Что такое коэффициент полезного действия (кпд) и как рассчитать его по формуле

Условия максимума коэффициента полезного действия

Различные виды потерь различным образом зависят от нагрузки. Обычно можно считать, что одни виды потерь остаются постоянными при изменении нагрузки, а другие являются переменными. Например, если генератор постоянного тока работает с постоянной скоростью вращения и постоянным потоком возбуждения, то механические и магнитные потери являются также постоянными. Наоборот, электрические потери в обмотках якоря, добавочных полюсов и компенсационной изменяются пропорционально Iа², а в щеточных контактах – пропорционально Iа. Напряжение генератора при этом также приблизительно постоянно, и поэтому с определенной степенью точности P2 ∼ Iа.

Мощность ИТ и внутреннее сопротивление

Можно собрать последовательную схему, в которую войдут гальванический двухполюсник и сопротивление нагрузки. Двухполюсник, имеющий внутренний импеданс r и ЭДС – Е, отдаёт на внешнюю нагрузку R ток I. Задача цепи – питание электричеством активной нагрузки, выполняющей полезную работу. В качестве нагрузки может быть применена лампочка или обогреватель.

Простая схема для исследования зависимости Рполезн. от R

Рассматривая эту цепь, можно определиться с зависимостью полезной мощности от величины сопротивления. Для начала находят R-эквивалентное всей цепи.

Оно выглядит так:

Rэкв. = R + r.

Движение электричества в цепи находится по формуле:

I = E/(R + r).

В таком случае Р ЭДС на выходе составит Рвых. = E*I = E²/(R + r).

Далее можно найти Р, рассеиваемую при нагреве генератора из-за внутреннего сопротивления:

Pr = I² * r = E² * r/(R + r)².

На следующем этапе определяются с мощностью, отбираемой нагрузкой:

PR = I² * R = E² * R/(R + r)².

Общая Р на выходе двухполюсника будет равна сумме:

Рвых. = Рr + PR.

Это значит, что потери энергии изначально происходят при рассеивании на импедансе (внутреннем сопротивлении) двухполюсника.

Далее, чтобы увидеть, при какой величине нагрузки достигается максимальная величина полезной мощности Рполезн., строят график.

При его рассмотрении видно, что самое большое значение мощности – в точке, где R и r сравнялись. Это точка согласования сопротивлений генератора и нагрузки.

Внимание! Когда R > r, то ток, возникающий в цепи, мал для передачи энергии нагрузке с достаточной скоростью. При R. Наиболее наглядный пример согласования можно увидеть в радиотехнике при согласовании выходного сопротивления УНЧ (усилителя низкой частоты) и звуковых динамиков

На выходе усилителя сопротивление находится в пределах от 4 до 8 Ом, в то время как Rвх динамика составляет 8 Ом. Устройство позволяет подключить к своему выходному каскаду, как один динамик на 8 Ом, так и параллельно два по 4 Ома. И в том, и в другом случае УНЧ будет работать в заданном режиме, без потерь мощности

Наиболее наглядный пример согласования можно увидеть в радиотехнике при согласовании выходного сопротивления УНЧ (усилителя низкой частоты) и звуковых динамиков. На выходе усилителя сопротивление находится в пределах от 4 до 8 Ом, в то время как Rвх динамика составляет 8 Ом. Устройство позволяет подключить к своему выходному каскаду, как один динамик на 8 Ом, так и параллельно два по 4 Ома. И в том, и в другом случае УНЧ будет работать в заданном режиме, без потерь мощности.

В процессе разработок тех или иных реальных источников тока пользуются представлением его в виде эквивалентного блока. В его состав входят два компонента, с которыми ведётся работа: это идеальный источник и его импеданс.

Коэффициент полезного действия электрического прибора

Как известно, идеальных машин и механизмов не существует (то есть таких, которые бы полностью превращали один вид энергии в другой или генерировали бы энергию). Во время работы устройства обязательно часть затраченной энергии уходит на преодоление нежелательных сил сопротивления или просто «рассеивается» в окружающую среду. Таким образом, только часть затраченной нами энергии уходит на выполнение полезной работы, для выполнения которой и было создано устройство.

Другими словами, КПД показывает, насколько эффективно используется затраченная работа при ее выполнении, например, электрическим прибором.

КПД (обозначается греческой буквой η («эта»)) — физическая величина, которая характеризует эффективность электрического прибора и показывает, какая часть полезной работы в затраченной.

КПД определяется (как и в механике) по формуле:

Если известна мощность электрического тока, формулы для определения ККД будут выглядеть так:

Прежде чем определять КПД некоторого устройства, необходимо определить, что является полезной работой (для чего создано устройство), и что является затраченной работой (работа выполняется или какая энергия затрачивается для выполнения полезной работы).

Взаимосвязь полезной мощности и КПД

Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.

кВа в кВт — как правильно перевести мощность

Формула имеет вид:

η = А/Q,

где:

  • А – полезная работа (энергия);
  • Q – затраченная энергия.

По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:

  • электродвигатель – до 98%;
  • ДВС – до 40%;
  • паровая турбина – до 30%.

Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае η ≤ 1.

Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого

Получение максимальной энергии на выходе ИП

К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.

Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.

Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.


График зависимости Рпол и η от тока в цепи

Достижение максимального КПД

Формула КПД источника тока имеет вид:

η = Pн/Pобщ = R/Rн+r,

где:

  • Pн – мощность нагрузки;
  • Pобщ – общая мощность;
  • R – полное сопротивление цепи;
  • Rн – сопротивление нагрузки;
  • r – внутреннее сопротивление ИТ.

Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.

Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:

  • изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
  • приближения их значений к параметрам окружающей среды по окончании расширения.

Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.

К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.

Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:

  • некоторая часть давления уходит на внешнюю среду;
  • достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
  • нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
  • использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.

Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:

  • ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
  • наиболее полно перед расширением использовать оба вида энергии рабочего тела;
  • осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.

Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.


КПД двигателя внутреннего сгорания

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :

Для мгновенной мощности получаем:

График зависимости мгновенной мощности от времени представлен на рис. 3 .

Рис. 3. Мощность переменного тока через конденсатор

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4 ).

Рис. 4. Напряжение на конденсаторе и сила тока через него

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть

, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть

, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть

, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть

, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

Джоуль.

Джоуль – единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ). Имеет русское обозначение – Дж и международное обозначение – J.

Другие единицы измерения

Джоуль, как единица измерения:

Джоуль – единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ), названная в честь английского физика Джеймса Прескотта Джоуля.

Джоуль как единица измерения имеет русское обозначение – Дж и международное обозначение – J.

В классической физике джоуль равен работе, совершаемой при перемещении точки приложения силы, равной 1 (одному) ньютону (Н), на расстояние одного метра в направлении действия силы.

Дж = Н · м = кг · м2 / с2.

1 Дж = 1 Н · 1 м = 1 кг · 1 м2 / 1 с2.

В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт (В) для поддержания силы тока в 1 ампер (А). Это энергия, которая выделится за 1 секунду при прохождении тока через проводник силой тока 1 ампер (А) при напряжении 1 вольт (В).

В Международную систему единиц джоуль введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы джоуль пишется со строчной буквы, а её обозначение – с заглавной (Дж). Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием джоуля.

Представление джоуля в других единицах измерения – формулы:

Через основные единицы системы СИ джоуль выражается следующим образом:

Дж = Н · м

Дж = кг · м2 / с2.

Дж = Вт / с.

Дж = А2 · Ом · с.

Дж = В2 · с / Ом.

Дж = Кл · В.

где  А – ампер, В – вольт, Дж – джоуль, Кл – кулон, м – метр, Н – ньютон, с – секунда, Вт – ватт, кг – килограмм, Ом – ом.

Перевод в другие единицы измерения:

1 Дж ≈ 6,24151 ⋅ 1018 эВ

1 МДж = 0,277(7) кВт · ч

1 кВт · ч = 3,6 МДж

1 Дж ≈ 0,238846 калориям

1 калория (международная) = 4,1868 Дж

1 килограмм-сила-метр (кгс·м) = 9,80665 Дж

1 Дж ≈ 0,101972 кгс·м

Кратные и дольные единицы:

Кратные и дольные единицы образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Дж декаджоуль даДж daJ 10−1 Дж дециджоуль дДж dJ
102 Дж гектоджоуль гДж hJ 10−2 Дж сантиджоуль сДж cJ
103 Дж килоджоуль кДж kJ 10−3 Дж миллиджоуль мДж mJ
106 Дж мегаджоуль МДж MJ 10−6 Дж микроджоуль мкДж µJ
109 Дж гигаджоуль ГДж GJ 10−9 Дж наноджоуль нДж nJ
1012 Дж тераджоуль ТДж TJ 10−12 Дж пикоджоуль пДж pJ
1015 Дж петаджоуль ПДж PJ 10−15 Дж фемтоджоуль фДж fJ
1018 Дж эксаджоуль ЭДж EJ 10−18 Дж аттоджоуль аДж aJ
1021 Дж зеттаджоуль ЗДж ZJ 10−21 Дж зептоджоуль зДж zJ
1024 Дж иоттаджоуль ИДж YJ 10−24 Дж иоктоджоуль иДж yJ

Интересные примеры:

Дульная энергия пули при выстреле из автомата Калашникова – 2030 Дж.

Энергия, необходимая для нагрева 1 литра воды от 20 до 100 °C, составляет 3,35⋅105 Дж.

Энергия, выделяемая при взрыве 1 тонны тринитротолуола (тротиловый эквивалент), – 4,184⋅109 Дж.

Примечание:  Фото https://www.pexels.com, https://pixabay.com

Найти что-нибудь еще?

карта сайта

формула энергии закон джоуля ленца можно тепловой 1 м дж джоуль ленц закон равен 2 2 равен единица теплота масса тела сила количество теплоты работа кинетическая энергия в джоулях в секунду 10 5 8 6 20 200 100 виды сколько степени джоулейкилоджоули скорость в джоули в кг килограммы 3 4 джоуля

Коэффициент востребованности
5 394

Полезная энергия Р и КПД

Мощность электрического тока

В зависимости от конкретных задач, необходима максимальная полезная мощность Р или максимум КПД. Условия для этого не совпадают:

  • Р максимальна при R=Ro, при этом КПД = 50%;
  • КПД 100% в режиме Х.Х., при этом Р=0.

Мощность Р и КПД

Получение максимальной энергии на выходе питающего устройства

Максимум Р достигается при условии равенства сопротивлений R (нагрузки) и Ro (источника электроэнергии). В этом случае КПД = 50%. Это режим «согласованной нагрузки».

Кроме него возможны два варианта:

  • Сопротивление R падает, ток в цепи увеличивается, при этом растут потери напряжения Uo и Ро внутри устройства. В режиме К.З. (короткого замыкания) сопротивление нагрузки равно «0», I и Ро максимальны, а КПД также 0%. Этот режим опасен для аккумуляторов и генераторов, поэтому не используется. Исключение составляют практически вышедшие из употребления сварочные генераторы и автомобильные аккумуляторы, которые при запуске двигателя и включении стартёра работают в режиме, близком к «К.З.»;
  • Сопротивление нагрузки больше внутреннего. В этом случае ток и мощность нагрузки Р падают, и при бесконечно большом сопротивлении они равны «0». Это режим Х.Х. (холостого хода). Внутренние потери в режиме, близком к Х.Х., очень малы, и КПД близок к 100%.

Следовательно, «Р» максимальна при равенстве внутреннего и внешнего сопротивлений и минимальна в остальных случаях за счёт высоких внутренних потерь при К.З и малого тока в режиме Х.Х.

Режим максимальной полезной мощности при эффективности 50% применяется в электронике при слабых токах. Например, в телефонном аппарате Рвых

микрофона – 2 милливатта, и важно максимально передать её в сеть, жертвуя при этом КПД

Достижение максимального КПД

Максимальная эффективность достигается в режиме Х.Х. за счёт отсутствия потерь мощности внутри источника напряжения Ро. При росте тока нагрузки КПД линейно уменьшается и в режиме К.З. равен «0». Режим максимальной эффективности используется в генераторах электростанций, где согласованная нагрузка, максимальная полезная Ро и КПД 50% неприменимы из-за больших потерь, составляющих половину всей энергии.

КПД в термодинамике

В термодинамике КПД — очень важная величина. Она полностью определяет эффективность такой штуки, как тепловая машина.

Тепловой двигатель (машина) – это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

Схема теплового двигателя выглядит так:

У теплового двигателя обязательно есть нагреватель, который (не может быть!) нагревает рабочее тело, передавая ему количество теплоты Q1 или Qнагревателя (оба варианта верны, это зависит лишь от учебника, в котором вы нашли формулу).

Рабочее тело — это тело, на котором завязан процесс (чаще всего это газ). Оно расширяется при подводе к нему теплоты и сжимается при охлаждении. Часть переданного Q1 уходит на механическую работу A. Из-за этого производится движение.

Оставшееся количество теплоты Q2 или Qхолодильника отводится к холодильнику, после чего возвращается к нагревателю и процесс повторяется.

КПД такой тепловой машины будет равен:

КПД тепловой машины

η = (Aполезная/Qнагревателя) * 100%

η — коэффициент полезного действия

Aполезная — полезная работа (механическая)

Qнагревателя — количество теплоты, полученное от нагревателя

Если мы выразим полезную (механическую) работу через Qнагревателя и Qхолодильника, мы получим:

A = Qнагревателя — Qхолодильника.

Подставим в числитель и получим такой вариант формулы.

КПД тепловой машины

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

η — коэффициент полезного действия

Qнагревателя — количество теплоты, полученное от нагревателя

Qхолодильника — количество теплоты, отданное холодильнику

А возможно ли создать тепловую машину, которая будет работать только за счет охлаждения одного тела?

Точно нет! Если у нас не будет нагревателя, то просто нечего будет передавать на механическую работу. Любой такой процесс — когда энергия не приходит из ниоткуда — означал бы возможность существования вечного двигателя.

Поскольку свидетельств такого процесса в мире не существует, то мы можем сделать вывод: вечный двигатель невозможен. Это второе начало термодинамики.

Запишем его, чтобы не забыть:

Невозможно создать периодическую тепловую машину за счет охлаждения одного тела без изменений в других телах.

Задача

Найти КПД тепловой машины, если рабочее тело получило от нагревателя 20кДж, а отдало холодильнику 10 кДж.

Решение:

Возьмем формулу для расчета КПД:

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

Подставим значения:

η = 20 — 10/20 *100% = 50%

Ответ: КПД тепловой машины равен 50%

Бирка (шильдик) электродвигателя

Осмотрев любой, за редким исключением, электродвигатель можно обнаружить табличку, привинченную на болты, саморезы или же заклепки. Что же написано на данном куске металла? Возьмем шильдик, заменив на нем заводской номер на название сайта.

Кстати, редко бывает, что табличка на электрооборудование находится в таком, почти идеальном состоянии. Часто данные выцветают или замазаны краской, ведь задача стоит для обслуживающего персонала покрасить двигатель, а не покрасить двигатель, оставив табличку нетронутой. Но, нам повезло. Пойдем по-порядку.

Первая строчка

— число фаз и тип тока (3

), заводской номер, частота сети, форма исполнения и монтажа, класс изоляции

Вторая строчка

— тип электродвигателя, косинус фи, возможные схемы соединения, номинальная частота вращения

Третья строчка

— возможные номинальные напряжения, номинальная мощность, IP — степень защиты электродвигателя, масса, режим работы электродвигателя (S1).

Четвертая строчка

— номинальные токи в зависимости от схемы включения обмоток, далее какому госту соответствует эд.

Рассмотрим отдельные параметры более подробно.

Мощность электродвигателя: полная, активная и на валу

Формула для расчета мощности трехфазного асинхронного двигателя:

S1 — полная мощность, потребляемая двигателем из сети

P1 — активная мощность, потребляемая электродвигателем из сети (указана на шильдике)

P — активная мощность на валу ЭД.

cosf — косинус фи, коэффициент мощности — угол сдвига фаз между активной (P) и полной мощностью (S).

В формулах выше, значение мощности получится в Вт, значение полной мощности в ВА. Чтобы перевести в киловатты необходимо получившееся значение разделить на тысячу. Значение тока и напряжения соответственно в формуле выше в амперах и вольтах.

Виды мощности постоянного тока

Любая мощностная величина определяется работой, которая совершается за определенную единицу времени. Чаще всего ею становится секунда. Она означает величину, характеризующую, насколько быстро совершается работа. Касаемо электрической мощности это расход электроэнергии за одну секунду.


Мощностная характеристика тока соответствует отношению его работы ко времени

Работой тока называется процесс превращения электроэнергии в какую-либо другую энергию (механическую, тепловую или световую). Именно по мощности, которая обозначается буквой «P» или «W», и оценивается работоспособность электротока.

К сведению! Вообще у тока постоянного значения нет активной и реактивной P. Для этого вида сети характерна только мгновенная характеристика.

Мгновенная мощность

Если говорить о сетях переменного электротока, то рассматриваемая величина в них, как и электроток или напряжение, регулярно меняет свои значения. Это напрямую влияет на другие параметры. При константном течении зарядов все остается неизменным. Именно поэтому и возникает термин «мгновенная мощность».

Силы в сети регулярного тока остаются неизменными и равняются мгновенным их значениям, взятым в произвольный момент времени. Такую характеристику можно высчитать по мгновенным значениям. Для этого подходит формула мощности постоянного тока в цепи: P = I * U.


Рассматриваемая величина может быть найдена из произведения силы электротока и напряжения

Если сеть пассивна и в ней соблюдается закон Ома, то справедливо равенство. В случае подключения источника ЭДС нужна другая формула: P = I * E, где E — это электродвижущая сила.

Активная мощность

Активная мощность — это среднее за период значение мгновенной P. При активной P происходит конвертация мощности тока в энергию любого вида (механическую, световую или тепловую). Подобный перевод электротока нельзя выполнить в обратном направлении. Активный тип также измеряется в ваттах. 1 Ватт равен 1 вольту умноженному на 1 ампер.


Работа неразрывно связана с определением мощностных характеристик

К сведению! В бытовых и уж тем более промышленных масштабах единицу измерения ватт никогда не используют. Для этих целей задействуют показатели на порядок выше: мегаватты в киловатты.

Реактивная мощность

Реактивная мощностная характеристика определяет нагрузку, которая создается электрическими устройствами определенными колебаниями энергии электромагнитного поля в сетях синусоидального тока переменной частоты. Она равна произведению среднеквадратичных значений напряжения и силы тока, умноженных на синус угла, на который сдвигается фаза между ними. Реактивный параметр неразрывно связан с полной P и активным параметром.


Все основные величины могут быть найдены с использованием закона Ома

Если говорить про физический смыл реактивности, то он представляет собой некую энергию, которая перекачивается из источника к реактивным элементам приемника (конденсатор, обмотка генератора, катушка индуктивности и т. д.), а потом возвращается обратно в источник за время одного периода колебаний.

Полная мощность

Полная P электротока представляет собой значение, соответствующее произведению силы электротока и напряжения в цепи. Она неразрывно связана с активной и реактивной величинами и определяется следующим уравнением: , где Sos = полная мощность, а P и Q — ее активная и реактивная характеристики соответственно.

Советуем изучить Программируемый термостат w1209


Общая мощность, которую можно представить в виде кружки пива

Если говорить проще, то активная P есть везде, где присутствует нагрузка активного плана. Например, в спиральных нагревателях, сопротивлении проводов и т. д. Реактивный параметр характерен для реактивной нагрузки, которая имеется в элементах индуктивности или емкости.

Мощность источника тока и внутреннее сопротивление

Пусть рассматривается простая схема, в которой аккумулятор имеет ЭДС Е и внутреннее сопротивление r и подает ток I на внешний резистор сопротивлением R. Внешний резистор может быть любой активной нагрузкой. Основной целью схемы является передача энергии от батареи к нагрузке, где она делает что-то полезное, например, идет на освещение помещения.

Полезная мощность

Можно вывести зависимость полезной мощности от сопротивления:

  1. Эквивалентное сопротивление схемы – R + r (так как сопротивление нагрузки включено последовательно с внешней нагрузкой);
  2. Ток, протекающий в цепи, будет определяться выражением:

I = E/(R + r);

  1. Выходная мощность ЭДС:

Рвых. = E x I = E²/(R + r);

  1. Мощность, рассеиваемая как тепло, при внутреннем сопротивлении батареи:

Pr = I² x r = E² x r/(R + r)²;

  1. Мощность, передаваемая нагрузке:

P(R) = I² x R = E² x R/(R + r)²;

  1. Рвых. = Рr + P(R).

Таким образом, часть выходной энергии батареи сразу теряется из-за рассеивания тепла на внутреннем сопротивлении.

Теперь можно построить график зависимости P(R) от R и выяснить, при какой нагрузке полезная мощность примет максимальное значение. При анализе функции на экстремум выясняется, что при увеличении R будет монотонно возрастать и P(R) до того пункта, когда R не сравняется с r. В этой точке полезная мощность будет максимальной, а затем начинает монотонно уменьшаться при дальнейшем увеличении R.

P(R)max = E²/4r, когда R = r. При этом I = E/2r.

Важно! Это очень значимый результат в электротехнике. Передача энергии между источником питания и внешней нагрузкой наиболее эффективна, когда сопротивление нагрузки соответствует внутреннему сопротивлению источника тока

Если сопротивление нагрузки слишком велико, то ток, протекающий по цепи мал, чтобы передавать энергию на нагрузку с заметной скоростью. Если сопротивление нагрузки слишком низкое, то большая часть выходной энергии рассеивается как тепло внутри самого ИП.


Графики зависимости мощности и КПД от сопротивления

Это условие получило название согласования. Одним из примеров соответствия сопротивления источника и внешней нагрузки является звуковой усилитель и громкоговоритель. Выходной импеданс Zout усилителя задается от 4 до 8 Ом, а номинальный входной импеданс динамика Zin только 8 Ом. Затем, если громкоговоритель 8 Ом будет подключен к выходу усилителя, он будет видеть динамик в качестве нагрузки 8 Ом. Подключение двух громкоговорителей на 8 Ом параллельно друг другу эквивалентно усилителю, работающему на одном громкоговорителе 4 Ом, и обе конфигурации находятся в пределах выходных характеристик усилителя.

Ватт в ватте?

Единица мощности – ватт. Обычно мы видим, сколько ватт может обеспечить блок питания, на его этикетке. Большинство ПК уже имеют встроенный блок питания, поэтому при покупке нового компьютера это не проблема. Однако, если вы обновили или добавили новые компоненты к своим компьютерам, например, новый жесткий диск или новую систему охлаждения, то пора проверить мощность, которую может обеспечить блок питания вашего компьютера. Если общая мощность, необходимая компьютеру, больше, чем может обеспечить блок питания, он просто не будет работать. Теперь возникает вопрос: «Сколько ватт нужно моему компьютеру?» Это будет зависеть от общего количества энергии, необходимой компьютеру, в зависимости от мощности, необходимой каждому компоненту. Простые компьютеры на самом деле не требуют такой большой мощности, но сложные системы, например, используемые для игр,

Читать 5 лучших эргономичных компьютерных мышей для Linux

Еще один непонятный вопрос для большинства потребителей: «Обеспечивает ли блок питания компьютер постоянную мощность?» Ответ – нет. Мощность, которую вы видите на корпусе блока питания или этикетках, указывает только на максимальную мощность, которую он теоретически может подать в систему. Например, теоретически блок питания мощностью 500 Вт может подавать на компьютер максимум 500 Вт. На самом деле, блок питания потребляет небольшую часть энергии для себя и распределяет мощность по каждому из компонентов ПК в соответствии со своими потребностями. Мощность, необходимая для компонентов, варьируется от 3,3 В до 12 В. Если общая мощность компонентов должна увеличиться до 250 Вт, он будет использовать только 250 Вт из 500 Вт, что даст вам накладные расходы на дополнительные компоненты или будущие обновления.

Кроме того, мощность, подаваемая блоком питания, варьируется в периоды пиковой нагрузки и простоя. Когда компоненты доведены до предела, например, когда видеоредактор максимизирует графический процессор для задач с большим количеством графики, ему потребуется больше энергии, чем когда компьютер используется для простых задач, таких как просмотр веб-страниц. Количество потребляемой мощности блока питания будет зависеть от двух вещей; количество энергии, необходимое для каждого компонента, и задачи, которые выполняет каждый компонент.