Операционный усилитель lm358: схема включения, аналог, datasheet

Содержание

Корпус / Упаковка / Маркировка

LM358D LM358DE4 LM358DG4 LM358DGKR LM358DGKRG4 LM358DR LM358DRE4 LM358DRG3 LM358DRG4 LM358P LM358PE3 LM358PE4 LM358PSLE LM358PSR LM358PW LM358PWG4 LM358PWLE LM358PWR LM358PWRG3 LM358PWRG4 LM358PWRG4-JF
Pin 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Package Type D D D DGK DGK D D D D P P P PS PS PW PW PW PW PW PW PW
Industry STD Term SOIC SOIC SOIC VSSOP VSSOP SOIC SOIC SOIC SOIC PDIP PDIP PDIP SOP SOP TSSOP TSSOP TSSOP TSSOP TSSOP TSSOP TSSOP
JEDEC Code R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDIP-T R-PDIP-T R-PDIP-T R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G
Package QTY 75 75 75 2500 2500 2500 2500 2500 2500 50 50 50 2000 150 150 2000 2000 2000 2000
Carrier TUBE TUBE TUBE LARGE T&R LARGE T&R LARGE T&R LARGE T&R LARGE T&R LARGE T&R TUBE TUBE TUBE LARGE T&R TUBE TUBE LARGE T&R LARGE T&R LARGE T&R LARGE T&R
Width (мм) 3.91 3.91 3.91 3 3 3.91 3.91 3.91 3.91 6.35 6.35 6.35 5.3 5.3 4.4 4.4 4.4 4.4 4.4 4.4 4.4
Length (мм) 4.9 4.9 4.9 3 3 4.9 4.9 4.9 4.9 9.81 9.81 9.81 6.2 6.2 3 3 3 3 3 3 3
Thickness (мм) 1.58 1.58 1.58 0.97 0.97 1.58 1.58 1.58 1.58 3.9 3.9 3.9 1.95 1.95 1 1 1 1 1 1 1
Pitch (мм) 1.27 1.27 1.27 0.65 0.65 1.27 1.27 1.27 1.27 2.54 2.54 2.54 1.27 1.27 0.65 0.65 .65 0.65 0.65 0.65 0.65
Max Height (мм) 1.75 1.75 1.75 1.07 1.07 1.75 1.75 1.75 1.75 5.08 5.08 5.08 2 2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Mechanical Data

Datasheets

ProductFolder OrderNow Support &Community Tools &Software TechnicalDocuments LM158, LM158A, LM258, LM258ALM358, LM358A, LM2904, LM2904VSLOS068U – JUNE 1976 – REVISED JANUARY 2017 LM358, LM258, LM158, LM2904 Dual Operational Amplifiers1 Features 2 Applications 1 Wide Supply Ranges– Single Supply: 3 V to 32 V(26 V for LM2904)– Dual Supplies: В±1.5 V to В±16 V(В±13 V for LM2904)Low Supply-Current Drain, Independent of SupplyVoltage: 0.7 mA TypicalWide Unity Gain Bandwidth: 0.7 MHzCommon-Mode Input Voltage Range IncludesGround, Allowing Direct Sensing Near GroundLow Input Bias and Offset Parameters– Input Offset Voltage: 3 mV TypicalA Versions: 2 mV Typical– Input Offset Current: 2 nA Typical– Input Bias Current: 20 nA Typical …

Схема неинвертирующего усилителя

Описание схемы:

  1. На плюсовой вход подается сигнал.
  2. К выходу операционного усилителя подключается два постоянных резистора R2 и R1, соединенных последовательно.
  3. Второй резистор соединен с общим проводом.
  4. Точка соединения резисторов подключается к минусовому входу.

Чтобы вычислить коэффициент усиления, необходимо воспользоваться простой формулой: k=1+R2/R1.

Если имеются данные о значении сопротивлений, входного напряжения, то нетрудно посчитать выходное: U(out)=U(in)*(1+R2/R1). При использовании микросхемы LM358 и резисторов R1=10 кОм и R2=1 МОм, коэффициент усиления окажется равен 101.

Какой транзистор выбрать

При использовании TIP31 и TIP32 транзисторы моего прототипа работали без теплоотводов в диапазоне напряжений питания от 9 В до 21 В. Эти комплементарные транзисторы в корпусах TO-220 при естественном воздушном охлаждении допускают рассеяние мощности до 2 Вт, в то время как в моей схеме при нагрузке 8 Ом и питании 21 В на них выделяется максимум 1.3 В. Технически тут все нормально, однако транзисторы настолько горячи, что до них невозможно дотронуться. Поэтому, все же было бы неплохо воспользоваться небольшими навесными радиаторами с пружинными зажимами. При 8-омном динамике и напряжениях питания менее 18 В теплоотводы не нужны. Максимальная мощность, отдаваемая моим прототипом, аппроксимируется следующим выражением, полученным на основании эмпирических данных:

Используя эту формулу, вы можете определить, что мой прототип при питании напряжением 9 В отдает в нагрузку 8 Ом респектабельные 350 мВт. Это совсем немало для небольших радио проектов. На другом полюсе – при напряжении питания 21 В и нагрузке 8 Ом – формула предсказывает мощность 2.5 Вт, и это ровно то, что я измерил в точке начала ограничения. В этом тесте я использовал синусоидальный сигнал частотой 1 кГц.

Как ни странно, похоже, что своей устойчивостью схема обязана низкой граничной частоте силовых транзисторов. Я пробовал использовать более быстрые транзисторы (44H11 и 45H11), но получил возбуждение вблизи 700 кГц, несмотря на то, что SPICE моделирование предсказывало противоположное! Подозреваю, что более высокочастотные транзисторы просто не успевали внести дополнительный фазовый сдвиг вблизи частоты единичного усиления ОУ LM358 (1 МГц). (Это не более чем мое предположение). Выбор намного более быстрых транзисторов, таких как 2N2219 и 2N2905, возвращал схеме устойчивость, скорее всего потому, что присущий LM358 спад уже наступал к тому времени, когда транзисторы начинали сдвигать фазу. В этом случае результаты находились в согласии со SPICE. SPICE предупреждает, что совсем медленные транзисторы, такие как старинные 2N3055, будут еще более неустойчивыми. Одним словом, нужно экспериментировать!

При напряжении питания Vcc ниже 12 В рассеиваемая транзистором мощность становится меньше 350 мВт, и многие малосигнальные приборы будут хорошо работать без теплоотвода.

Усилитель сигнала термопары

Рубрика

: 7. Технические науки

: 04.10.2019

Статья просмотрена:

558 раз

Библиографическое описание:

Галимуллин, Н. Р. Усилитель сигнала термопары / Н. Р. Галимуллин, Н. Т. Хайруллина. — Текст : непосредственный // Исследования молодых ученых : материалы III Междунар. науч. конф. (г. Казань, октябрь 2021 г.). — Казань : Молодой ученый, 2021. — С. 1-3. — URL: https://moluch.ru/conf/stud/archive/349/15255/ (дата обращения: 14.11.2020).

Данная статья посвящена разработке устройства усиления сигнала термопары.

Ключевые слова: термопара, терморегулировка, нихромовая спираль.

Помимо задачи контроля температуры бывает необходимо обеспечить ее регулирование или поддержание на каком-либо заданном уровне. Поэтому становится важным обеспечить согласование блока измерения температуры и нагревателя, в качестве которого может использоваться нихромовая спираль. Для работы нагревателя нужно усилить сигнал с блока измерения по мощности, поэтому в состав устройства терморегулирования входит также усилитель мощности.

В данной статье рассматриваются различного рода термопары, которые часто являются основным видом датчиков температуры. Разрабатывается усилитель сигнала термопары и усилитель мощности для управления нагревательным элементом.

Электрическая схема блока измерения температуры и блока нагрева показаны на рисунках 1 и 2. Рассмотрим их по отдельности.

Термопары типа S — наиболее широкодиапазонные и стабильные, поэтому они получили широкое распространение . Однако им присущ серьезный недостаток: крайне малый коэффициент преобразования, всего 5,88 мкВ/°С при 20°С (у термопары типа J — 51,45 мкВ/°С, типа К — 40,28 мкВ/°С). Поэтому при не очень больших температурах (менее 500°С) вырабатываемый ими сигнал крайне мал. Усилитель должен хорошо подавлять 50-герцовый сигнал и иметь стабильное дифференциальное усиление. Его входное сопротивление должно быть достаточно высоким (более 10 кОм).

Рис. 1. Блок измерения температуры

Мы разработали схему (Рис 1), которая позволяет решить указанные проблемы. Она представлена в виде дифференциального усилителя с Т-образной цепью обратной связи, который имеет достаточно высокий коэффициент усиления по напряжению (200) и достаточно большое входное сопротивление. В качестве операционного усилителя лучше всего применить прецизионный усилитель с крайне малым смещением (менее 10 мкВ) и столь же малым температурным дрейфом (меньше 100 нВ/°С). К таким усилителям относятся LTC1050, LTC1052 фирмы Linear Technology, ICL7650, ICL7652 фирм Intersil и Maxim, а также AD8551 от Analog Devices. Питающее напряжение (от +UПИТ до -UПИТ) данного усилителя 12 В.

Шунтирующие конденсаторы на входе усилителя ослабляют ВЧ-радиопомехи (поскольку у соединительных проводов термопар достаточно большая длина).

Микросхема AD590 которая находится в тепловом контакте с опорным спаем, используется в качестве датчика температуры, вырабатывая ток, пропорциональный ее абсолютной температуре (1 мкА/°С). Температуре 0°С соответствует абсолютная температура 273 К, и следовательно, AD590 выработает ток 273 мкА; температуре 25°С — соответственно 298 К и 298 мкА, и т. д.

Так как основной усилитель DA2 имеет коэффициент усиления 200, то компенсирующее напряжение, вырабатываемое усилителем DA1, должно составлять 200 • 5,88 = 1,176 мВ/°С. Это обеспечивается включением в обратную связь DA1 резистора сопротивлением 1,176 кОм.

Если опорный спай находится при температуре 0°С, на выходе DA1 должно присутствовать нулевое напряжение, так как при нулевой температуре опорного спая коррекция не нужна. Однако AD590 в этом случае вырабатывает ток 273 мкА, который, проходя через резистор сопротивлением 1,176 кОм, создает на нем падение напряжения 0,321 В. Для того чтобы скомпенсировать этот сигнал, на неинвертирующий вход DA1 подается напряжение с делителя напряжения R2-R4, формирующего совместно с прецизионным стабилитроном VD1 (LM336Z-2.5) требуемое напряжение. Точная регулировка осуществляется подстроечным резистором R4.

5.1 Абсолютные максимальные значения

В рабочем диапазоне температур (если не указано иное)(1)

LMx58, LMx58x, LM2904V LM2904 Ед. Изм.
MIN MAX MIN MAX
VCC Напряжение питания(2) -0.3 ±16 или 32 -0.3 ±13 или 26 В
VID Дифференциальное входное напряжение(3) -32 32 -26 26 В
VI Любой вход Входное напряжение -0.3 32 -0.3 26 В
Длительность короткого замыкания выхода на землю (для одного усилителя) TA = 25°C,
VCC ≤ 15 В(4)
Неограниченна Неограниченна с
TA Рабочая температура на открытом воздухе LM158, LM158A -55 125 °C
LM258, LM258A -25 85
LM358, LM358A 70
LM2904 -40 125 -40 125
TJ Эффективная температура p-n перехода 150 150 °C
Температура корпуса в течении 60 секунд FK корпус 260 °C
Температура припоя по корпусу в течении 60 секунд JG корпус 300 300 °C
Tstg Температура хранения -65 150 -65 150 °C

(1) Абсолютные максимальные значения указывают пределы, превышение которых, может привести к повреждению устройства. Электрические характеристики не применяются при работе с устройством за пределами своих заявленных условий эксплуатации. Воздействие абсолютных максимальных значений на устройство в течении длительного времени, может повлиять на его надежность.

(2) Все значения напряжений (за исключением дифференциальных напряжений и напряжения питания) измеряются относительно земли.

(3) Дифференциальное напряжение на IN+, относительно IN?.

(4) Короткое замыкание выводов на VCC может стать причиной перегрева и возможного выхода из строя.

5.6 Электрические характеристики для LM2904

В указанном диапазоне температур, VCC = 5 В (если не указано иное)

Параметр Условия(1) TA(2) LM2904 Ед. изм.
MIN TYP(3) MAX
VIO Входное напряжение компенсации смещения нуля VCC = от 5 В до MAX,
VIC = VICR(min),
VO = 1.4 В
Без A суффикса в маркировке 25°C 3 7 мВ
Весь диапазон 10
С А суффиксом в маркировке 25°C 1 2
Весь диапазон 4
αVIO Средний температурный коэффициент входного напряжения смещения нуля Весь диапазон 7 мкВ/°C
IIO Входной ток компенсации смещения нуля VO = 1.4 В Без V суффикса в маркировке 25°C 2 50 нА
Весь диапазон 300
С V суффиксом в маркировке 25°C 2 50
Весь диапазон 150
αIIO Средний температурный коэффициент входного тока смещения нуля Весь диапазон 10 пA/°C
IIB Входной ток смещения VO = 1.4 В 25°C -20 -250 нA
Весь диапазон -500
VICR Диапазон входного синфазного напряжения VCC = от 5 В до MAX 25°C от 0 до
VCC — 1.5
В
Весь диапазон от 0 до
VCC — 2
VOH Высокий уровень выходного напряжения RL ≥ 10 кОм 25°C VCC — 1.5 В
VCC = MAX,
Без V суффикса
RL = 2 кОм Весь диапазон 22
RL ≥ 10 кОм Весь диапазон 23 24
VCC = MAX
С V суффиксом
RL = 2 кОм Весь диапазон 26
RL ≥ 10 кОм Весь диапазон 27 28
VOL Низкий уровень выходного напряжения RL ≤ 10 кОм Весь диапазон 5 20 мВ
AVD Большой сигнал усиления дифференциального напряжения VCC = 15 В,
VO = от 1 В до 11 В,
RL ≥ 2 кОм
25°C 25 100 В/мВ
Весь диапазон 15
CMRR Коэффициент ослабления синфазного сигнала VCC = от 5 В до MAX,
VIC = VICR(min)
Без V суффикса 25°C 50 80 dB
С V суффиксом 25°C 65 80
kSVR Коэффициент подавления помех по питанию
(ΔVCC /ΔVIO)
VCC = от 5 В до MAX 25°C 65 100 dB
VO1/ VO2 Переходное затухание f = от 1 кГц до 20 кГц 25°C 120 dB
IO Выходной ток VCC = 15 В,
VID = 1 В,
VO = 0
Источник 25°C -20 -30 мA
Весь диапазон -10
VCC = 15 В,
VID = -1 В,
VO = 15 В
Приемник 25°C 10 20
Весь диапазон 5
VID = -1 В, VO = 200 мВ Без V суффикса 25°C 30 мкA
С V суффиксом 25°C 12 40
IOS Ток короткого замыкания на выходе VCC около 5 В, VO = 0, GND около ?5 V 25°C ±40 ±60 мA
ICC Потребляемый ток
(четыре усилителя)
VO = 2.5 В, Без нагрузки Весь диапазон 0.7 1.2 мA
VCC = MAX, VO = 0.5 VCC, Без нагрузки Весь диапазон 1 2

(1) Все характеристики измерены в разомкнутой цепи при нулевом входном синфазном напряжении, если не указано иное. MAX VCC для испытаний составляет 26 В для LM2902 и 30 В для других.

(2) Весь диапазон это температуры от -55°C до 125°C для LM158, от -25°C до 85°C для LM258, и от 0°C до 70°C для LM358, и от -40°C до 125°C для LM2904.

(3) Все типичные значения для температуры TA = 25°C

Особенности

— Однополярное питание: от 3 В до 32 В (26 В для LM2904)

— Биполярное питание : от ±1.5 В до ±16 В (±13 В для LM2904)

  • Минимальный потребляемый ток, независящий от напряжения питания:
  • Единый коэффициент усиления по всей ширине полосы пропускания: 0.7 МГц
  • Низкий входной ток смещения и параметры смещения

— Входное напряжение компенсации смещения нуля: 3 мВ

Для версии с буквой А: 2 мВ

— Входной ток компенсации смещения нуля: 2 нА

— Входной ток смещения: 20 нА

Для версии с буквой А: 15 нА

  • Диапазон дифференциального входного напряжения равен максимальному номинальному напряжению питания: 32 В (26 В для LM2904)
  • Коэффициент усиления дифференциального напряжения в разомкнутой цепи: 100 dB
  • Внутренняя частотная компенсация
  • Все изделия соответствуют стандарту MIL-PRF-38535

5.7 Электрические характеристики для LM158A and LM258A

В указанном диапазоне температур, VCC = 5 В (если не указано иное)

Параметр Условия(1) TA(1) LM158A LM258A Ед. изм.
MIN TYP(2) MAX MIN TYP(2) MAX
VIO Входное напряжение компенсации смещения нуля VCC = 5 В до 30 В,
VIC = VICR(min),
VO = 1.4 В
25°C 2 2 3 мВ
Весь диапазон 4 4
αVIO Средний температурный коэффициент входного напряжения смещения нуля Весь диапазон 7 15 7 15 мкA/°C
IIO Входной ток компенсации смещения нуля VO = 1.4 В 25°C 2 10 2 15 нA
Весь диапазон 30 30
αIIO Средний температурный коэффициент входного тока смещения нуля Весь диапазон 10 200 10 200 пA/°C
IIB Входной ток смещения VO = 1.4 В 25°C -15 -50 -15 -80 нA
Весь диапазон -100 -100
VICR Диапазон входного синфазного напряжения VCC = 30 В 25°C от 0 до
VCC — 1.5
от 0 до
VCC — 1.5
В
Весь диапазон от 0 до
VCC — 2
от 0 до
VCC — 2
VOH Высокий уровень выходного напряжения RL ≥ 2 кОм 25°C VCC — 1.5 VCC — 1.5 В
VCC = 30 В RL= 2 кОм Весь диапазон 26 26
RL≥ 10 кОм Весь диапазон 27 28 27 28
VOL Низкий уровень выходного напряжения RL ≤ 10 кОм Весь диапазон 5 20 5 20 мВ
AVD Большой сигнал усиления дифференциального напряжения VCC = 15 В, VO = от 1 В до 11 В,
RL ≥ 2 кОм
25°C 50 100 50 100 В/мВ
Весь диапазон 25 25
CMRR Коэффициент ослабления синфазного сигнала 25°C 70 80 70 80 dB
kSVR Коэффициент подавления помех по питанию
(ΔVD /ΔVIO)
25°C 65 100 65 100 dB
VO1/ VO2 Переходное затухание f = от 1 кГц до 20 кГц 25°C 120 120 dB
IO Выходной ток VCC = 15 В,
VID = 1 В,
VO = 0
Источник 25°C -20 -30 -60 -20 -30 ?60 мA
Весь диапазон -10 -10
VCC = 15 В,
VID = -1 В,
VO = 15 В
Приемник 25°C 10 20 10 20
Весь диапазон 5 5
VID = ?1 В, VO = 200 мВ 25°C 12 30 12 30 мкA
IOS Ток короткого замыкания на выходе VCC около 5 В, GND около -5 В,
VO = 0
25°C ±40 ±60 ±40 ±60 мA
ICC Потребляемый ток
(четыре усилителя)
VO = 2.5 В, Без нагрузки Весь диапазон 0.7 1.2 0.7 1.2 мA
VCC = MAX В, VO = 0.5 В,
Без нагрузки
Весь диапазон 1 2 1 2

(1) Все характеристики измерены в разомкнутой цепи при нулевом входном синфазном напряжении, если не указано иное. MAX VCC для испытаний составляет 26 В для LM2902 и 30 В для других.

(2) Все типичные значения для температуры TA = 25°C

Статус

LM358D LM358DE4 LM358DG4 LM358DGKR LM358DGKRG4 LM358DR LM358DRE4 LM358DRG3 LM358DRG4 LM358P LM358PE3 LM358PE4 LM358PSLE LM358PSR LM358PW LM358PWG4 LM358PWLE LM358PWR LM358PWRG3 LM358PWRG4 LM358PWRG4-JF
Статус продукта В производстве В производстве В производстве В производстве В производстве В производстве В производстве В производстве В производстве В производстве В производстве В производстве Снят с производства В производстве В производстве В производстве Снят с производства В производстве В производстве В производстве В производстве
Доступность образцов у производителя Нет Да Да Нет Нет Нет Нет Да Нет Нет Да Нет Нет Нет Нет Нет Да Нет Нет Нет Нет

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:


Фото – УГО компаратора

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.


Фото – Компаратор

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.


Фото – схема компаратора

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.


Фото – простой компаратор

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Фото – аналоговый компаратор

Видео: компараторы

Параметры

Parameters / Models LM358D LM358DE4 LM358DG4 LM358DGKR LM358DGKRG4 LM358DR LM358DRE4 LM358DRG3 LM358DRG4 LM358P LM358PE3 LM358PE4 LM358PSLE LM358PSR LM358PW LM358PWG4 LM358PWLE LM358PWR LM358PWRG3 LM358PWRG4 LM358PWRG4-JF
Additional Features N/A N/A
Approx. Price (US$) 0.07 | 1ku 0.07 | 1ku
Архитектура Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar Bipolar
CMRR(Min), дБ 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65
CMRR(Min)(dB) 65 65
CMRR(Typ), дБ 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
CMRR(Typ)(dB) 80 80
Основные особенности Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized Cost Optimized
GBW(Typ), МГц 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
GBW(Typ)(MHz) 0.7 0.7
Input Bias Current(Max), pA 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000
Input Bias Current(Max)(pA) 150000 150000
Iq per channel(Max), мА 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Iq per channel(Max)(mA) 0.6 0.6
Iq per channel(Typ), мА 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
Iq per channel(Typ)(mA) 0.35 0.35
Количество каналов 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Number of Channels(#) 2 2
Offset Drift(Typ), uV/C 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Offset Drift(Typ)(uV/C) 7 7
Рабочий диапазон температур, C от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70
Operating Temperature Range(C) 0 to 70 0 to 70
Output Current(Typ), мА 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
Output Current(Typ)(mA) 30 30
Package Group SOIC SOIC SOIC VSSOP VSSOP SOIC SOIC SOIC SOIC PDIP PDIP PDIP SO SO TSSOP TSSOP TSSOP TSSOP TSSOP TSSOP TSSOP
Package Size: mm2:W x L, PKG 8SOIC: 29 mm2: 6 x 4.9(SOIC) 8SOIC: 29 mm2: 6 x 4.9(SOIC) 8SOIC: 29 mm2: 6 x 4.9(SOIC) 8VSSOP: 15 mm2: 4.9 x 3(VSSOP) 8VSSOP: 15 mm2: 4.9 x 3(VSSOP) 8SOIC: 29 mm2: 6 x 4.9(SOIC) 8SOIC: 29 mm2: 6 x 4.9(SOIC) 8SOIC: 29 mm2: 6 x 4.9(SOIC) 8SOIC: 29 mm2: 6 x 4.9(SOIC) See datasheet (PDIP) See datasheet (PDIP) See datasheet (PDIP) 8SO: 48 mm2: 7.8 x 6.2(SO) 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) 8TSSOP: 19 mm2: 6.4 x 3(TSSOP)
Package Size: mm2:W x L (PKG) See datasheet (PDIP) See datasheet (PDIP)
Rail-to-Rail In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V- In to V-
Rating Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog
Slew Rate(Typ), V/us 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Slew Rate(Typ)(V/us) 0.3 0.3
Total Supply Voltage(Max), +5V=5, +/-5V=10 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
Total Supply Voltage(Max)(+5V=5, +/-5V=10) 32 32
Total Supply Voltage(Min), +5V=5, +/-5V=10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Total Supply Voltage(Min)(+5V=5, +/-5V=10) 3 3
Vn at 1kHz(Typ), нВ/rtГц 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
Vn at 1kHz(Typ)(nV/rtHz) 40 40
Vos (Offset Voltage @ 25C)(Max), мВ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Vos (Offset Voltage @ 25C)(Max)(mV) 7 7

Электронная нагрузка для блока питания своими руками

Во время тестирования очередного самодельного или отремонтированного блока питания, чтобы создать нагрузку приходится подключать различные лампочки, мощные резисторы и кусочки спирали от электроплитки. Подбирать нужную нагрузку таким образом очень затратное по времени дело. Чтобы не тратить свое драгоценное время и нервы. Проще собрать простую электронную нагрузку своими руками.

По сути это простое устройство состоящее из мощных транзисторов, позволяющих плавно нагрузить блок питания стабильным регулируемым током.

На этом рисунке изображена схема электронной нагрузки на мощных транзисторах позволяющих нагрузить любой блок питания до 40А.


Схема электронной нагрузки для блока питания

Как работает эта схема? Напряжение с тестируемого блока питания поступает на базу транзистора Т1 через делитель напряжения собранный на резисторах R1, P1 и P2 и ограничительный резистор R2 . Транзистор Т1 управляет четырьмя мощными транзисторами Т2, Т3, Т4 и Т5 выполняющими роль ключей и создающими управляемую нагрузку на блок питания. Для более точной и грубой установки тока нагрузки в схеме имеется два переменных резистора Р1 и Р2. Силу тока нагрузки и напряжение измеряет китайский электронный вольтметр амперметр. Возможна также установка стрелочных приборов на место электронного.

Данная схема рассчитана на входное напряжение до 50В и силу тока до 40А. Если вы хотите увеличить силу тока добавьте в схему необходимое количество транзисторов TIP36C и шунтирующих резисторов 0.15 Ом 5 Вт. Каждый добавленный транзистор увеличивает силу тока на 10А.

В процессе работы транзисторы Т2, Т3, Т4 и Т5 очень сильно нагреваются, по этому требуются хорошее охлаждение. Установите каждый транзистор на большой радиатор размером 100х63х33 мм без изоляционных прокладок потому, что коллекторы транзисторов на схеме все равно соединены вместе.

Радиаторы охлаждаются двумя мощными вентиляторами 120х120 мм. Которые питаются от отдельного блока питания через стабилизатор напряжения L7812CV, также отсюда питается китайский вольтметр амперметр. Транзистор Т1 и стабилизатор напряжения L7812CV установлены на отдельном небольшом радиаторе от компьютерного блока питания, чтобы не мешать силовым транзисторам работать.

С помощью этого простого и надежного устройства легко нагружать и тестировать любые трансформаторные и импульсные блоки питания, а также аккумуляторы и другие источники питания.

Надеюсь электронная нагрузка для блока питания будет полезной самоделкой для вашей домашней радио мастерской.

Радиодетали для сборки

  • Транзистор Т1 TIP41, MJE13009, КТ819
  • Транзисторы Т2, Т3, Т4, Т5 TIP36C
  • Стабилизатор напряжения L7812CV
  • Конденсатор С1 1000 мкФ 35В
  • Диоды 1N4007
  • Резисторы R1, R2 1K, R3 2.2K, R4, R5, R6, R7 0.15 Ом 5 Вт, Р1 10К, Р2 1К
  • Радиаторы 4 шт. размер 100х63х33 мм
  • Вентиляторы 2 шт. от компьютера 12В размер 120х120 мм
  • Китайский вольтметр амперметр на 50А с шунтом, можно поставить стрелочный прибор, будет намного точнее и надежнее

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать электронную нагрузку для блока питания

LM358 DataSheet на русском, описание и схема включения

Микросхема LM358 как написано в его DataSheet является универсальным решением, так как схема включения большинства популярных устройств весьма проста, в случаях отсутствия жестких требований к высокому быстродействию, рассеиваемой мощности и нестандартному питающему напряжению. Небольшая стоимость, отсутствие необходимости подключения дополнительных элементов частотной коррекции, возможность использования во всем диапазоне стандартных питающих напряжений (до +32В) и низкий потребляемый ток, делают его кандидатом номер один для электронных проектов с ОУ.

LM358 цоколевка

LM358 состоит из двух ОУ, каждый имеет по 4 вывода, имеющих свое назначение. Всего получается 8 контактов. Производятся в нескольких видах корпусного исполнения, для объемного DIP и поверхностного монтажа на плату SO. Так же могут встречается в усовершенствованных корпусах SOIC, VSSOP, TSSOP.

Назначение контактов для всех видов корпусов совпадает: 2,3, 5,6, — входы, 1,7 – выходы, 4 – минус источника питания, 8 – плюс источника питания.

Технические характеристики

Ниже указаны предельные допустимые значения условий эксплуатации для диапазона рабочих температур окружающей среды TA от 0 до +70 °C, если не указано иное.

Основные электрические характеристики, при температуре окружающей среды TA = 25 °C.

Рекомендуемые условия эксплуатации в диапазоне рабочих температур окружающей среды, если не указано иное:

Подверженность устройства повреждению от электростатического разряда (ESD):

Также у данного устройства есть тепловые характеристики:

Схемы подключения

Ниже приведем несколько простых схем включения lm358 которые могут вам пригодится. Все они являются ознакомительными, так что обязательно проверяйте все перед внедрением в производственной сфере.

Схема в мощном неинвертирующим усилителе.

Преобразователь напряжения — ток.

Схема с дифференциальным усилителем.

Неинвертирующий усилитель средней мощности.

Аналоги

Аналогами LM358 можно считать микросхемы в которых указываются идентичные характеристики. К таким относятся: LM158, LM258, LM2904, LM2409. Эти микросхемы незначительно отличаются от описываемой своими тепловыми параметрами и подойдут в качестве замены для большинства проектов.

Для ее замены можно использовать: GL 358, NE 532, OP 04, OP 221, OP 290, OP 295, OPA 2237, TA7 5358-P, UPC 358C, AN 6561, CA 358E, HA 17904. Отечественные аналоги lm358: КР 1401УД5, КР 1053УД2, КР 1040УД1.

Для замены также может подойти аналог по электрическим параметрам, но уже c четырьмя ОУ в одной микросхеме — LM324.

Маркировка

Префикс LM сначала использовался при маркировке общего назначения компанией National Semiconductor. Цифры “358” это ее серийный номер. В 2011 году эта компания была приобретена другим производителем электроники Texas Instruments. С этого года префикс “LM” является кодом производителя Texas Instruments, но несмотря на это, этот код используют и другие производители при маркировке своей продукции. Микросхемы LM358, LM358-N и LM358-P имеют одинаковые технические параметры. У большинства компаний-производителей символами “-N” , “-P” обозначаются пластиковые корпуса PDIP.

В технических описания встречается такие виды: LM358A, LM358B, LM358BA. Так указывается версии следующего поколения промышленного стандарта LM358. Устройства «B» могут быть доступны в более современных микрокорпусах TSOT и WSON.

Применение

Lm358 широко используется в:

  • устройствах типа «мигающий маяк»;
  • блоках питания и зарядных устройствах;
  • схемах управления двигателем;
  • материнских платах;
  • сплит системах внутреннего и наружного применения;
  • бытовой технике: посудомоечные, стиральные машины, холодильные установки;
  • различных видах инверторов;
  • источниках бесперебойного питания;
  • контроллерах и др.

Возможности применения микросхемы производители обычно указывают в технических описаниях на свои устройства.