вашего первого проекта печатной платы. Резисторы настолько многофункциональны, что вы увидите, как раз за разом используете их россыпи в своих электронных устройствах. В следующий раз, когда вам понадобиться выбрать резистор, вспомните три простых шага – рассчитайте сопротивление, найдите мощность и выберите поставщика!

Прежде чем вы броситесь размечать обозначения резисторов и их корпусов в вашем приложении для конструирования печатных плат, не было бы проще, если бы кто-то сделал это за вас? Уже сделали! Для многих систем проектирования печатных плат существует большое количество бесплатных библиотек радиоэлементов. И резисторы там тоже есть!

Пролог

В прошлом, буквально в любой радиоэлектронной аппаратуре, в качестве всевозможных регуляторов, использовались потенциометры. Благодаря удобству и простоте использования, переменные сопротивления применяются и в современных электронных приборах. И уж совсем они незаменимы в аудиотехнике Hi-End класса. Но, ассортимент применяемых потенциометров так велик, что, в большинстве случаев, проще отремонтировать потенциометр, чем найти ему замену. К сожалению, часто, не только радиолюбители, но и радиотелемастера некорректно производят ремонт потенциометров, так как используют неоправданно-растиражированную технологию.

Предыстория этой технологии началась с заметки в журнале «Радио», опубликованной в 60-тые годы. Какой-то радиолюбитель предложил восстанавливать работоспособность потенциометров, проделывая отверстие в крышке и заливая туда машинное масло.

После этого события прошло полвека. За это время человек побывал на Луне, а у каждого в кармане появился компьютер. Но, эта доморощенная технология продолжает передаваться из поколения в поколение. На беду ремонтников, она укоренилась и у некоторых маЙстеров. Мало того, что в потенциометры продолжают заливать масло, так теперь это стали делать с помощью аэрозольных маслёнок.

Никогда не используйте эту технологию, если ремонтируете технику для себя! Она не имеет никакого отношения к официальным тех. процессам сборки и профилактики потенциометров, переключателей и других подобных устройств со скользящими контактами.

Вернуться наверх к «Оглавлению»

Как рассчитать мощность резистора?

Мощность рассеивания резистора

У резистора есть довольно важный параметр, который целиком и полностью влияет на надёжность его работы. Этот параметр называется мощностью рассеивания. Он уже упоминался в статье о параметрах резистора.

Сама по себе мощность постоянного тока рассчитывается по простой формуле:

Здесь, P(Вт) – мощность;

U(В) – напряжение;

(А)

Как видим, мощность зависит от напряжения и тока. В реальной цепи через резистор протекает определённый ток. Поскольку резистор обладает сопротивлением, то под действием протекающего тока резистор нагревается. На нём выделяется какое-то количество тепла. Это и есть та мощность, которая рассеивается на резисторе.

Если в схему установить резистор меньшей мощности рассеивания, чем требуется, то резистор будет нагреваться и в результате сгорит. Поэтому, если в схеме нужно заменить резистор мощностью 0,5 Ватт, то ставим на 0,5 Ватт и более. Но никак не меньше!

Каждый резистор рассчитан на свою мощность. Стандартный ряд мощностей рассеивания резисторов состоит из значений:

  • 0,125 Вт
  • 0,25 Вт
  • 0,5 Вт
  • 1 Вт
  • 2 Вт
  • Более 2 Вт.

Чем больше резистор по размерам, тем, как правило, на большую мощность рассеивания он рассчитан.

Допустим, у нас есть резистор с номинальным сопротивлением 100 Ом. Через него течёт ток 0,1 Ампер. На какую мощность должен быть рассчитан этот резистор?

Тут нам потребуется формула. Выглядит она так:

Здесь, P(Вт) – мощность;

R(Ом) – сопротивление цепи (в данном случае резистора);

I(А) – ток, протекающий через резистор.

Все расчёты следует производить, строго соблюдая размерность. Так, если сопротивление резистора не 100 Ом, а 1 кОм, то в формулу нужно подставить значение в Омах, т.е. 1000 Ом (1 кОм = 1000 Ом). Тоже правило касается и других величин (тока, напряжения).

Рассчитаем мощность для нашего резистора:

Мы получили мощность 1 Ватт. Теперь небольшое отступление.

В реальную схему необходимо устанавливать резистор с мощностью в полтора – два раза выше рассчитанной.

Поэтому нам подойдёт резистор мощностью 2 Вт (см. резисторов).

Также есть и другая формула для расчёта мощности. Она применяется в том случае, если неизвестен ток, который протекает через резистор.

Всё бы хорошо, но в жизни бывают случаи, когда применяется последовательное или параллельное соединение резисторов. Как рассчитать мощность рассеивания для каждого из резисторов в последовательной или параллельной цепи?

Допустим, нам требуется заменить резистор сопротивлением 100 Ом. Протекающий через него ток равен 0,1 Ампер. Следовательно, мощность этого резистора 1 Ватт.

Для его замены можно применить два соединённых последовательно резистора сопротивлением 20 Ом и 80 Ом. На какую мощность должны быть рассчитаны эти резисторы?

Для последовательной цепи действует одно правило. Через последовательно соединённые резисторы течёт один и тот же ток. Теперь применим формулу для расчёта мощности и получим, что мощность рассеивания резистора на 20 Ом должна быть равна 0,2 Вт, а резистора на 80 Ом — 0,8 Вт. Выбираем резисторы согласно стандартному ряду мощностей:

R1 – 20 Ом (0,5 Вт);

R2 – 80 Ом (1 Вт)

Как видим, если сопротивления резисторов будут разные, то и мощность на них будет выделяться разная.

Мощность, рассеивающаяся на резисторе, зависит в первую очередь от тока, который течёт через данный резистор. А ток зависит от сопротивления резистора. Поэтому, если вы соединяете последовательно резисторы разных номиналов, то и рассеивающаяся мощность распределиться между ними.

Это обстоятельство необходимо учитывать при самостоятельном конструировании электронных самоделок иначе при неправильном подборе резисторов может получиться так, что на одном резисторе выделиться больше мощности, чем на другом, и он будет работать в тяжёлом температурном режиме.

Чтобы не ломать голову и не рассчитывать мощность каждого в отдельности резистора, можно поступать так:

Мощность каждого резистора, входящего в составляемую нами цепь (параллельную или последовательную) должна быть равна мощности заменяемого резистора. Иными словами, если нам надо заменить резистор, мощностью 1 Вт, то каждый из резисторов для его замены должен иметь мощность не менее 1 Ватта. На практике это самое быстрое и эффективное решение.

Для параллельного соединения резисторов нужно учитывать, что через резистор с меньшим сопротивлением протекает больший ток. Следовательно, и мощности на нём будет рассеиваться больше.

Нравится

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

Калькулятор рассеиваемой мощности и протекающей силы тока в зависимости от сопротивления и приложенного напряжения.

Демо закона Ома в реальном времени.
Для справки
В данном примере вы можете увеличивать напряжение и сопротивление цепи. Данные изменения в реальном времени будут изменять силу тока протекающего в цепи и мощность рассеиваемую на сопротивлении.
Если рассматривать аудио системы – вы должны помнить что усилитель выдает определенное напряжение на определенную нагрузку (сопротивление). Соотношение двух этих величин определяет мощность.
Усилитель может выдать ограниченную величину напряжения в зависимости от внутреннего блока питания и источника тока. Так же точно ограничена и мощность которую может подать усилитель на определенную нагрузку (к примеру 4 Ома).
Для того что бы получить больше мощности, вы можете подключить к усилителю нагрузку с меньшим сопротивлением (к примеру 2 Ома). Учтите что при использовании нагрузки с меньшим сопротивлением – скажем в два раза (было 4 Ома, стало 2 Ома) – мощность тоже возрастет в два раза.(при условии что данную мощность может обеспечить внутренний блок питания и источник тока).
Если мы возьмем для примера моно усилитель мощностью 100 Ватт на нагрузку 4 Ома, зная что он может выдать напряжение не более 20 Вольт на нагрузку.
Если вы поставите на нашем калькуляторе бегунки
Напряжение 20 Вольт
Сопротивление 4 Ома
Вы получите
Мощность 100 Ватт  
 
Если вы сдвинете бегунок сопротивления на величину 2 Ома, вы увидите как мощность удвоится и составит 200 Ватт.
В общем примере источником тока является аккумуляторная батарея (а не усилитель звука) но зависимости силы тока, напряжения, сопротивления и сопротивления одинаковы во всех цепях.
 

Типы и обозначения резисторов

В основном в продажу выпускаются изделия с типовыми значениями мощности рассеяния (0,05, 0,125, 0,25, 0,5, 1, 2 и 5 Ватт). Визуальные обозначения изделий с различными номиналами на электросхемах регламентированы ГОСТ. Перед сборкой надо проверить соответствие используемых деталей указанным на схеме номиналам. Выпускаются элементы и с другими мощностными показателями, отличными от стандартов. На практике они используются нечасто, в основном, под конкретную задачу.

Спецификации к проектируемой схеме, как правило, содержат указания, какими значениями основных параметров должен обладать резистор. Иногда указываются даже конкретная модель, а также допустимое значение отклонения от фиксируемого номинала.

Параметры резисторного элемента

Сопротивление резистора – формула для рассчета

К числу ключевых параметров данной группы деталей относятся:

  • сопротивление компонента;
  • допуск (степень вариативности номинального сопротивления) – может принимать значения до 20%;
  • ТКС – изменение сопротивляемости при нагреве или охлаждении воздуха на 1 градус (целесообразно, чтобы элементы одной электроцепи имели идентичное значение показателя);
  • мощность, показывающая, какое количество тепловой энергии может быть выделено в пространство при условии сохранения корректного функционирования элемента.

Важно! На то, сколько энергии будет рассеивать компонент, влияет его размер. Натренированный глаз способен к визуальному определению значения по габаритам резистора

Корреляция с величиной связана с тем, что когда ток течет через элемент с большим значением площади поверхности, теплота отдается в пространство с большей скоростью (если речь идет о воздухе).

Миниатюрные смд компоненты снабжаются маркировкой из полосок разного цвета. Расшифровку цветового кода можно посмотреть онлайн (например, на сайте производителя). Зачастую она дается и в прилагаемой технической документации.


Цветовая кодировка миниатюрных деталей

Таблица кодов SMD резисторов и их значений

Код smd Значение Код smd Значение Код smd Значение Код smd Значение
R10 0.1 Ом 1R0 1 Ом 100 10 Ом 101 100 Ом
R11 0.11 Ом 1R1 1.1 Ом 110 11 Ом 111 110 Ом
R12 0.12 Ом 1R2 1.2 Ом 120 12 Ом 121 120 Ом
R13 0.13 Ом 1R3 1.3 Ом 130 13 Ом 131 130 Ом
R15 0.15 Ом 1R5 1.5 Ом 150 15 Ом 151 150 Ом
R16 0.16 Ом 1R6 1.6 Ом 160 16 Ом 161 160 Ом
R18 0.18 Ом 1R8 1.8 Ом 180 18 Ом 181 180 Ом
R20 0.2 Ом 2R0 2 Ом 200 20 Ом 201 200 Ом
R22 0.22 Ом 2R2 2.2 Ом 220 22 Ом 221 220 Ом
R24 0.24 Ом 2R4 2.4 Ом 240 24 Ом 241 240 Ом
R27 0.27 Ом 2R7 2.7 Ом 270 27 Ом 271 270 Ом
R30 0.3 Ом 3R0 3 Ом 300 30 Ом 301 300 Ом
R33 0.33 Ом 3R3 3.3 Ом 330 33 Ом 331 330 Ом
R36 0.36 Ом 3R6 3.6 Ом 360 36 Ом 361 360 Ом
R39 0.39 Ом 3R9 3.9 Ом 390 39 Ом 391 390 Ом
R43 0.43 Ом 4R3 4.3 Ом 430 43 Ом 431 430 Ом
R47 0.47 Ом 4R7 4.7 Ом 470 47 Ом 471 470 Ом
R51 0.51 Ом 5R1 5.1 Ом 510 51 Ом 511 510 Ом
R56 0.56 Ом 5R6 5.6 Ом 560 56 Ом 561 560 Ом
R62 0.62 Ом 6R2 6.2 Ом 620 62 Ом 621 620 Ом
R68 0.68 Ом 6R8 6.8 Ом 680 68 Ом 681 680 Ом
R75 0.75 Ом 7R5 7.5 Ом 750 75 Ом 751 750 Ом
R82 0.82 Ом 8R2 8.2 Ом 820 82 Ом 821 820 Ом
R91 0.91 Ом 9R1 9.1 Ом 910 91 Ом 911 910 Ом
Код smd Значение Код smd Значение Код smd Значение Код smd Значение
102 1 кОм 103 10 кОм 104 100 кОм 105 1 МОм
112 1.1 кОм 113 11 кОм 114 110 кОм 115 1.1 МОм
122 1.2 кОм 123 12 кОм 124 120 кОм 125 1.2 МОм
132 1.3 кОм 133 13 кОм 134 130 кОм 135 1.3 МОм
152 1.5 кОм 153 15 кОм 154 150 кОм 155 1.5 МОм
162 1.6 кОм 163 16 кОм 164 160 кОм 165 1.6 МОм
182 1.8 кОм 183 18 кОм 184 180 кОм 185 1.8 МОм
202 2 кОм 203 20 кОм 204 200 кОм 205 2 МОм
222 2.2 кОм 223 22 кОм 224 220 кОм 225 2.2 МОм
242 2.4 кОм 243 24 кОм 244 240 кОм 245 2.4 МОм
272 2.7 кОм 273 27 кОм 274 270 кОм 275 2.7 МОм
302 3 кОм 303 30 кОм 304 300 кОм 305 3 МОм
332 3.3 кОм 333 33 кОм 334 330 кОм 335 3.3 МОм
362 3.6 кОм 363 36 кОм 364 360 кОм 365 3.6 МОм
392 3.9 кОм 393 39 кОм 394 390 кОм 395 3.9 МОм
432 4.3 кОм 433 43 кОм 434 430 кОм 435 4.3 МОм
472 4.7 кОм 473 47 кОм 474 470 кОм 475 4.7 МОм
512 5.1 кОм 513 51 кОм 514 510 кОм 515 5.1 МОм
562 5.6 кОм 563 56 кОм 564 560 кОм 565 5.6 МОм
622 6.2 кОм 623 62 кОм 624 620 кОм 625 6.2 МОм
682 6.8 кОм 683 68 кОм 684 680 кОм 685 6.8 МОм
752 7.5 кОм 753 75 кОм 754 750 кОм 755 7.5 МОм
822 8.2 кОм 823 82 кОм 824 820 кОм 815 8.2 МОм
912 9.1 кОм 913 91 кОм 914 910 кОм 915 9.1 МОм

Разновидности резисторов

Резисторы классифицируют по нескольким признакам.

Для дискретных элементов деление происходит по месту установки:

  • вводные. На монтажной плате их монтируют сквозь нее. Контакты таких узлов располагаются по аксиальному или радиальному принципу. На языке инженеров-электронщиков их называют ножками. Этот тип резисторов применяют уже очень давно. Их можно найти как на старом оборудовании, так и на современном. Они заменяют SMD-элементы, если их применение затруднено или абсолютно невозможно.
  • SMD. Представляют из себя компоненты электрической цепи без ножек. Выводы находятся на корпусе. Хотя назвать их таковым очень сложно, так как выступают они на поверхность незначительно. К преимуществам таких компонентов относят дешевизну, простоту сборки и экономию места на схеме.

Советуем изучить Сетевой фильтр своими руками

Маркировка SMD резисторов ничем не отличается от вводных элементов. Она также определяется по полоскам и по цвету.