Меню

Содержание

Особенности работы МОП-транзисторов[ | ]

Схема включения транзистора Выходная (стоковая) характеристика полевого транзистора с каналом n-типа Полевые транзисторы управляются напряжением, приложенным к затвору транзистора относительно его истока, при этом:

I c = I u ; {\displaystyle I_{c}=I_{u};} I 3 → 0. {\displaystyle I_{3}\to 0.}

При изменении этого напряжения ( U 3 u {\displaystyle U_{3u}} ) изменяется состояние транзистора и ток стока ( I c {\displaystyle I_{c}} ).

  1. Для транзисторов с каналом n-типа при U 3 u < U n o p , I c = 0 {\displaystyle U_{3u} транзистор закрыт;
  2. При U 3 u > U n o p {\displaystyle U_{3u}>U_{nop}} транзистор открывается и рабочая точка находится на нелинейном участке управляющей (стокзатворной) характеристики полевого транзистора: I c = K n ; {\displaystyle I_{c}=K_{n};} K n {\displaystyle K_{n}} — удельная крутизна характеристики транзистора;
  3. При дальнейшем увеличении управляющего напряжения ( U 3 u {\displaystyle U_{3u}} ) рабочая точка переходит на линейный участок стокозатворной характеристики; I c = K n 2 2 {\displaystyle I_{c}={\frac {K_{n}}{2}}^{2}} — уравнение Ховстайна.

Динамические характеристики

При использовании транзистора MOSFET в качестве силового ключа его основной функцией является включение/выключение тока стока по сигналу на затворе. Рис. 11а иллюстрирует характеристику Iс(Uзи), а рис. 11(б) — эквивалентную схему, часто используемую при анализе ключевых свойств MOSFET.

Рис. 11.
а) Крутизна как характеристика транзистора;
б) эквивалентная схема с указанием элементов, наиболее сильно влияющих на переключение

Ключевые свойства определяются временем, необходимым для установления определенных напряжений на паразитных емкостях. Распределенное сопротивление затвора Rg приблизительно обратно пропорционально площади ячейки. Индуктивности выводов истока Ls и стока Ld имеют порядок десятков нГн. Типичные значения входной (Сiss) и выходной (Coss) емкостей, а также емкости обратной связи Crss приведены в описаниях транзисторов и используются разработчиками для определения номиналов компонентов, входящих в схему. Эти емкости определяются через емкости эквивалентной схемы следующим образом:

Емкость затвор-сток CGD является нелинейной функцией напряжения и представляет собой наиболее важный параметр, так как образует петлю обратной связи между входом и выходом транзистора. Она также именуется емкостью Миллера, поскольку приводит к эффекту увеличения входной емкости в динамическом режиме, когда она уже не равна простой сумме емкостей. На рис. 12 приведена типичная схема измерения времени переключения, а также показаны промежутки нарастания и спада UЗИ и UСИ.

Рис. 12.
а) Схема измерения скорости переключения;
б) взаимное поведение напряжений затвор-исток и сток-исток

Защитные и контрольные функции драйверов

Защита силовых ключей от разного рода аварийных ситуаций является одной из важнейших функций схемы управления. Для ее реализации драйверы снабжаются блоками оперативного мониторинга перегрузки по току и КЗ, перенапряжения на коллекторе и затворе, перегрева, а также падения напряжения управления VGG+/VGG-.

Защита от перегрузки по току

Измерение тока коллектора/стока производится с помощью резистивных шунтов, токовых трансформаторов, индукционных сенсоров и т. д. Одним из самых распространенных методов мониторинга состояния токовой перегрузки является измерение напряжения насыщения транзистора. Выход из насыщения (Desaturation), при котором величина VCEsat достигает определенного порога, рассматривается как аварийная ситуация. При этом драйвер блокирует силовые транзисторы и формирует сигнал неисправности ERROR, который через изолирующий барьер передается на входной каскад и далее на контроллер. Интеллектуальные модули высокой степени интеграции (например, SKiiP компании SEMIKRON) имеют в своем составе датчики тока, информация с которых используется схемой защиты вместе с напряжением насыщения, что позволяет сократить время реакции и отключить IGBT при меньшем уровне перегрузки.

Защита от перенапряжения на затворе

Функцию ограничения напряжения на затворе рекомендуется реализовывать в любом драйвере, независимо от наличия аварийной ситуации. Кроме защиты затвора от пробоя, это позволяет ограничить ток КЗ. Подробнее данный вопрос будет рассмотрен далее.

Защита от перенапряжения на коллекторе (стоке)

Ограничение напряжения на силовых терминалах может осуществляться самим модулем (большинство MOSFET обладает стойкостью к лавинному пробою), внешними пассивными снабберами, а также активными цепями, переводящими транзистор в линейный режим при возникновении опасного перенапряжения.

В ряде интеллектуальных модулей (например, SKiiP) реализована функция запрета коммутации при достижении напряжением DC-шины порогового уровня. Эта опция не способна защитить от внешних перенапряжений, однако она позволяет исключить влияние коммутационных выбросов в критических режимах, что существенно повышает надежность работы преобразовательного устройства. Мониторинг напряжения питания производится «квази-изолированным» датчиком на основе высокоомного дифференциального усилителя, передающего аналоговый сигнал, пропорциональный VDC, на схему управления. Если величина VDC превышает заданный уровень, силовые транзисторы отключаются, и схема защиты формирует сигнал неисправности. В ряде случаев параллельно цепи питания инвертора устанавливается тормозной чоппер, активно разряжающий конденсаторы звена постоянного тока при опасном увеличении напряжения. Такая схема чаще всего применяется в приводах, где используется режим динамического торможения (электротранспорт, лифты и т. д.).

Защита от перегрева

Температура силовых кристаллов, а также изолирующей подложки рядом с чипами, корпуса модуля и радиатора может быть определена расчетным методом или с помощью сенсоров. Если термодатчик гальванически изолирован, то его выходной сигнал передается на схему управления и используется для отключения силового каскада и формирования сигнала неисправности.

Защита от падения напряжения управления VGG+, VGG- (Under Voltage LockOut, UVLO)

Падение напряжения питания выходного каскада драйвера и, соответственно, уровня VGE нежелательно по многим причинам. В первую очередь при этом возрастает опасность перехода ключа в линейный режим работы и резкого увеличения рассеиваемой мощности. Кроме того, в этом случае теряется управляемость: транзистор не может быть полностью открыт или заблокирован. Мониторинг критического состояния производится путем измерения величин VGG+, VGG- с последующим отключением силового каскада при их снижении до опасного уровня.

Подключение IRF3205

Подключение данного транзистора ничем не отличается от способа подключения остальных n-канальных МОП-транзисторов в корпусе ТО-220. Ниже Вы можете увидеть цоколевку выводов MOSFET’а:

Управление осуществляется затвором (gate). В теории, полевику все равно где у него сток, а где исток. Однако в жизни проблема заключается в том, что ради улучшения характеристик транзистора контакты стока и стока производители делают разными. А на мощных моделях из-за технического процесса образуется паразитный обратный диод.

Подключение к микроконтроллеру

Так как для открытия транзистора на затвор необходимо подать около 20В, то подключить его напрямую к МК, который выйдет максимум 5, не получится. Есть несколько способов решения этой задачи:

  • Регулировать напряжение на затворе менее мощным транзистором, благодаря которому можно управлять напряжением в 5В. В таком случае схема будет простая и все, что придется добавить – это два резистора (подтягивающий на 10 кОм и ограничивающий ток на 100 Ом)
  • Использовать специализированный драйвер. Такая микросхема будет формировать необходимый сигнал управления и выравнивать уровень между контроллером и транзистором. Ниже приведена одна из возможных схем для такого способа.
  • Воспользоваться другим транзистором, у которого вольтаж открытия будет ниже. Вот список наиболее мощных и распространенных транзисторов, которые можно использовать с микроконтроллерами такими, как arduino, например:
    • IRF3704ZPBF
    • IRLB8743PBF
    • IRL2203NPBF
    • IRLB8748PBF
    • IRL8113PBF

2017: TPH1R204PB

21 ноября 2017 года компания Toshiba Electronics Europe заявила о расширении ассортимента МОП-транзисторов на основе собственного технологического процесса производства полупроводниковых приборов с вертикальным каналом U-MOS-IX-H. Компания представила компактное устройство на 40 В со встроенным диодом с мягким восстановлением (SRD).

МОП-транзистор U-MOS-IX-H MOSFET, (2017)

Встроенный диод с мягким восстановлением в составе МОП-транзистора TPH1R204PB позволяет минимизировать импульсные напряжения, возникающие между стоком и истоком при переключении. Такой МОП-транзистор подходит для работы в синхронных выпрямителях на стороне вторичного напряжения импульсных блоков питания с жесткими требованиями к уровню электромагнитных помех.

Целевые области применения устройства:

  • высокоэффективные преобразователи переменного тока в постоянный
  • преобразователи постоянного тока,
  • приводы электродвигателей, например, в аккумуляторных инструментах.

TPH1R204PB представляет собой устройство с каналом n-типа и максимальным сопротивлением в открытом состоянии (RDS(ON)) 1,2 мОм (при VGS = 10 В). Номинальный выходной заряд (QOSS) составляет 56 нКл. Устройство выпускается в корпусе SOP Advance размерами 5 мм x 6 мм x 0,95 мм.

Включенное состояние (1 квадрант)

Состояние прямой проводимости при приложении положительного напряжения VDS и положительном направлении тока стока ID определяет две области характеристической кривой: активную и омическую.

Активная зона характеристики

При большом превышении напряжением «затвор–исток» порогового уровня VGE(th), относительно высокая доля этого сигнала окажется приложенной к каналу вследствие токового насыщения (горизонтальный участок выходной характеристики). Ток стока ID управляется напряжением VGS. Параметром переходной кривой (рис. 11б) является прямая проводимость gfs, определяемая как

gfs = DID/DVGS = ID/(VGS–VGS(th)).

Прямая проводимость растет пропорционально ID и VDS и падает с увеличением температуры кристалла. В режиме коммутации модулей, содержащих несколько параллельных чипов, работа в активной области наблюдается только при включении и выключении. Стационарная работа в этой зоне недопустима, поскольку пороговое напряжение VGS(th)снижается с ростом температуры, т. е. даже небольшая разница характеристик кристаллов может привести к «тепловому убеганию».

Омическая зона характеристики

Данная область (наклонные участки выходной характеристики) соответствует включенному состоянию, при котором величина тока ID определяется только внешними цепями нагрузки. Поведение ключа при этом характеризуется сопротивлением открытого канала RDS(on), определяемым по отношению приращений напряжения VDS и тока стока ID. Величина RDS(on) зависит от сигнала управления VGS и температуры кристалла. В диапазоне рабочих температур MOSFET сопротивление открытого канала почти удваивается при нагреве от +25 до +125 °С.

Структура IGBT

Закрытое состояние прибора характеризуется напряжением, приложенным к области n-, она находится между коллектором и эмиттером. Проводящий канал появляется при воздействии на затвор положительно заряженного потенциала в p-области, он обозначается как пунктирная линия. Ток из балласта идет из области n- (с минусом) в область n+. При этом происходит открытие МОП-транзистора, что делает возможным открытие биполярного транзистора с p-n-p перехода транзистора.

Рис. №2. Структура транзистора IGBT.

Эквивалентом структуре транзистора IGBT можно считать схему подключения транзистора, где n-канальный полевой транзистор выполнит роль промежуточного звена (динамического сопротивления), уменьшаемого в открытом состоянии IGBT. Он пропускает через базовую область биполярного транзистора с p-n-p-переходом, при этом происходит уменьшение остаточного напряжения в области n-. Опасность для схемы может представлять так называемый «паразитный биполярный транзистор», он может перейти в открытое состояние, называемое эффектом защелкивания, что влечет потерю управляемости.

Рис. №3. Схема включения транзистора IGBT эквивалентная структуре транзистора.

Падение напряжения на внутреннем диоде

Внутренний p-n-переход закрыт при нормальной работе транзистора (при нормальной полярности напряжения сток-исток). Открывается этот переход при обратной полярности приложенного напряжения. Являясь паразитным элементом, он, вместе с тем, может быть схемотехнически использован как защитное устройство. Прямое падение на открытом внутреннем диоде определяется параметром VF. VF указывает на гарантированное максимальное значение этой характеристики при определенном значении тока истока. На рис. 10 показаны типичные ВАХ внутреннего диода при двух температурах. Ввиду большего сопротивления контакта металлизации и кремния p-типа р-канальные приборы имеют более высокое напряжение VF, чем n-типа. Нормальными значениями VF являются 1,6 В для высоковольтных приборов (>100 В) и 1,0 В для низковольтных (<100 В).

Рис. 10. Вольт-амперная характеристика открытого внутреннего диода

Строительство МОП-транзистора

Конструкция MOSFET немного похожа на FET. Оксидный слой наносится на подложку, к которой подключен вывод затвора. Этот оксидный слой действует как изолятор (sio 2 изолирует от подложки), и, следовательно, MOSFET имеет другое название IGFET. В конструкции MOSFET, слегка легированная подложка, рассеивается с сильно легированной областью. В зависимости от используемой подложки они называются MOSFET P-типа

иN-типа .

На следующем рисунке показана конструкция MOSFET.

Напряжение на затворе контролирует работу MOSFET. В этом случае на затвор можно подавать как положительные, так и отрицательные напряжения, поскольку он изолирован от канала. При отрицательном напряжении смещения затвора он действует как истощающий МОП-транзистор,

тогда как при положительном напряжении смещения затвора он действует какполевой МОП-транзистор .

Классификация МОП-транзисторов

В зависимости от типа материалов, используемых в конструкции, и типа операции, полевые МОП-транзисторы классифицируются, как показано на следующем рисунке.

После классификации давайте пройдемся по символам MOSFET.

N-канальные МОП-транзисторы

просто называютсяNMOS . Символы для N-канального МОП-транзистора приведены ниже.

МОП-транзисторы с P-каналом

просто называютсяPMOS . Символы для P-канального MOSFET приведены ниже.

Теперь давайте рассмотрим конструкционные детали N-канального MOSFET. Обычно для объяснения рассматривается NChannel MOSFET, так как этот в основном используется. Также нет необходимости упоминать, что изучение одного типа объясняет и другое.

Основные правила при использовании мощных МОП ПТ

Необходимо остерегаться выбросов напряжения сток-исток, которые появляются при переключениях.
Нельзя превышать параметры пикового тока
Не рекомендуется работать на среднем значении тока, выше нормированного значения.
Желательно оставаться в заданных температурных пределах.
Обязательно нужно обращать внимание на топология схемы.
Необходимо соблюдать осторожность, применяя интегральный диод тело-сток.
Нужно соблюдать предельную внимательность, сравнивая нормы токовых значений.

Обладая огромными преимуществами, мощные полевые транзисторы МОП при правильном применении служат для улучшения конструкции системы, которая при обладании меньшим количеством элементом может быть лучше, компактнее, функциональнее, чем аналогичные приборы, но другой компоновки и типа.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Схема полевого JFET-транзистора с управляющим PN-переходом

В нашем примере мы тоже будем использовать вместо “тротуара” полупроводник N-типа. То есть мы имеем какой-либо брусочек из N полупроводника. В нем преобладают электроны. Конечно, их не так много, как в проводниках, но все же их достаточно, чтобы через этот брусок  мало-мальски тёк электрический ток.

Что будет, если на него подать напряжение? Как я уже сказал, хотя в  N полупроводнике избыток электронов, но их все равно не так много, как в проводниках. Поэтому через этот кусок N полупроводника побежит электрический ток, если мы приложим к нему постоянное или переменное напряжение.

Вы ведь не забыли, что хотя электроны и бегут к плюсу, но за направление электрического тока  во всем мире принято движение от плюса к минусу источника напряжения?

А теперь давайте впаяем в этот брусок полупроводник P-типа. Получится что-то типа этого:

Можно сказать, что у нас уже получился полевой транзистор.

На границе касания теперь образовался PN-переход с небольшим запирающим слоем!

Итого, у нас получился “кирпич” с тремя выводами.

Принцип стабилизации тока

Целевое назначение специальной схемы – регулирование источника питания в автоматическом режиме для поддержания стабильных параметров цепей нагрузки. Основной компонент – достаточно мощный полупроводниковый прибор, ограничитель силы тока на выходе блока питания.

Требования к управляющему элементу

Критерии выбора можно сформулировать, если известны параметры силы тока (ампер). Однако даже без конкретного технического задания несложно перечислить базовые требования:

  • ток в контрольной цепи поддерживается с определенной точностью;
  • следует компенсировать перепады потребляемой мощности;
  • корректирующие изменения должны выполняться достаточно быстро;
  • для автоматической настройки оптимального режима и улучшения защиты от помех нужна организация обратной связи.

Суть стабилизации

Для уточнения функциональности управляющего элемента необходимо отметить особенности типичной нагрузки. Интенсивность излучения светодиода, например, существенно зависит от температуры в процессе эксплуатации. Соответствующим образом изменяется мощность потребления. При увеличении тока уменьшается напряжение.

Важно! Если установить обратную связь (отрицательную), отмеченное изменение будет регулировать рабочий режим управляющего устройства. В частности, при увеличении напряжения между затвором и стоком полевого транзистора ток через исток уменьшается

Тем самым без иных дополнительных действий обеспечивается стабилизация выходных параметров источника.

Особенности подключения[ | ]

В этом разделе не хватает ссылок на источники информации.

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 25 марта 2021 года

При подключении мощных МОП-транзисторов (особенно работающих на высоких частотах) используется стандартное схемное включение транзистора:

  1. RC-цепочка (снаббер), включённая параллельно истоку-стоку, для подавления высокочастотных колебаний и больших импульсов тока, возникающих при переключении транзистора из-за паразитных индуктивности и ёмкости подводящих шин. Высокочастотные колебания и импульсные токи увеличивают выделение тепла в транзисторе и могут вывести его из строя, если транзистор работает в предельно-допустимом тепловом режиме). Снаббер также уменьшает скорость нарастания напряжения на выводах сток-исток, чем защищает транзистор от самооткрывания через проходную емкость.
  2. Быстрый защитный диод, включённый параллельно истоку-стоку в обратном относительно источника питания включении, шунтирует импульсы тока, образующегося при запирании транзистора, работающего на индуктивную нагрузку.
  3. Если транзисторы работают в мостовой или полумостовой схеме на высокой частоте (например, в сварочных инверторах, индукционных нагревателях, импульсных источниках питания), то помимо защитного диода в цепь стока иногда встречно включается диод Шоттки для блокирования паразитного диода. Паразитный диод имеет большое время запирания, что может привести к сквозным токам и выходу транзисторов из строя.
  4. Резистор, включённый между истоком и затвором, для утечки заряда с затвора. Затвор сохраняет электрический заряд как конденсатор, и после снятия управляющего сигнала МОП-транзистор может не закрыться (или закрыться частично, что приведёт к повышению его сопротивления, нагреву и выходу из строя). Величина резистора подбирается таким образом, чтобы мало влиять на управление транзистора, но, в то же время, быстро сбрасывать электрический заряд с затвора.
  5. Защитные диоды (супрессоры), подключаемые параллельно транзистору и его затвору. При превышении напряжения питания на транзисторе (или при превышении управляющего сигнала на затворе транзистора) выше допустимого, например при импульсных помехах, супрессор ограничивает опасные выбросы напряжения и предохраняет затворный диэлектрик от пробоя.
  6. Резистор, включённый последовательно в цепь затвора, для уменьшения тока перезаряда затвора. Затвор мощного полевого транзистора имеет высокую ёмкость, и электрически эквивалентно представляет собой конденсатор ёмкостью в несколько десятков нанофарад, что вызывает значительным импульсные токи во время перезарядки затвора короткими фронтами напряжения управления (до единицы ампер). Большие импульсные токи могут повредить устройство управления затвором транзистора.
  7. Управление мощным МОП-транзистором, работающим в ключевом режиме на высоких частотах, осуществляют с помощью драйвера — специальной схемы или готовой микросхемы, усиливающей управляющий сигнал и обеспечивающей большой импульсный ток для быстрой перезарядки затвора транзистора. Это увеличивает скорость переключения транзистора. Ёмкость затвора мощного силового транзистора может достигать десятков нанофарад. Для быстрой её перезарядки требуется ток в единицы ампер.
  8. Также используются оптодрайверы — драйверы, совмещённые с оптопарами. Оптодрайверы обеспечивают гальваническую развязку силовой схемы от управляющей, защищая её в случае аварии, а также обеспечивают гальваническую развязку относительно земли при управлении верхними МОП-транзисторами в мостовых и полумостовых схемах. Совмещение драйвера с оптопарой в одном корпусе упрощает разработку и монтаж схемы, уменьшает габариты изделия, его стоимость и т. д.
  9. В сильноточных устройствах с большим уровнем помех и электрических ко входам микросхем, выполненных на МОП-структурах, подключают по паре диодов Шоттки, включённых в обратном направлении, т. н. диодную вилку (один диод — между входом и общей шиной, другой — между входом и шиной питания) для предотвращения явления так называемого «защёлкивания» МОП-структуры. Однако, в некоторых случаях, применение диодной вилки может привести к нежелательному эффекту «паразитного питания» (при отключении питающего напряжения диодная вилка может работать как выпрямитель и продолжать питать схему).

Полевой транзистор, имеющий изолированный затвор

Прибор, где есть изолированный затвор. Кристалл полупроводника с довольно высоким удельным сопротивлением имеет две сильнолегированные области с противоположным типом проводимости. Конструктивная особенность данного вида полевого транзистора заключается в том, что затвор отделяется слоем диэлектрика от основной части прибора. На сильнолегированных областях имеются металлические электроды – сток и исток. Расстояние между ними может составлять меньше микрона. Поверхность между истоком и стоком покрывается тонким слоем (что-то около 0,1 микрометра) диэлектрика. Поскольку в качестве проводника используется кремний, то изолятор – это его диоксид, который выращивается путём окисления при высокой температуре. На слой диэлектрика наносят металлический электрод – затвор. Такое разнообразие привело к возникновению нового названия – МДП-транзистор. Ведь в конструкции используется металл, диэлектрик и полупроводник. Хотя схемы включения транзисторов от этого не меняются.

Существует две разновидности полевых МДП-транзисторов:

  1. Индуцированный канал. Могут производить значительное усиление электромагнитных колебаний, причем как по мощности, так и по напряжению.
  2. Встроенный канал. Могут работать в 2-х режимах и меняют статические характеристики.

Тестирование составного полупроводника

Такой элемент по своей конструкции напоминает микросхему. Так как проверить микросхему на работоспособность мультиметром практически невозможно, так нельзя и проверить составной прибор, используя только тестер. Для тестирования понадобится собрать несложную схему.

В ней применяется источник постоянного напряжения 10−14 вольт. Нагрузкой цепи служит лампочка. В качестве резистора используется элемент мощностью 0,25 Вт. Его сопротивление рассчитывается по формуле h21*U/I, где:

  • h21— коэффициент усиления;
  • U — напряжение источника питания;
  • I — ток нагрузки.

Для проверки на базу подаётся положительный сигнал от источника питания. Лампочка светится. При смене полярности лампочка гаснет. Такое поведение говорит о работоспособности прибора.

Таким образом, узнав, как прозвонить транзистор мультиметром, можно легко вычислить неисправный элемент в схеме, даже его не выпаивая.

Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.