Что такое полевой транзистор и как его проверить

Содержание

Режим истощения МОП-транзистора

Режим истощения встречается значительно реже, нежели режимы усиления без приложения напряжения смещения к затвору. То есть, канал проводит при нулевом напряжении на затворе, следовательно, прибор «нормально закрыт». На схемах используется сплошная линия для обозначения нормально замкнутого проводящего канала.

Для п-канального МОП-транзистора истощения, отрицательное напряжение затвор-исток отрицательное, будет истощать (отсюда название) проводящий канал своих свободных электронов транзистора. Аналогично для р-канального МОП-транзистора обеднение положительного напряжения затвор-исток, будет истощать канал своих свободных дырок, переведя устройство в непроводящее состояние. А вот прозвонка транзистора не зависит от того, какой режим работы.

Другими словами, для режима истощения п-канального МОП-транзистора:

  1. Положительное напряжение на стоке означает большее количество электронов и тока.
  2. Отрицательное напряжение означает меньше электронов и ток.

Обратные утверждения также верны и для транзисторов р-канала. Тогда режим истощения МОП-транзистора эквивалентно «нормально разомкнутому» переключателю.

Электронные ключи

Для повышения коэффициента полезного действия устройств силовой электроники широко используется импульсный режим работы диодов, транзисторов и тиристоров. Импульсный режим характерен резкими изменениями токов и напряжений. В импульсном режиме диоды, транзисторы и тиристоры используются как ключи.

При помощи электронных ключей выполняется коммутация электронных схем: подключение/отключение схемы к/от источникам(-ов) электрической энергии или сигнала, подключение или отключение элементов схем, изменение параметров элементов схем, изменение вида воздействующего источника сигнала.

УГО идеальных ключей показаны на рисунке:

Ключи, работающие на замыкание и размыкание соответственно.

Ключевой режим характеризуется двумя состояниями: «включено»/»выключено».

Идеальные ключи характеризуются мгновенным изменением сопротивления, которое может принимать значение 0 или ∞. Падение напряжения на идеальном замкнутом ключе равно 0. При разомкнутом ключе ток равен 0.

В реальных ключах токи и падения напряжения, соответствующие состояниям «включено»/»выключено», зависят от типа и параметров применяемых диодов, транзисторов, тиристоров и переход из одного состояния в другое происходит не мгновенно, а в течение времени, обусловленного инерционностью активного элемента и наличием паразитных емкостей и индуктивностей коммутируемой цепи.

Реальные ключи также характеризуются двумя крайними значениями сопротивления Rmax и Rmin. Переход от одного значения сопротивления к другому в реальных ключах происходит за конечное время. Падение напряжения на реальном замкнутом ключе не равно нулю.

Ключи подразделяются на ключи, используемые в маломощных схемах, и ключи, используемые в силовых схемах. Каждый из этих классов имеет свои характеристики.

  • Сопротивлениями ключа в открытом и закрытом состояниях;
  • Быстродействием – временем перехода ключа из одного состояния в другое;
  • Падением напряжения на замкнутом ключе и током утечки разомкнутого ключа;
  • Помехоустойчивостью – способностью ключа оставаться в одном из состояний при воздействии помех;
  • Чувствительностью ключа – величиной управляющего сигнала, переводящего ключ из одного состояния в другое;
  • Пороговым напряжением – значением управляющего напряжения, в окрестности которого происходит резкое изменение сопротивления электронного ключа.

Взаимодействие полупроводников

Мы с вами  знаем из статьи Биполярный транзистор, что есть два типа искусственных легированных полупроводников. Это полупроводник N-типа и полупроводник P-типа. Как вы помните, в полупроводнике N-типа у нас избыток электронов (там их ОЧЕНЬ много):

А в полупроводнике P-типа избыток дырок:

Если вы не забыли, электроны у нас обладают отрицательным зарядом ( – ), а дырки – положительным зарядом ( + ). Поэтому, на картинках мы заполнили наши бруски полупроводников соответствующими зарядами.

А что будет, если соединить их друг с другом?

Так как электроны и дырки постоянно находятся в хаотическом движении, на границе соединения P и N полупроводников начнется диффузия. Что такое диффузия? Как говорит нам Википедия, диффузия – это процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого вещества.

Пример:

Если пустить шептуна на парах, то в этом случае ваши вонючие молекулы из пукана будут смешиваться с молекулами воздуха и сосед через парту учует ваш запах пельменей, которые вы съели на ужин.

На границе полупроводников происходит то же самое! Электроны и дырки начинают смешиваться.

Но если ваши вонючие молекулы, выпущенные из пукана, могут спокойно смешиваться с воздухом пока не займут все пространство кабинета, то на границе P-N перехода есть камень преткновения. И он заключается в том, что электроны и дырки обладают зарядом и начинают взаимодействовать с друг другом. Начинает работать правило, одноименные заряды отталкиваются, а разноименные притягиваются. Так как электроны и дырки разноименных зарядов, они начинают притягиваться к друг другу. То есть с одной стороны идет диффузия, а с другой стороны взаимодействие зарядов. Когда все это устаканивается, получается вот такая картинка:

Для чего нужен

ПТ нужны для того, чтобы управлять выходным током с помощью создаваемого электрического поля и изменять его важнейшие параметры. Структуры, созданные на основе полевого транзистора, часто используются в интегральных схемах цифрового и аналогового вида.


n- и p-канальные электротранзисторы

Именно за счет полевого управления, эти транзисторы воздействуют на величину приложенного к их затвору напряжения. Это отличает их от биполярных транзисторов, которые управляются током, который протекает через их базу. ПТ потребляют значительно меньшее количество электроэнергии, что и определило их популярность при использовании в ждущих и следящих устройствах, а также интегральных схемах малого потребления ( при организации спящего режима).

Вам это будет интересно Особенности переходного сопротивления

Важно! Одними из наиболее известных устройств, основанных на действии полевых транзисторов, являются пульты управления от телевизора, наручные часы электронного типа. Эти устройства за счет своего строения и применения ПТ могут годами работать от одного крошечного источника питания в виде батарейки


Схематический вид электротранзистора полевого типа

Как открыть полевой транзистор

Для того чтобы полностью открыть полевой транзистор и запустить его работы в режиме ключа, напряжение базы-эмиттера должно быть больше 0,6-0,7 Вольт. Также сила электротока, текущая через базу должна быть такой, чтобы он мог спокойно протекать через коллектор-эмиттер без каких-либо препятствий. В идеальном случае, сопротивление через коллектор-эмиттер должно быть равным нулю, в реальности же оно будет иметь сотые доли Ома. Такой режим называется «режимом насыщения транзистора».


Режим насыщения элемента через транзистор

Как видно на схеме, коллектор и эмиттер находятся в режиме насыщения и соединены накоротко, что позволяет лампочке гореть «на полную».

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.

Эквивалентная схема биполярного транзистора с использованием h-параметров.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0.

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = I, Im2 = I, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = I, Im2 = I, Um1 = Umэ-б, Um2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

h11∍=rδ+r∍1−α{\displaystyle h_{11\backepsilon }=r_{\delta }+{\frac {r_{\backepsilon }}{1-\alpha }}};

h12∍≈r∍rκ(1−α){\displaystyle h_{12\backepsilon }\approx {\frac {r_{\backepsilon }}{r_{\kappa }(1-\alpha )}}};

h21∍=β=α1−α{\displaystyle h_{21\backepsilon }=\beta ={\frac {\alpha }{1-\alpha }}};

h22∍≈1rκ(1−α){\displaystyle h_{22\backepsilon }\approx {\frac {1}{r_{\kappa }(1-\alpha )}}}.

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе.
Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.

Параметры, характеризующие полевой транзистор

  1. Ширина канала – расстояние между p-n-переходами W.
  2. Напряжение отсечки — напряжение на затворе при исчезновении каналов.
  3. Напряжение насыщения – с него начинается формирование пологой части ВАХ.
  4. Стоко-затворная ВАХ (вольт-амперная характеристика).

Рис. №1. Стоко-затворная ВАХ n-канального транзистора с

Ic= Icmax (I – Uзи / U)2 , здесь Icmax стока.

  1. Крутизна определяется по формуле S = dIc / dUзи(мА/В),что является следствием увеличенияU рабочего стока, при этом крутизна полевого транзистора становится меньше.
  2. Внутреннее сопротивление транзистора (дифференциальное сопротивление) rcсоставляет в пологой части характеристики несколько МОм.
  3. Лавинный пробой p-n-переходов возможен после повышения напряжения области стока и истока, что считается причиной ограничения применения полевого транзистора относительноUc.
  4. Коэффициент усиления относительно напряжения µu= srспри уменьшении величины тока стока коэффициент µuповышается.
  5. Инерционность полевого транзистора обуславливается временем,отводимым на заряд барьерной емкости переходов затвора.
  6. Полевой транзистор обладает граничной частотой для улучшения своих качественных частотных свойств.

Проводимость транзистора

Существует две разновидности проводимости – электронная и дырочная, это означает, что в основе работы лежит использование электронов и дырок. Транзистор с электронной проводимостью относится к n-канальным устройствам, p-канальные транзисторы обладают дырочной проводимостью.

Небольшие габаритные размеры МОП-транзисторах позволяет занимать очень малую площадь в конструкции интегральной схемы, в противоположность биполярным аналогам. Благодаря этому достигается значительно уплотненная компоновка элементов в интегральных схемах. Технология производства интегральной схемы на МОП-транзисторах затрачивает намного меньшее количество операций, чем технология производства ИС с применением биполярного транзистора.

Использует

Наиболее часто используемый полевой транзистор — это полевой МОП-транзистор . Технологический процесс CMOS (дополнительный металлооксидный полупроводник) является основой для современных цифровых интегральных схем . В этом технологическом процессе используется схема, в которой (обычно «режим улучшения») p-канальный полевой МОП-транзистор и n-канальный полевой МОП-транзистор соединены последовательно, так что, когда один из них включен, другой выключен.

В полевых транзисторах электроны могут течь через канал в любом направлении при работе в линейном режиме. Соглашение об именах выводов стока и истока несколько произвольно, поскольку устройства обычно (но не всегда) построены симметрично от истока до стока. Это делает полевые транзисторы подходящими для переключения аналоговых сигналов между трактами ( мультиплексирование ). Используя эту концепцию, можно, например, сконструировать твердотельную микшерную панель . FET обычно используется в качестве усилителя. Например, из-за большого входного сопротивления и низкого выходного сопротивления он эффективен в качестве буфера в конфигурации с общим стоком (истоковый повторитель).

БТИЗ используются для переключения катушек зажигания двигателей внутреннего сгорания, где важны возможности быстрого переключения и блокировки напряжения.

Полевые транзисторы с изолированным затвором (МДП-транзисторы)

Термин «МДП-транзистор» используется для обозначения полевых транзисторов, в которых управляющий электрод – затвор – отделен от активной области полевого транзистора диэлектрической прослойкой – изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).

Технология МДП-транзистора с встроенным затвором приведена на рисунке:

Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал).

Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале – обогащение, обеднение.

Режиму обеднения соответствует отрицательное напряжение Uзи, при котором концентрация электронов в канале уменьшается, что приводит к уменьшению тока стока. Режиму обогащения соответствует положительное напряжение Uзи и увеличение тока стока.

ВАХ представлена на рисунке:

Топология МДП-транзистора с индуцированным (наведенным) каналом р-типа приведена на рисунке:

При Uзи = 0 канал отсутствует и Ic = 0. Транзистор может работать только в режиме обогащения Uзи < 0. Если отрицательное напряжение Uзи превысит пороговое Uзи.пор, то происходит формирование инверсионного канала. Изменяя величину напряжения на затворе Uзи в области выше порогового Uзи.пор, можно менять концентрацию свободных носителей в инверсионном канале и сопротивление канала. Источник напряжения в стоковой цепи Uси вызовет ток стока Iс.

ВАХ представлена на рисунке:

В МДП-транзисторах затвор отделен от полупроводника слоем окисла SiO2. Поэтому входное сопротивление таких транзисторов порядка 1013…1015 Ом.

К основным параметрам полевых транзисторов относятся:

  • Крутизна характеристики при Uсп = const, Uпи = const. Типичные значения параметра (0,1…500) мА/В;
  • Крутизна характеристики по подложке при Uсп = const, Uзи = const. Типичные значения параметра (0.1…1) мА/В;
  • Начальный ток стока Iс.нач. – ток стока при нулевом значении напряжения Uзи. Типичные значения параметра: (0,2…600) мА – для транзисторов с управляющим каналом p-n переходом; (0,1…100) мА – для транзисторов со встроенным каналом; (0,01…0,5) мкА – для транзисторов с индуцированным каналом;
  • Напряжение отсечки Uзи.отс.. Типичные значения (0,2…10) В; пороговое напряжение Uп. Типичные значения (1…6) В;
  • Сопротивление сток-исток в открытом состоянии. Типичные значения (2..300) Ом
  • Дифференциальное сопротивление (внутреннее): при Uзи = const;
  • Статистический коэффициент усиления: μ = S · ri

Транзистор как усилитель

Транзистор также может работать в качестве усилителя слабых сигналов, то есть он может находиться в любом положении между «полностью включено» и «полностью выключено».

Это означает, что слабый сигнал может управлять транзистором и создать более сильную копию этого сигнала на переходе коллектор-эмиттер (или сток-исток). Таким образом, транзистор может усиливать слабые сигналы.

Вот простой усилитель для управления динамиком сигналом прямоугольной формы:

Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

Конструктивные особенности биполярных транзисторов

На самом деле конструктивное оформление биполярных транзисторов довольно разнообразно. Давайте рассмотрим конструкцию этих элементов на примере транзистора, показанного ниже:

На массивном металлическом основании 4 размещают кристалл полупроводника 1, который имеет, к примеру, электронную проводимость. На противоположной стороне кристалла относительно грани сделаны две напайки 2 и 3 например с индию, под которым будут создаваться зоны с дырочной проводимостью. Один из этих элементов будет коллектором, а второй эмиттером – сам кристалл базой. Для всех элементов реализованы выводы, а вся конструкция накрыта корпусом во избежание механических повреждений и попадания влажности. Металлическая основа 4 отводит тепло от устройства. В более мощных устройствах могут применять радиаторы, для более высокой теплоотдачи.

Область применения полевого транзистора

КМОП-структуры, которые строятся из комплементарной пары данных устройств и у которых каналы разного типа (n- и р-), нашли широкое применение в аналоговых и цифровых интегральных схемах. За счёт того, что полевые транзисторы управляются полем (точнее, размером величины напряжения, которое попадает на затвор), а не током, что протекает через базу (что можно наблюдать в биполярных транзисторах), происходит меньшее потребление энергии. Это актуально для схем следящих и ждущих устройств, а также там, где необходимо обеспечение малого энергопотребления и энергосбережения (спящий режим на телефоне). В отличие от полевых схемы включения биполярных транзисторов будут требовать большей энергии, поэтому не приходится рассчитывать на их длительную работу без источника постоянной энергии. Это одно из наиболее весомых преимуществ. Схемы включения биполярных транзисторов, кстати, строятся на более знакомых большинству радиолюбителей терминах: база, эмиттер и коллектор.

В качестве примера использования полевых транзисторов на практике можно привести пульт дистанционного управления или наручные кварцевые часы. За счёт реализации с применением КМОП-структур данные устройства могут похвастаться работой в несколько лет, используя при этом всего один миниатюрный источник питания, такой как аккумулятор или батарейка. Вот такие преимущества дают схемы включения транзистора. И это ещё не предел возможностей их использования. Благодаря конструктивному усовершенствованию полевые транзисторы всё шире применяются в разных радиоустройствах, где они успешно заменяют биполярные. Поскольку в открытом состоянии они обладают низким сопротивлением, то их можно встретить в усилителях, которые увеличивают звуковые частоты высокой верности. Использование в радиопередающей технике позволяет увеличивать частоту несущего сигнала и таким образом обеспечивать устройствам высокую помехоустойчивость. Поэтому схемы включения транзистора и пользуются такой популярностью.

Внутреннее строение транзистора с управляющим PN-переходом

Для того, чтобы проверить полевой транзистор с управляющим PN-переходом, достаточно вспомнить его внутреннее строение.

N-канальный выглядит вот так:

А P-канальный вот так:

Теперь давайте вспомним, какой радиоэлемент у нас состоит из ? Все верно, это диод. Получается что Затвор и Исток образуют один диод, а Затвор и Сток – другой диод. Сам канал обладает каким-то сопротивлением, а это есть нечто иное как резистор.

Для N-канального транзистора

Эквивалентная схема будет выглядеть вот так:

Для P-канального

Эквивалентная схема будет выглядеть вот так:

Получается, для того, чтобы узнать целостность транзистора, нам достаточно проверить все эти три элемента 😉

Полевой транзистор, имеющий изолированный затвор

Прибор, где есть изолированный затвор. Кристалл полупроводника с довольно высоким удельным сопротивлением имеет две сильнолегированные области с противоположным типом проводимости. Конструктивная особенность данного вида полевого транзистора заключается в том, что затвор отделяется слоем диэлектрика от основной части прибора. На сильнолегированных областях имеются металлические электроды – сток и исток. Расстояние между ними может составлять меньше микрона. Поверхность между истоком и стоком покрывается тонким слоем (что-то около 0,1 микрометра) диэлектрика. Поскольку в качестве проводника используется кремний, то изолятор – это его диоксид, который выращивается путём окисления при высокой температуре. На слой диэлектрика наносят металлический электрод – затвор. Такое разнообразие привело к возникновению нового названия – МДП-транзистор. Ведь в конструкции используется металл, диэлектрик и полупроводник. Хотя схемы включения транзисторов от этого не меняются.

Существует две разновидности полевых МДП-транзисторов:

  1. Индуцированный канал. Могут производить значительное усиление электромагнитных колебаний, причем как по мощности, так и по напряжению.
  2. Встроенный канал. Могут работать в 2-х режимах и меняют статические характеристики.

Устройство и принцип работы тиристора (тринистора)

Тринистор является управляемым прибором. Он содержит управляющий электрод (УЭ), подключаемый к полупроводнику р-типа или полупроводнику n-типа среднего перехода 2.

Структура, УГО и ВАХ тринистора (обычно называют тиристором) приведены на рисунке:

Напряжение Uвыкл, при котором начинается лавинообразное нарастание тока, может быть снижено введением неосновных носителей заряда в любой из слоев, прилегающих к переходу 2. В какой мере снижается Uвкл показано на ВАХ. Важным параметром является отпирающий ток управления Iу.от, который обеспечивает переключение тиристора в открытое состояние при напряжениях, меньших напряжения Uвкл. На рисунке показаны три значения напряжение включения UIвкл < Unвкл < Umвкл соответствует трем значениям управляющего тока UIу.от > Unу.от > Umу.от.

Рассмотрим простейшую схему с тиристором, нагруженным на резисторную нагрузку Rн

Iа – ток анода (силовой ток в цепи анод-катод тиристора ); Uак – напряжение между анодом и катодом; Iу – ток управляющего электрода ( в реальных схемах используют импульсы тока ); Uук – напряжение между управляющим электродом и катодом; Uпит – напряжение питания.
Для перевода тиристора в открытое состояние не управляющий электрод подается от схемы формирования импульсов кратковременный (порядка нескольких микросекунд) управляющий импульс.

Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления.

Для выключения тиристора на практике на него подают обратное напряжение Uак < 0 и поддерживают это напряжение в течении времени, большего так называемого времени выключения tвыкл. Оно обычно составляет единицы или десятки микросекунд.

Для чего нужен

ПТ нужны для того, чтобы управлять выходным током с помощью создаваемого электрического поля и изменять его важнейшие параметры. Структуры, созданные на основе полевого транзистора, часто используются в интегральных схемах цифрового и аналогового вида.


n- и p-канальные электротранзисторы

Именно за счет полевого управления, эти транзисторы воздействуют на величину приложенного к их затвору напряжения. Это отличает их от биполярных транзисторов, которые управляются током, который протекает через их базу. ПТ потребляют значительно меньшее количество электроэнергии, что и определило их популярность при использовании в ждущих и следящих устройствах, а также интегральных схемах малого потребления ( при организации спящего режима).

Вам это будет интересно Для чего нужно выравнивание потенциалов

Важно! Одними из наиболее известных устройств, основанных на действии полевых транзисторов, являются пульты управления от телевизора, наручные часы электронного типа. Эти устройства за счет своего строения и применения ПТ могут годами работать от одного крошечного источника питания в виде батарейки


Схематический вид электротранзистора полевого типа

Как открыть полевой транзистор

Для того чтобы полностью открыть полевой транзистор и запустить его работы в режиме ключа, напряжение базы-эмиттера должно быть больше 0,6-0,7 Вольт. Также сила электротока, текущая через базу должна быть такой, чтобы он мог спокойно протекать через коллектор-эмиттер без каких-либо препятствий. В идеальном случае, сопротивление через коллектор-эмиттер должно быть равным нулю, в реальности же оно будет иметь сотые доли Ома. Такой режим называется «режимом насыщения транзистора».


Режим насыщения элемента через транзистор

Как видно на схеме, коллектор и эмиттер находятся в режиме насыщения и соединены накоротко, что позволяет лампочке гореть «на полную».

Полевой транзистор, имеющий изолированный затвор

Прибор, где есть изолированный затвор. Кристалл полупроводника с довольно высоким удельным сопротивлением имеет две сильнолегированные области с противоположным типом проводимости. Конструктивная особенность данного вида полевого транзистора заключается в том, что затвор отделяется слоем диэлектрика от основной части прибора. На сильнолегированных областях имеются металлические электроды – сток и исток. Расстояние между ними может составлять меньше микрона. Поверхность между истоком и стоком покрывается тонким слоем (что-то около 0,1 микрометра) диэлектрика. Поскольку в качестве проводника используется кремний, то изолятор – это его диоксид, который выращивается путём окисления при высокой температуре. На слой диэлектрика наносят металлический электрод – затвор. Такое разнообразие привело к возникновению нового названия – МДП-транзистор. Ведь в конструкции используется металл, диэлектрик и полупроводник. Хотя схемы включения транзисторов от этого не меняются.

Существует две разновидности полевых МДП-транзисторов:

  1. Индуцированный канал. Могут производить значительное усиление электромагнитных колебаний, причем как по мощности, так и по напряжению.
  2. Встроенный канал. Могут работать в 2-х режимах и меняют статические характеристики.