Как проверить полевой транзистор?
В норме сопротивление между любыми выводами ПТ бесконечно велико.
И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.
Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).
Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.
Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной.
Как проверить диод с помощью цифрового тестера, описано в соответствующей статье. Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.
Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.
Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.
В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.
В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.
При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.
Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно припаять к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.
Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.
В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.
В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).
Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.
Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.
О транзисторе
Давайте вспомним о том, что вне зависимости от того, проверяем мы транзистор с прямой или обратной проводимостью, они имеют два p-n перехода. Любой из этих переходов можно сопоставить с диодом. Исходя из этого, можно с уверенностью заявить, что транзистор представляют собой пару диодов, соединённых параллельно, а место их соединения, является базой.
Таким образом получается, что у одного из диодов выводы будут представлять собой базу и коллектор, а у второго диода выводы будут представлять базу и эмиттер, или наоборот. В таблице ниже представлена цветовая и кодовая маркировки маломощных среднечастотных и высокочастотных транзисторов.
Таблица маркировки маломощных среднечастотных и высокочастотных транзисторов.
Исходя из выше написанного, наша задача сводится к проверке напряжения падения на полупроводниковом приборе, или проверки его сопротивления.
Если диоды работоспособны, значит и проверяемый элемент рабочий.Для начала рассмотрим транзистор с обратной проводимостью, то есть имеющим структуру проводимости N-P-N.
На электрических схемах, разных устройств, структуру транзистора определяют с помощью стрелки, которая указывает эмиттерный переход.
Так если стрелка указывает на базу, значит, мы имеем дело c с транзистором прямой проводимости, имеющим структуру p-n-p, а если наоборот, значит это транзистор с обратной проводимостью, имеющий структуру n-p-n.
Для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления (h21э) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.
Для открытия транзистора с прямой проводимостью, нужно дать отрицательное напряжение на базу. Для этого берём мультиметр, включаем его, и после этого выбираем режим измерения прозвонки, обычно он обозначается символическим изображением диода. В этом режиме прибор показывает падение напряжения в мВ. Благодаря этому мы можем определить кремниевый или германиевый диод или транзистор. Если падение напряжения лежит в пределах 200-400 мВ, то перед нами германиевый полупроводник, а если 500-700 кремниевый.
Современный многофункциональный мультиметр.
Проверка работоспособности транзистора
Подключаем на базу полевого транзистора плюсовой щуп (красный цвет), другим щупом (черный- минус) подключаем к выводу коллектора и делаем измерение. Затем минусовым щупом подключаем к выводу эмиттера и измеряем. Если переходы транзистора не пробиты, то падение напряжения на коллекторном и эмиттерном переходе должно быть на границе от 200 до 700 мВ.
Для этого берем, подключаем черный щуп к базе, а красный по очереди подключаем к эмиттеру и коллектору, производя измерения.
Теперь произведём обратное измерение коллекторного и эмиттерного перехода.
Во время измерения, на экране прибора высветится цифра «1», что в свою очередь означает, что при выбранном нами режиме измерения, падение напряжения отсутствует.
Точно также, можно проверить элемент, который находиться на электронной плате, от какого-либо устройства.
При этом во многих случаях можно обойтись и без выпаивания его из платы.
Бывают случаи, когда на впаянные элементы в схеме, оказывают большое влияние резисторы с малым сопротивлением.
Но такие схематические решения, встречаются очень редко. В таких случаях при измерении обратного коллекторного и эмиттерного перехода, значения на приборе будут низкие, и тогда нужно выпаивать элемент из печатной платы. Способ проверки работоспособности элемента с обратной проводимостью (P-N-P переход), точно такой же, только на базу элемента подключается минусовой щуп измерительного прибора.
Почему транзистор – полевой?
Слово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.
Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.
Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.
В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.
Канал полевого транзистора может быть открыт только напряжением, без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.
Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.
Краткий курс: как проверить полевой транзистор мультиметром на исправность
В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.
Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.
Особенности конструкции, хранения и монтажа
При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.
Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора. Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток.
При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.
Схема проверки полевого транзистора n-канального типа мультиметром
Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.
Работоспособность катушки зажигания определяют проверкой сопротивлений на первичной и вторичной обмотках с помощью мультиметра.
- Снять статическое электричество с транзистора.
- Перевести мультиметр в режим проверки диодов.
- Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
- Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.
Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
При смене полярности щупов мультиметра величина показаний не должна измениться.
Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.
По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.
Проверка исправности р-канального полевого транзистора производится таким же образом, что и n-канального. Отличие состоит в том, что в п. 3 к минусу мультиметра надо подключить красный провод, а к плюсу мультиметра – черный провод.
Проверка составного транзистора
Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.
Рис 6. Эквивалентная схема транзистора КТ827А
Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.
Рис. 7. Схема для проверки составного транзистора
Обозначение:
- Т – тестируемый элемент, в нашем случае КТ827А.
- Л – лампочка.
- R – резистор, его номинал рассчитываем по формуле h21Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A — 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).
Тестирование производится следующим образом:
- Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
- Подаем минус – лампочка гаснет.
Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.
Как проверить проводку
Провести диагностику электрооборудования можно с помощью вольтметра, омметра или мультиметра, специальных диагностических стендов. Проводится и компьютерная диагностика, во время которой происходит считывание кодов ошибок и основных показателей бортовой сети машины. Для самостоятельной проверки цепей и поиска неисправностей электрики достаточно одного мультиметра или сигнальной лампы.
Используем мультиметр
Предохранители в бортовой сети считаются наиболее «слабым» звеном в плане долговечности. При нештатных ситуациях (например, при коротком замыкании) предохранительные элементы «берут удар на себя», защищая остальную электрику и электрооборудование машины. Предохранители восстановлению не подлежат и во время ремонта заменяются.
Проверяем напряжение
Перед тем, как проверить проводку в автомобиле, необходимо замерить напряжение электрической цепи между отдельными компонентами и электрооборудованием. Прозвонить можно так:
- Установить мультиметр в режим вольтметра.
- Подсоединить один щуп измерительного прибора к «минусу» аккумуляторной батарее либо к массе машины.
- Второй щуп подсоединить к подающему проводу цепи.
Если на дисплее прибора появляется определенное значение, то на данном участке цепи электрической схемы есть напряжение. Можно сравнить значения с требуемыми в соответствии с руководством по эксплуатации автомобиля.
Ищем короткое замыкание
После измерения напряжения выполняют поиск короткого замыкания цепей. Для этого потребуются либо мультиметр, либо сигнальная лампа. Что касается лампы, то при исправной проводке и отсутствии замыкания она не должна загораться.
Замыкание проводки, как и отсутствие напряжения (нулевое или бесконечное сопротивление в электрической цепи), свидетельствует о неисправностях в одном из 2-х компонентов:
- Потребителя – электрооборудования, устройств, предохранителей, блоков.
- Проводки – обрыв или замыкание проводов, плохие контакты проводки в месте соединения с потребителем.
Проверку на замыкание можно выполнить и в режиме вольтметра. Для этого на проверяемом участке необходимо извлечь все предохранители, подключить щуп к клеммам предохранительного элемента. Значение «0» на экране свидетельствует о наличии замыкания в цепи. Если при попытке пошевелить провода в цепи появляется напряжение, значит, замыкание вызвано именно проводкой, потребуется замена проводов.
Проверяем качество заземления
В автомобилях используется однопроводная схема электропроводки – это означает, что «минус» идет на массу (кузов) машины. Однако коррозия металлических деталей, их окисление и разрушение, «разбалтывание» приводят к нарушению заземления и, как следствие, к нарушению контактов бортовой цепи.
Проверка заземления, как и других элементов электрики авто, осуществляется с помощью мультиметра. Порядок действий следующий:
- Отключение АКБ.
- Подсоединение одного щупа мультиметра к кузову (металлическим деталям) машины.
- Подсоединение второго щупа к заземляющему элементу или месту соединения проводки.
Выведенное на экран прибора значение следует сравнить с заводскими данными (руководство по эксплуатации авто). Если значения сильно расходятся, то необходимо провести восстановление заземления – зачистить металл в месте соединения, проверить надежность крепления.
Проверяем целостность цепи
Соединение проводов в электрической цепи автомобилей – одно самых уязвимых мест во всей электрике машины. Помимо разрушения изоляции, нарушения целостности и обрывов в местах соединения здесь также нередко возникает окисление контактов. Определить дефекты можно не только с помощью измерительного прибора, но и визуально. Если целостность цепи нарушена именно в месте соединения, то потребуется пайка проводов с разъемами. В противном случае необходимо найти поврежденный участок, для чего понадобятся сигнальная лампа или мультиметр.
Структура IGBT
Закрытое состояние прибора характеризуется напряжением, приложенным к области n-, она находится между коллектором и эмиттером. Проводящий канал появляется при воздействии на затвор положительно заряженного потенциала в p-области, он обозначается как пунктирная линия. Ток из балласта идет из области n- (с минусом) в область n+. При этом происходит открытие МОП-транзистора, что делает возможным открытие биполярного транзистора с p-n-p перехода транзистора.
Рис. №2. Структура транзистора IGBT.
Эквивалентом структуре транзистора IGBT можно считать схему подключения транзистора, где n-канальный полевой транзистор выполнит роль промежуточного звена (динамического сопротивления), уменьшаемого в открытом состоянии IGBT. Он пропускает через базовую область биполярного транзистора с p-n-p-переходом, при этом происходит уменьшение остаточного напряжения в области n-. Опасность для схемы может представлять так называемый «паразитный биполярный транзистор», он может перейти в открытое состояние, называемое эффектом защелкивания, что влечет потерю управляемости.
Рис. №3. Схема включения транзистора IGBT эквивалентная структуре транзистора.
О роли полевых транзисторов в импульсных источниках питания
В современных видеокартах в качестве ключевых элементов импульсных фаз питания чаще всего используются n-канальные полевые транзисторы с изолированным затвором.
Полевые транзисторы являются электронными ключами, обеспечивающими работу фаз питания видеокарт (картинка с сайта techpowerup):
Это активные электронные компоненты с МОП-структурой (металл-окисел-полупроводник), в которых используется полевой эффект.
На английском языке их называют MOSFET-транзисторами (Metal-Oxide-Semiconductor-Field-Effect-Transistor):
MOSFET-транзисторы еще называют МДП-транзисторами (структура метал-диэлектрик-полупроводник), МОП-транзисторами (структура метал-окисел-полупроводник).
Упрощенная структура n-канального полевого транзистора:
N-канальные транзисторы имеют три вывода:
- G-gate (затвор) — служит для управления состоянием транзистором (аналог сетки электронных ламп или базы на биполярных транзисторах);
- D-drain (сток) — является входом управляемой электрической цепи (аналог коллектора биполярных транзисторов);
- S-source (исток) — выход управляемой электроцепи (аналог эмиттера у биполярных транзисторов).
Типовая электрическая схема N-канального полевого MOSFET-транзистора:
Как видно из схемы, между истоком и стоком n-канального полевого транзистора (иногда) включается диод. Это элемент, который должен защищать транзистор от всплесков обратного напряжения, вызванных переходными процессами на индуктивной нагрузке фаз питания при выключении транзистора. Он должен гасить на себе всплеск напряжения от катушки индуктивности в момент закрытия транзистора.
MOSFET-транзисторы выпускаются в четырех видах корпусов:
- для поверхностного монтажа — TO-263, TO-252, MO-187, SO-8, SOT-223, SOT-23, TSOP-6 и другие;
- с проволочными выводами — TO-262, TO-251, TO-274, TO-220, TO-247 и другие;
- DirectFET — DirectFET M4, DirectFET MA, DirectFET MD, DirectFET ME, DirectFET S1, DirectFET SH и другие;
- PQFN — PQFN 2×2, PQFN 3×3, PQFN 3.3×3.3, PQFN 5×4, PQFN 5×6 и другие.
Виды корпусов MOSFET-транзисторов:
Чтобы проверить полевые транзисторы, нужно знать хотя бы на базовом уровне их устройство, принцип работы, назначение выводов и какое сопротивление должно быть между ними в выключенном состоянии.
Определение полярности альтернативными методами
Если случилось так, что мультиметра под рукой нет, а полярность необходимо найти, можно использовать альтернативные и «народные» средства.
К примеру, заряды проводки динамиков проверяются при помощи батарейки на 3 вольта. Для этого необходимо на короткий промежуток времени прикоснуться проводами, присоединенными к батарейке, к выводам динамика.
Если диффузор в динамике начинает двигаться наружу, это будет значить, что положительная клемма динамика присоединена к плюсу батарейки, а отрицательная к минусу. Если же диффузор движется внутрь – полярность перепутана: положительная клемма замкнута на минусе, а отрицательная на плюсе.
Если необходимо подключить блок питания постоянного напряжения или аккумулятор, но на них нет маркировки полярности, а под рукой нет мультиметра, плюс и минус можно определить «народными» методами при помощи подручных материалов.
Самый простой способ определения полярности, которым можно воспользоваться дома – это использовать картофель. Для этого необходимо взять один клубень сырого картофеля и разрезать пополам. После этого два провода (желательно разного цвета или с любым другим отличительным знаком) оголенными концами втыкаются в срез картофеля на расстоянии 1-2 сантиметра друг от друга.
Другие концы проводов подключаются к проверяемому источнику постоянно тока, и прибор включается в сеть (если это аккумулятор, то после подсоединения проводов больше ничего делать не нужно) на 15-20 минут. По истечении этого времени на срезе картофеля, вокруг одного из проводов образуется светло-зеленое пятно, которое будет признаком плюсового заряда провода.
Второй способ также не требует, каких либо, особых устройств или инструментов. Для определения полярности проводов источника постоянного тока понадобится емкость с теплой водой, в которую опускаются два подключенных к источнику питания провода.
После включения прибора в сеть вокруг одного из проводов начнут появляться пузыри газа (водород) – это процесс электролиза воды. Эти пузырьки образуются вокруг источника отрицательного заряда.
Следующий способ подойдет в том случае, если есть не используемый, рабочий компьютерный кулер. Способ определения полярности данным методом заключается в том, что кулер необходимо запитать от проверяемого источника бесперебойного питания. Но зачастую в кулерах присутствует три провода:
- черный, отвечает за отрицательный заряд;
- красный, отвечает за положительный заряд;
- желтый, является датчиком оборотов.
В данном случае желтый провод игнорируется и никуда не подключается. Если после подключения кулера к источнику постоянного напряжения, кулер начал работать, то полярность определена правильно, плюс подключен к красному проводу, а минус – к черному. А если кулер не срабатывает – это будет означать что полярность неправильная.
Для этого необходимо дотронутся индикатором до одного из выводов аккумулятора, прижать палец к обратной стороне индикатора (к контакту на рукоятке), а ко второму выводу аккумулятора дотронуться рукой.
Если индикатор начал светиться, то заряд проверенного вывода, с которым он контактирует, имеет положительное значение, а если индикатор не засветился – вывод отрицательный. Но у этого способа определения полярности есть один недостаток.
Если аккумулятор разрядился или поврежден (пробит), индикатор будет загораться при контакте с обеими клеммами, из-за чего определить значения полюсов аккумуляторной батареи будет невозможно.
Где используются полевые транзисторы?
Настоящий уровень технологии позволяет сделать сопротивление открытого канала мощного полевого транзистора (ПТ) достаточно малым – в несколько сотых или тысячных долей Ома!
И это является большим преимуществом, так как при протекании тока даже в десяток ампер рассеиваемая на ПТ мощность не превысит десятых или сотых долей Ватта.
Таким образом, можно отказаться от громоздких радиаторов или сильно уменьшить их размеры.
ПТ широко используются в компьютерных блоках питания и низковольтных импульсных стабилизаторах на материнской плате компьютера.
Из всего многообразия типов ПТ для этих целей используются ПТ с индуцированным каналом.
Биполярный транзистор
Наиболее распространенные транзисторы. Используются в основном в схемах усиления или генерации сигнала: в усилителях, генераторах, модуляторах, инверторах и т. д. Бывают двух типов: p-n-p и n-p-n. Не углубляясь в структуру полупроводникового прибора, достаточно будет сказать, что каждый p-n переход представляет собой диод. Строго говоря, это не совсем так, но для проверки работоспособности такое представление вполне допустимо. Таким образом, последовательность p-n-p представима в виде двух диодов, соединенных катодами, а n-p-n – двух диодов, соединенных анодами. Чтобы проверить, работоспособность такого элемента, нужно мультиметром замерить сопротивление переходов.
Определение работоспособности p-n-p полупроводника:
- Берется мультиметр. Черный провод (обозначим его как Ч) помещается в гнездо COM (минус).
- Красный (К) – в гнездо VΩmA (плюс).
- Тестер выставляется на замер электрического сопротивления. Предельное значение выбирается 2 кОм. Это означает, что мультиметр может корректно измерять сопротивление от 0 до 2000 Ом. При превышении данного порога, на экране прибора загорится «1».
- Для замера прямых сопротивлений Ч закрепляется на базе элемента.
- Чтобы замерить величину сопротивления эмиттерного перехода, К помещается на эмиттер.
- Измеренное значение должно быть от 500 до 1200 Ом. Аналогично и для коллектора.
- Для измерения обратных сопротивлений на базе элемента закрепляется К. Ч поочередно помещается на коллектор и эмиттер. Полученные значения должны превышать установленный порог в 2кОм. Об этом, в обоих случаях, будет свидетельствовать цифра «1» на экране тестера.
- Для n-p-n полупроводника применяется та же самая методика. За исключение того, что в п.1 Ч и К помещаются в противоположные гнезда. Тем самым меняется полярность щупов тестера.
Если изначально нет информации относительно расположения базы, коллектора, эмиттера, это нетрудно определить. Измерительный прибор устанавливается в состояние п. 1 и п. 2 вышеприведенной схемы. К (плюс) помещается на правый вывод полупроводника. Ч (минус) поочередно замыкается на средний и левый выводы. Если в обоих случаях тестер покажет «1», то данный контакт и есть база. В противном случае аналогичным образом тестируем оставшиеся контакты.
Как пользоваться цифровым мультиметром
Для того чтобы провести измерения, тестер подключается набором проводов к измеряемому элементу. На одном конце каждого из проводов находится штекер, предназначенный для установки в гнездо измерителя, а на другом — контактный щуп. Порядок измерения электронным мультиметром в общем виде можно представить в виде следующих действий:
-
Включить устройство, нажав на кнопку ON/OFF.
- Вставить штекера проводов в соответствующие гнёзда на панели. COM — общее гнездо для подключения щупа. V/Ω — положительное гнездо для подключения щупа.
- Поворотный выключатель установить в положение диодной прозвонки «o)))».
- Прижать измерительные щупы к выводам прибора.
- Снять показания с экрана.