Закон джоуля-ленца

Множественные

СИ, кратные джоулям (Дж)
Подмножественные Множественные
Ценить Символ SI Имя Ценить Символ SI Имя
10 −1 Дж диджей дециджоуль 10 1 Дж daJ декаджоуль
10 -2 Дж cJ сантиджоуль 10 2 Дж hJ гектоджоуль
10 −3 Дж мДж миллиджоуль 10 3 Дж кДж килоджоуль
10 −6 Дж мкДж микроджоуль 10 6 Дж MJ мегаджоуль
10 −9 Дж нДж наноджоуль 10 9 Дж ГДж гигаджоуль
10 −12 Дж пДж пикоджоуль 10 12 Дж TJ тераджоуль
10 −15 Дж fJ фемтоджоуль 10 15 Дж Пижамный петаджоуль
10 −18 Дж aJ аттоджоуль 10 18 Дж EJ экзаджоуль
10 −21 Дж zJ зептоджоуль 10 21 Дж ZJ зеттаджоуль
10 −24 Дж yJ йоктоджоуль 10 24 Дж YJ йоттаджоуль
Общие кратные жирным шрифтом
Йоктоджоуль
Йоктоджоуль (yJ) равен 10 −24  джоулей .
Зептоджоуль
Зептоджоуль (zJ) равен одному секстиллиону (10 −21 ) одного джоуля.160 мкДж — это примерно один электронвольт . Минимальная энергия, необходимая для небольшого изменения примерно при комнатной температуре — примерно 2,75 мкДж — дается пределом Ландауэра .
Аттоджоуль
Аттоджоуль (aJ) равен 10 −18  джоулей .
Фемтоджоулей
Фемтоджоуль (fJ) равен 10 −15  джоулей .
Пикоджоуль
Пикоджоуль (пДж) равен одной триллионной (10 −12 ) одного джоуля.
Наноджоуль
Наноджоуль (нДж) равен одной миллиардной (10 −9 ) одного джоуля.160 наноджоулей — это кинетическая энергия летающего комара.
Микроджоуль
Микроджоуль (мкДж) равен одной миллионной (10 −6 ) одного джоуля. Большой адронный коллайдер (БАК) производит столкновения порядка Микроджоуль (7 ТэВ) на одну частицу.
Милджоуль
Милджоуль (мДж) равен одной тысячной (10 −3 ) джоуля.
Килоджоулей
Килоджоуль (кДж) равен одной тысяче (10 3 ) джоулей. На этикетках пищевых продуктов в большинстве стран указана энергия в килоджоулей (кДж).На один квадратный метр Земли приходится около1.4 килоджоулей от каждую секунду в полном дневном свете.
Мегаджоуль
Мегаджоуль (МДж) равен одному миллиону (10 6 ) джоулей, или приблизительно кинетическая энергия транспортного средства в один мегаграмм (тонна), движущегося со скоростью161  км / ч (100 миль / ч). Энергия, необходимая для нагрева 10 л жидкой воды при постоянном давлении от 0 ° C (32 ° F) до 100 ° C (212 ° F) примерно4,2  МДж .Один киловатт-час электроэнергии — это3,6 мегаджоулей .
Гигаджоуль
Гигаджоуль (ГДж) равен одному миллиарду (10 9 ) джоулей.6  ГДж — это химическая энергия сжигания 1 барреля (159 л) нефти . 2 ГДж — это единица энергии Планка .
Тераджоуль
Тераджоуль (ТДж) равен одному триллиону (10 12 ) джоули; или о0,278  ГВтч (часто используется в таблицах энергопотребления). О63  TJ энергии было выпущено Little Boy . Международная космическая станция , с массой приблизительно450  мегаграмм и орбитальная скорость7700  м / с , имеет кинетическую энергию примерно13 ТДж . В 2017 году пиковая энергия ветра урагана Ирма, по оценкам, составила112 ТДж .90 ТДж — это количество энергии, эквивалентное1 грамм масс .
Петаджоуль
Петаджоуль (ПДж) равен одному квадриллиону (10 15 ) джоулей.210 ПДж это примерно50  мегатонн в тротиловом эквиваленте — это количество энергии, выпущенной Царь-бомбой , крупнейшим в истории рукотворным взрывом.
Экзаджоуль
Экзаджоуль (ЭДж) равен одному квинтиллиону (10 18 ) джоулей. 2011 Тохоку землетрясения и цунами в Японии было1,41 ЭДж энергии в соответствии с его рейтингом 9,0 по шкале моментных величин . Годовое потребление энергии в США составляет примерно94 EJ .
Зеттаджоуль
Зеттаджоуль (ZJ) равен одному секстиллиону (10 21 ) джоули. Годовое мировое потребление энергии людьми составляет примерно0,5 ZJ . Энергия для повышения температуры атмосферы Земли на 1 ° C составляет примерно2.2 ZJ .
Йоттаджоуль
Йоттаджоуль (YJ) равен одному септиллиону (10 24 ) джоулей. Это примерно количество энергии, необходимое для нагрева на 1 ° C. Тепловая мощность Солнца составляет примерно400 ЙДж в секунду.

Определение слова «Джоуль» по БСЭ:

Джоуль — Джоуль (Joule) Джеймс Прескотт (24.12.1818, Солфорд, Ланкашир, — 11.10.1889, Сейл, Чешир), английский физик, член Лондонского королевского общества (1850). Был владельцем пивоваренного завода близ Манчестера. Внёс значительный вклад в исследование электромагнетизма и тепловых явлений, в создание физики низких температур, в обоснование закона сохранения энергии. Д. установил (1841. опубликовано в 1843), что количество тепла, выделяющееся в металлическом проводнике при прохождении через него электрического тока, пропорционально электрическому сопротивлению проводника и квадрату силы тока (см. Джоуля — Ленца закон). В 1843-50 Д. экспериментально показал, что теплота может быть получена за счёт механической работы, и определил механический эквивалент теплоты, дав тем самым одно из экспериментальных обоснований закона сохранения энергии. В 1851, рассматривая теплоту как движение частиц, теоретически определил теплоёмкость некоторых газов. Совместно с У. Томсоном опытным путём установил, что при медленном стационарном адиабатическом протекании газа через пористую перегородку температура его изменяется (см. Джоуля — Томсона эффект). Обнаружил явление магнитного насыщения при намагничивании ферромагнетиков. Соч.: The scientific papers, v. 1-2, L., 1884-87. в рус. пер. — Некоторые замечания о теплоте и о строении упругих жидкостей, в кн.: Основатели кинетической теории материи, М. — Л., 1937. Лит.: Wood A., Joule and the study of energy, L., 1925. Дж. П. Джоуль.

Джоуль — единица энергии и работы в Международной системе единиц и МКСА системе единиц, равная работе силы 1 н при перемещении ею тела на расстояние 1 м в направлении действия силы. Названа в честь английского физика Дж. Джоуля. Обозначения: русское дж, международное J. Д. был введён на Втором международном конгрессе электриков (1889) в Абсолютные практические электрические единицы в качестве единицы работы и энергии электрического тока. Д. был определён как работа, совершаемая при мощности в 1 вт в течение 1 сек. Международная конференция по электрическим единицам и эталонам (Лондон, 1908) установила «международные» электрические единицы, в том числе так называемый международный Д. После возвращения с 1 января 1948 к абсолютным электрическим единицам было принято соотношение: 1 международный Д. = 1,00020 абсолютный Д. Д. применяется также как единица количества теплоты. Соотношения Д. с др. единицами: 1 дж = 107 эрг = 0,2388 кал. Г. Д. Бурдун.

История

Система cgs была объявлена ​​официальной в 1881 году на первом Международном электрическом конгрессе . Эрг был принят в качестве единицы энергии в 1882 году Вильгельм Сименс в своей инаугурационной речи в качестве председателя Британской ассоциации содействия развитию науки (23 августа 1882 г.) первым предложил Джоуля в качестве единицы тепла , которые могут быть получены от электромагнитного единиц Ампера и Ом , в единицах cgs, эквивалентных10 7  эрг . Название подразделения в честь Джеймса Прескотта Джоуля (1818–1889), в то время находившегося на пенсии, но еще жившего (63 года), принадлежит Сименсу:

«Такую тепловую единицу, если бы она была признана приемлемой, я думаю, с большим правомерностью можно было бы назвать джоуля, в честь человека, который так много сделал для разработки динамической теории тепла».

На втором Международном электрическом конгрессе 31 августа 1889 года джоуль был официально принят наряду с ваттом и квадрантом (позже переименованным в генри ). Джоуль умер в том же году, 11 октября 1889 г. На четвертом конгрессе (1893 г.) были определены «международный ампер» и «международный ом» с небольшими изменениями в спецификациях для их измерения, при этом «международный джоуль» был единица, производная от них.

В 1935 году Международная электротехническая комиссия (как организация-преемница Международного электротехнического конгресса) приняла « систему Джорджи », которая в силу принятия определенного значения магнитной постоянной также подразумевала новое определение Джоуля. Система Георгия была одобрена Международным комитетом мер и весов в 1946 году. Джоуль теперь больше не определялся на основе электромагнитной единицы, а вместо этого был единицей работы, выполняемой одной единицей силы (в то время еще не названной ньютоном ). на расстоянии 1 метра . Джоуль был явно задуман как единица энергии, которая будет использоваться как в электромагнитном, так и в механическом контексте. Ратификация определения на девятой Генеральной конференции мер и весов в 1948 году добавила спецификацию, согласно которой джоуль также должен быть предпочтительной единицей тепла в контексте калориметрии , тем самым официально отказавшись от использования калорий . Это определение было прямым предшественником джоуля, принятого в современной Международной системе единиц в 1960 году.

Определение джоуля как J = кг⋅м 2 ⋅с −2 оставалось неизменным с 1946 года, но джоуль как производная единица унаследовал изменения в определениях второго (в 1960 и 1967) метра (в 1983 году). ) и килограмм ( в 2019 году ).

Конверсии

1 джоуль равен (приблизительно, если не указано иное):

  • 10 7  эрг (точно)
  • 6,241 509 74 × 10 18  эВ
  • 0,2390  кал (грамм калорий)
  • 2,390 × 10 -4  ккал (пищевые калории)
  • 9,4782 × 10 -4  БТЕ
  • 0,7376  ft⋅lb (фут-фунт)
  • 23,7  ft⋅pdl (фут-фунт)
  • 2,7778 × 10 -7  kW⋅h (киловатт-час)
  • 2.7778 × 10 −4  Вт⋅ч (ватт-час)
  • 9,8692 × 10 -3  latm (литр-атмосфера)
  • 11,1265 × 10 −15  г (через эквивалент массы и энергии )
  • 10 −44  врага (точно)

Единицы, определенные точно в джоулях, включают:

  • 1 термохимическая калория = 4,184 Дж.
  • 1 Международная таблица калорий = 4,1868 Дж.
  • 1 Вт⋅ч = 3600 Дж (или 3,6 кДж)
  • 1 кВт⋅ч =3,6 × 10 6  Дж (или 3,6 МДж)
  • 1 Вт⋅с =1 Дж
  • 1 тонна в тротиловом эквиваленте =4,184 ГДж

Джоуль.

Джоуль – единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ). Имеет русское обозначение – Дж и международное обозначение – J.

Другие единицы измерения

Джоуль, как единица измерения:

Джоуль – единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ), названная в честь английского физика Джеймса Прескотта Джоуля.

Джоуль как единица измерения имеет русское обозначение – Дж и международное обозначение – J.

В классической физике джоуль равен работе, совершаемой при перемещении точки приложения силы, равной 1 (одному) ньютону (Н), на расстояние одного метра в направлении действия силы.

Дж = Н · м = кг · м2 / с2.

1 Дж = 1 Н · 1 м = 1 кг · 1 м2 / 1 с2.

В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт (В) для поддержания силы тока в 1 ампер (А). Это энергия, которая выделится за 1 секунду при прохождении тока через проводник силой тока 1 ампер (А) при напряжении 1 вольт (В).

В Международную систему единиц джоуль введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы джоуль пишется со строчной буквы, а её обозначение – с заглавной (Дж). Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием джоуля.

Представление джоуля в других единицах измерения – формулы:

Через основные единицы системы СИ джоуль выражается следующим образом:

Дж = Н · м

Дж = кг · м2 / с2.

Дж = Вт / с.

Дж = А2 · Ом · с.

Дж = В2 · с / Ом.

Дж = Кл · В.

где  А – ампер, В – вольт, Дж – джоуль, Кл – кулон, м – метр, Н – ньютон, с – секунда, Вт – ватт, кг – килограмм, Ом – ом.

Перевод в другие единицы измерения:

1 Дж ≈ 6,24151 ⋅ 1018 эВ

1 МДж = 0,277(7) кВт · ч

1 кВт · ч = 3,6 МДж

1 Дж ≈ 0,238846 калориям

1 калория (международная) = 4,1868 Дж

1 килограмм-сила-метр (кгс·м) = 9,80665 Дж

1 Дж ≈ 0,101972 кгс·м

Кратные и дольные единицы:

Кратные и дольные единицы образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Дж декаджоуль даДж daJ 10−1 Дж дециджоуль дДж dJ
102 Дж гектоджоуль гДж hJ 10−2 Дж сантиджоуль сДж cJ
103 Дж килоджоуль кДж kJ 10−3 Дж миллиджоуль мДж mJ
106 Дж мегаджоуль МДж MJ 10−6 Дж микроджоуль мкДж µJ
109 Дж гигаджоуль ГДж GJ 10−9 Дж наноджоуль нДж nJ
1012 Дж тераджоуль ТДж TJ 10−12 Дж пикоджоуль пДж pJ
1015 Дж петаджоуль ПДж PJ 10−15 Дж фемтоджоуль фДж fJ
1018 Дж эксаджоуль ЭДж EJ 10−18 Дж аттоджоуль аДж aJ
1021 Дж зеттаджоуль ЗДж ZJ 10−21 Дж зептоджоуль зДж zJ
1024 Дж иоттаджоуль ИДж YJ 10−24 Дж иоктоджоуль иДж yJ

Интересные примеры:

Дульная энергия пули при выстреле из автомата Калашникова – 2030 Дж.

Энергия, необходимая для нагрева 1 литра воды от 20 до 100 °C, составляет 3,35⋅105 Дж.

Энергия, выделяемая при взрыве 1 тонны тринитротолуола (тротиловый эквивалент), – 4,184⋅109 Дж.

Примечание:  Фото https://www.pexels.com, https://pixabay.com

Найти что-нибудь еще?

карта сайта

формула энергии закон джоуля ленца можно тепловой 1 м дж джоуль ленц закон равен 2 2 равен единица теплота масса тела сила количество теплоты работа кинетическая энергия в джоулях в секунду 10 5 8 6 20 200 100 виды сколько степени джоулейкилоджоули скорость в джоули в кг килограммы 3 4 джоуля

Коэффициент востребованности
5 394

Работа лектором

Но кем же работал Джеймс Джоуль? Интересные факты про этого человека редкость, но известно, что он был лектором. Уже известный нам Стерджен переехал в Манчестер и открыл там Галерею практических знаний, куда и пригласил Джоуля на место лектора. Удивительно, некоторых студентов обучал сам Джеймс Джоуль!

В своих исследованиях того времени ученый много времени уделял вопросу об экономической выгоде электромагнитных двигателей. Сначала он считал, что электромагниты имеют огромные возможности, но вскоре лично убедился в том, что паровые машины куда эффективнее. Результаты этого исследования Джоуль опубликовал, не скрывая собственного разочарования.

Открытия ученого происходили очень быстро. Уже в 1842 году он описывает магнитострикцию, которая заключается в том, что тела меняют свои размеры и объемы при разной степени намагниченности. Через год он заканчивает исследования по поводу тепловыделения в проводниках и публикует свои результаты. Они заключались в том, что выделяемое тепло берется не извне. Это полностью опровергало теорию теплорода, приверженцы которой тогда еще существовали.

В период с 1843 по 1850 год мужчина занимается проведением ряда исследований, совершенствуя свою технику и подтверждая многими опытами верность принципа сохранения энергии.

Примечания

  1. Производные единицы Беккерель · Ватт · Вебер · Вольт · Генри · Герц · Градус Цельсия · Грей · Джоуль · Зиверт · Катал · Кулон · Люкс · Люмен · Ньютон · Ньютон-метр · · Паскаль · Радиан · Сименс · Стерадиан · Тесла · Фарад
    Принятые для использования с СИ Ангстрем · Астрономическая единица · Гектар · Градус дуги (Минута дуги, Секунда дуги) · Дальтон (Атомная единица массы) · Децибел · Литр · Непер · Сутки (Час, Минута) · Тонна · Электронвольт Атомная система единиц · Естественная система единиц
    См. также Приставки СИ · Система физических величин · Преобразование единиц · Новые определения СИ · История метрической системы
    Книга:СИ · Категория:СИ
    В другом языковом разделе есть более полная статья Joule (нем.) Вы можете помочь проекту, расширив текущую статью с помощью перевода.

«Механическая работа. Механическая мощность»

Код ОГЭ 1.16. Механическая работа. Формула для вычисления работы силы. Механическая мощность.

Работа силы – физическая величина, характеризующая результат действия силы.

Механическая работа А постоянной силы равна произведению модуля вектора силы на модуль вектора перемещения и на косинус угла а между вектором силы и вектором перемещения: А = Fs cos а.

Единица измерения работы в СИ – джоуль: = Дж = Н • м. Механическая работа равна 1 Дж, если под действием силы в 1 Н тело перемещается на 1 м в направлении действия этой силы.

Анализ формулы для расчёта работы показывает, что механическая работа не совершается если:

  • сила действует, а тело не перемещается;
  • тело перемещается, а сила равна нулю;
  • угол между векторами силы и перемещения равен 90° (cos a = 0).

Внимание! При движении тела по окружности под действием постоянной силы, направленной к центру окружности, работа равна нулю, так как в любой момент времени вектор силы перпендикулярен вектору мгновенной скорости. Работа – скалярная величина, она может быть как положительной, так и отрицательной. Работа – скалярная величина, она может быть как положительной, так и отрицательной

Работа – скалярная величина, она может быть как положительной, так и отрицательной.

  1. Если угол между векторами силы и перемещения 0° ≤ а < 90°, то работа положительна.
  2. Если угол между векторами силы и перемещения 90° < a ≤ 180°, то работа отрицательна.

Работа обладает свойством аддитивности: если на тело действует несколько сил, то полная работа (работа всех сил) равна алгебраической сумме работ, совершаемых отдельными силами, что соответствует работе равнодействующей силы.

Примеры расчёта работы отдельных сил:

Работа силы тяжести: не зависит от формы траектории и определяется только начальным и конечным положением тела: A = mg(h1 – h2)

По замкнутой траектории работа силы тяжести равна нулю.Внимание! При движении вниз работа силы тяжести положительна, при движении вверх работа силы тяжести отрицательна

Работа силы трения скольжения: всегда отрицательна и зависит от формы траектории. Если сила трения не изменяется по модулю, то её работа А = –Fтр l , где l – путь, пройденный телом (длина траектории). Очевидно, что чем больший путь проходит тело, тем большую по модулю работу совершает сила трения. Работа силы трения по замкнутой траектории не равна нулю!

Мощность N – физическая величина, характеризующая быстроту (скорость) совершения работы и равная отношению работы к промежутку времени, за который эта работа совершена: .

Мощность показывает, какая работа совершается за 1 с. Единица измерения мощности в СИ – ватт: = Дж/с = Вт. Мощность равна одному ватту, если за 1 с совершается работа 1 Дж.

Может пригодиться! 1 л. с

(лошадиная сила) ~ 735 Вт.Внимание! Для случая равномерного движения (равнодействующая сила равна нулю) при расчете мощности отдельных сил, действующих на тело, получим

Для равноускоренного движения (F = const) где ʋср– средняя скорость движения за расчётный промежуток времени.

Конспект урока «Механическая работа. Механическая мощность».

Следующая тема: «Кинетическая и потенциальная энергия» (код ОГЭ 1.17)

Джоуль для измерения физических величин

Труды Джоуля позволили сформировать закон сохранения энергии. Отвечая на вопрос, что измеряется в джоулях, можно определить этой единицей количество работы, которая совершается в процессе перемещения точки приложения силы в количестве одного ньютона на расстояние в один метр в направлении действия приложенной силы. В теории электричества понятие джоуля эквивалентно работе, совершаемой силами электрического поля в течение 1 секунды с напряжением в 1 вольт, для того чтобы поддержать силу тока в 1 ампер.

Энергия по своей сути является физической величиной, отображающей переход материи из одного состояния в другое. Замкнутая физическая система позволяет сохранять энергию ровно столько времени, пока сама система находится в замкнутом состоянии. Это положение представляет собой закон сохранения энергии.
Энергия представлена различными видами. Кинетическая энергия связана со скоростью, которой обладают точки, движущиеся в механической системе. Для потенциальной энергии характерно создание определенных энергетических запасов, позволяющих в дальнейшем получить кинетическую энергию. Эти категории попадают под возможность их измерения в джоулях. Кроме того, существует энергия, связанная с внутренней энергией молекулярных связей. Широко известна ядерная и гравитационная энергия, а также энергия электрического поля.

В процессе механической работы один вид энергии превращается в другой. Данная физическая категория тесно связана с величиной и направлением силы, воздействующей на тело, а также с пространственным перемещением этого тела.

Важнейшим понятием классической термодинамики, измеряемым в джоулях, является теплота. В соответствии с ее первым началом, количество теплоты, получаемое системой, расходуется при совершении работы, которая требуется для противодействия внешним силам. Одновременно в процессе работы изменяется внутренняя энергия. Таким образом, для теплообмена, изменяющего внутреннюю энергию, обязательно совершение механической работы, измеряемой в джоулях.

Значение слова Джоуль по словарю Брокгауза и Ефрона:

Джоуль (James Prescott Joule) — известный английский физик (1818—1889). До 15-ти лет Д. воспитывался в семье отца своего, богатого пивовара. затем работал на заводе, изучая в то же время математику, химию и физику под руководством Дальтона. Первые работы Д., относящиеся к 1838—40 гг., касаются исследования законов электромагнетизма. Изыскивая лучшие способы измерения электрических токов, Д. в 1841 г. открыл названный его именем закон, дающий зависимость между силой тока и выделенным этим током в проводнике теплом (закон Джоуля-Ленца, см. Ленц Эм.). Изучая тепловые действия токов, Д. в 1843 г. пришел к убеждению в существовании предусмотренной Майером законной зависимости между работой и количеством произведенного ею тепла и нашел численное отношение между этими величинами — механический эквивалент тепла (см.). Переселившись в 1843 г. в Манчестер, Д. неутомимо исследует тот же вопрос и в 1847 г. докладывает о нем в заседании Британской ассоциации в Оксфорде. В 1854 г. Д. продает оставшийся ему от отца завод и всецело посвящает себя науке. Неутомимо работая все в той же области, Д. до смерти обнародовал 97 ученых работ, из которых около 20 сделаны в сообществе с В. Томсоном и Л. Плэфэром. большинство из них касается приложения механической теории тепла к теории газов, молекулярной физике и акустике и принадлежат к классическим работам по физике. Д. был членом Лондонского королевского общества и доктором h. c. Эдинбургского (1871) и Лейденского (1875) университетов, обладал 2 медалями Королевского общества. в 1878 г. ему назначена была правительством пожизненная пенсия в 200 фн. Сочинения Д. собраны в «Scientific papers by J. P. Joule» (2 т., Лонд., 1884-87) и переведены в 1872 г. Шпренгелем на немецкий язык. А. Г.

Значения других единиц, равные введённым выше

 открыть 

 свернуть 

Международная система (СИ)

джоуль в секунду → мегаватт
(МВт)
джоуль в секунду → киловатт
(кВт)
джоуль в секунду → ватт
(Вт)
джоуль в секунду → вольт-ампер
(В-А)

Единицы:

мегаватт
(МВт)

 /
киловатт
(кВт)

 /
ватт
(Вт)

 /
вольт-ампер
(В-А)

 открыть 

 свернуть 

СГС и внесистемные единицы

джоуль в секунду → гигакалорий в секунду
джоуль в секунду → килокалорий в секунду
джоуль в секунду → калорий в секунду
джоуль в секунду → гигакалорий в минуту
джоуль в секунду → килокалорий в минуту
джоуль в секунду → калорий в минуту
джоуль в секунду → гигакалорий в час
джоуль в секунду → килокалорий в час
джоуль в секунду → калорий в час
джоуль в секунду → котловая лошадиная сила
(hp(S))
джоуль в секунду → электрическая лошадиная сила
(hp(E))
джоуль в секунду → гидравлическая лошадиная сила
джоуль в секунду → механическая лошадиная сила
(hp(I))
джоуль в секунду → метрическая лошадиная сила
(hp(M))
джоуль в секунду → килограмм-сила метр в секунду
(кгс*м/с)
джоуль в секунду → джоуль в секунду
джоуль в секунду → джоуль в минуту
джоуль в секунду → джоуль в час
джоуль в секунду → эрг в секунду
джоуль в секунду → метрическая тонна охлаждения
(RT)
джоуль в секунду → фригория в час
(fg/h)

Единицы:

гигакалорий в секунду

 /
килокалорий в секунду

 /
калорий в секунду

 /
гигакалорий в минуту

 /
килокалорий в минуту

 /
калорий в минуту

 /
гигакалорий в час

 /
килокалорий в час

 /
калорий в час

 /
котловая лошадиная сила
(hp(S))

 /
электрическая лошадиная сила
(hp(E))

 /
гидравлическая лошадиная сила

 /
механическая лошадиная сила
(hp(I))

 /
метрическая лошадиная сила
(hp(M))

 /
килограмм-сила метр в секунду
(кгс*м/с)

 /
джоуль в секунду

 /
джоуль в минуту

 /
джоуль в час

 /
эрг в секунду

 /
метрическая тонна охлаждения
(RT)

 /
фригория в час
(fg/h)

 открыть 

 свернуть 

Британские и американские единицы

джоуль в секунду → американская тонна охлаждения
(USRT)
джоуль в секунду → британская термальная единица в секунду
(BTU/s)
джоуль в секунду → британская термальная единица в минуту
(BTU/min)
джоуль в секунду → британская термальная единица в час
(BTU/hr)
джоуль в секунду → фут фунт-сила в секунду
(ft*lbf/s)

Единицы:

американская тонна охлаждения
(USRT)

 /
британская термальная единица в секунду
(BTU/s)

 /
британская термальная единица в минуту
(BTU/min)

 /
британская термальная единица в час
(BTU/hr)

 /
фут фунт-сила в секунду
(ft*lbf/s)

 открыть 

 свернуть 

Естественнные единицы

В физике естественные единицы измерения базируются только на фундаментальных физических константах. Определение этих единиц никак не связано ни с какими историческими человеческими построениями, только с фундаментальными законами природы.

джоуль в секунду → планковская мощность
(L²MT⁻³)

Единицы:

планковская мощность
(L²MT⁻³)

История.

Метрическая система выросла из постановлений, принятых Национальным собранием Франции в 1791 и 1795 по определению метра как одной десятимиллионной доли участка земного меридиана от Северного полюса до экватора. Декретом, изданным 4 июля 1837, метрическая система была объявлена обязательной к применению во всех коммерческих сделках во Франции. Она постепенно вытеснила местные и национальные системы в других странах Европы и была законодательно признана как допустимая в Великобритании и США. Соглашением, подписанным 20 мая 1875 семнадцатью странами, была создана международная организация, призванная сохранять и совершенствовать метрическую систему.

Ясно, что, определяя метр как десятимиллионную долю четверти земного меридиана, создатели метрической системы стремились добиться инвариантности и точной воспроизводимости системы. За единицу массы они взяли грамм, определив его как массу одной миллионной кубического метра воды при ее максимальной плотности. Поскольку было бы не очень удобно проводить геодезические измерения четверти земного меридиана при каждой продаже метра ткани или уравновешивать корзинку картофеля на рынке соответствующим количеством воды, были созданы металлические эталоны, с предельной точностью воспроизводящие указанные идеальные определения.

Вскоре выяснилось, что металлические эталоны длины можно сравнивать друг с другом, внося гораздо меньшую погрешность, чем при сравнении любого такого эталона с четвертью земного меридиана. Кроме того, стало ясно, что и точность сравнения металлических эталонов массы друг с другом гораздо выше точности сравнения любого подобного эталона с массой соответствующего объема воды.

В связи с этим Международная комиссия по метру в 1872 постановила принять за эталон длины «архивный» метр, хранящийся в Париже, «такой, каков он есть». Точно так же члены Комиссии приняли за эталон массы архивный платино-иридиевый килограмм, «учитывая, что простое соотношение, установленное создателями метрической системы, между единицей веса и единицей объема представляется существующим килограммом с точностью, достаточной для обычных применений в промышленности и торговле, а точные науки нуждаются не в простом численном соотношении подобного рода, а в предельно совершенном определении этого соотношения». В 1875 многие страны мира подписали соглашение о метре, и этим соглашением была установлена процедура координации метрологических эталонов для мирового научного сообщества через Международное бюро мер и весов и Генеральную конференцию по мерам и весам.

Новая международная организация незамедлительно занялась разработкой международных эталонов длины и массы и передачей их копий всем странам-участницам.

Основные работы

Джоуль изучал природу тепла и установил взаимосвязь тепла и механической работы.

Впоследствии эти изыскания получили название закона сохранения энергии, который затем был использован для формулировки первого закона термодинамики.

На базе этих научных исследований Джоуль сформулировал свой первый закон, в котором говорится о взаимодействии прохождения электрического тока через проводник и определённом количестве выделяемого вследствие этого тепла.

Закон гласит: тепло, которое выделяется вследствие генерации гальванического тока пропорционально квадрату интенсивности этого тока, умноженному на устойчивость к проводимости.

Его совместные работы с Уильямом Томсоном привели к выдающемуся открытию, известному как эффект Джоуля-Томсона. Эффект описывает изменение температуры газа или жидкости, которые проходят через изолированный от внешнего окружения клапан.

Совместно с Томсоном Джоуль также работал над абсолютной термодинамической шкалой, которая известна как шкала температур Кельвина, названная в честь Уильяма Томсона, который носил титул лорда Кельвина.

Общие сведения

Энергия — физическая величина, имеющая большое значение в химии, физике, и биологии. Без нее жизнь на земле и движение невозможны. В физике энергия является мерой взаимодействия материи, в результате которого выполняется работа или происходит переход одних видов энергии в другие. В системе СИ энергия измеряется в джоулях. Один джоуль равен энергии, расходуемой при перемещении тела на один метр силой в один ньютон.

При этой температуре материал излучает излучение в видимой области. Тем не менее световая эффективность ламп накаливания довольно низкая. Предохранители — это устройства, которые используют эффект Джоуля для расплавления калиброванного проводника для изоляции электрической цепи в случае перегрузки по току. Термические выключатели используют один и тот же эффект, но без разрушения они сбрасываются.

Джоуль, названная в честь известного английского физика Джеймса Эдварда Джоуля, является одним из основных подразделений Международной метрической системы, джоуль — это единица работы, энергии и тепла, которая используется ежедневно в исследованиях. -развитие. Любая другая единица, такая как «книга» или «британская термическая единица», не подходит: сначала необходимо сделать конверсии.

Электрический проводник обладает свойством содержать в своей физической структуре то, что называется свободными электронами. Эти свободные электроны могут двигаться в материале до тех пор, пока им дается электрическая потенциальная энергия. Когда электроны начинают двигаться, происходит трение с «препятствиями», присутствующими внутри проводника, и это трение высвобождается в среду в виде тепла. Затем говорится, что электрическая энергия, подаваемая на этот проводник, была преобразована в тепловую энергию.

Название, данное проводнику, способному преобразовывать электрическую энергию в тепловую энергию, является резисторами, и это основные элементы, присутствующие при построении схем от простейших до самых сложных. Это явление произошло за счет нагревания материала за счет преобразования электрической энергии в тепловую энергию, называемое джоулевым эффектом.

Личная жизнь и наследие

В 1847 году Джоуль женился на Амелии Граймс, дочери Джона Граймса, который был руководителем таможни в Ливерпуле. У пары родилось двое детей — Бенджамин Артур и Элис Амелия.

В 1854 году его жена и сын погибли, а он до конца своей жизни прожил вдовцом, работая без устали.

Британское правительство назначило Джоулю пожизненную пенсию размером в 215 фунтов-стерлингов за его работу и достижения.

Его уникальные достижения в отрасли энергии и её аспектах до сих пор являются основой для многих исследователей.

Унифицированная единица подсчёта энергии и тепла системы СИ была названа в его честь.

Джеймс Джоуль умер после продолжительной болезни 11 октября 1889 года в Сейле, Англия.

От чего зависит мощность выстрела пневматики

Затрагивая тему мощности или силы выстрела, необходимо отделить эти понятия от физических величин. Из школьных курсов нам известно, что первая переменная выражается в Ваттах, вторая — в Ньютонах. В каждом случае участвует вес тела и его скорость. Однако в оружейном производстве принято использовать силу начальной кинетический (дульной) энергии, которая выражается в Джоулях.

Из формулы Е=1/2*m*v^2 видно, что основополагающими параметрами выступают скорость и масса снаряда. Поскольку вес пули всегда остается неизменным, зависящим от калибра, то эту величину можно считать постоянной.

В разных видах вооружения понятие калибр трактуется по-разному. Для огнестрельного оружия калибр — это расстояние между нарезами, для гладкоствольных ружей — диаметр канала ствола.

Из формулы видно, что для получения одного и того же показателя начальной кинетической энергии необходимо менять одну из переменных. Однако увеличивать массу до бесконечности физически невозможно, поэтому остается только одно — повышать ускорение. Чем выше будет скорость, тем выше будет пробивная способность и больше дальность полета пули. Поэтому превратить обычную винтовку в грозное оружие можно путем смены пружины.