Атомная электростанция, ее устройство, принцип работы

Обеспечение радиационной безопасности БалАЭС

Обеспечение радиационной безопасности Балаковской АЭС производится в соответствии с требованием законодательства.

Все помещения Балаковской АЭС физически разделены на зону контролируемого доступа, в которой возможно воздействие ионизирующего излучения на персонал, и зону свободного доступа, в которой такая возможность исключена.

Проход из одной зоны в другую осуществляется только через специальные санпропускники, в которых находятся душевые, помещения для переодевания и хранения одежды и специальные приборы для контроля наличия загрязнения радиоактивными веществами. Радиационно-опасные работы проводятся только по специальным дозиметрическим нарядам.

Также радиационная безопасность обеспечивается сложной системой притяжно-вытяжной вентиляции с определённым направленным движением воздуха из зон с малым радиоактивным загрязнением в так называемые необслуживаемые помещения с высоким уровнем радиации (вплоть до создания в таких помещениях разрежения).

В итоге все вентиляционные потоки поступают к дезактивационным фильтрам, а затем к вентиляционной трубе высотой 100 м.

Первая ступень фильтрации осуществляется с помощью стекловолокна и ткани Петрянова (синтетический материал на основе тонковолокнистых волокон перхлорвинила), во второй ступени используются адсорбционные фильтры, состоящие из колонн, загруженных активированным углём.

Общая информация

Новости

14 Сентября 2021Работники Курской АЭС взяли золото первенства Курской области по триатлону
В городе-спутнике Курской АЭС Курчатове прошли чемпионат и первенство России по триатлону (спринт), а также первенство Курской области для спортсменов-любителей на стандартной (олимпийской) дистанции.

14 Сентября 2021Курская АЭС: свыше 10 тысяч человек приняли участие в фестивале уличной еды и кино в Курчатове
С 11 по 12 сентября 2021 года в парке культуры и отдыха «Теплый берег» проходил фестиваль уличной еды и кино. Его посетили более 10 тысяч человек. В год 45-летия Курской АЭС масштабное мероприятие стало своеобразным подарком от атомщиков всем жителям Курчатова и региона.

Новости

1 — 2 из 657

Начало | Пред. |

1

|

След. |
Конец

КУРСКАЯ АЭС

Место расположения: вблизи г. Курчатов (Курская обл.)      

Тип реактора: РБМК-1000      

Количество энергоблоков: 4

Курская АЭС входит в первую четверку равных по мощности атомных станций страны и является важнейшим узлом Единой энергетической системы России. Основной потребитель – энергосистема «Центр», которая охватывает 19 областей Центрального федерального округа России.

Доля Курской АЭС в установленной мощности всех электростанций Черноземья составляет более 50%. Она обеспечивает электроэнергией большинство промышленных предприятий Курской области.

На атомной станции используются канальные реакторы кипящего типа с графитовым замедлителем и водяным теплоносителем. Такой реактор предназначен для выработки насыщенного пара под давлением 7,0 МПа.

Курская АЭС – станция одноконтурного типа: пар, подаваемый на турбины, образуется непосредственно в реакторе при кипении проходящего через него теплоносителя. В качестве теплоносителя используется обычная очищенная вода, циркулирующая по замкнутому контуру. Для охлаждения отработавшего пара в конденсаторах турбин используется вода пруда-охладителя. Площадь зеркала водоема – 21,5 км2.

Станция сооружена в две очереди: первая – энергоблоки № 1 и № 2, вторая – №3 и №4. Энергоблок №5 третьей очереди находится в стадии консервации.

Для сохранения и развития производства электрической и тепловой энергии, в соответствии с утвержденным в ноябре 2013 года Правительством РФ документом «Схема территориального планирования РФ в области энергетики» начато сооружение станции замещения – Курской АЭС-2 с новыми реакторами ВВЭР-ТОИ (водо-водяной энергетический реактор – типовой оптимизированный информатизированный поколения III+). Проект Курская АЭС-2 отвечает как требованиям РФ, так и всем современным международным требованиям в области безопасности ядерной энергетики.

29 апреля 2018 года с выполнения ключевого события «Начало бетонирования фундаментной плиты энергоблока №1» начат основной этап строительства Курской АЭС-2. Суммарная установленная мощность двух строящихся блоков АЭС ~ 2510 МВт. После окончания строительства и ввода в эксплуатацию каждый энергоблок Курской АЭС-2 будет работать в режиме нормальной эксплуатации с ежегодной выработкой электроэнергии и отпуском тепла потребителям в течение 60 лет.

В 2010–2011 гг. система экологического менеджмента Курской АЭС признана независимым аудитом соответствующей требованиям национального стандарта России и нормативному документу системы обязательной сертификации по экологическим требованиям. В 2020 году по итогам отраслевого ежегодного конкурса Курская АЭС наряду с Балаковской АЭС названа лучшей в области развития культуры безопасности.

Расстояние до города-спутника (г. Курчатов) – 4 км; до областного центра (г. Курск) – 40 км.

НОМЕР ЭНЕРГОБЛОКА ТИП РЕАКТОРА УСТАНОВЛЕННАЯ МОЩНОСТЬ, М ВТ ДАТА ПУСКА
1 РБМК-1000 1000 19.12.1976
2 РБМК-1000 1000 28.01.1979
3 РБМК-1000 1000 17.10.1983
4 РБМК-1000 1000 02.12.1985
Суммарная установленная мощность 4000 МВТ

Атомная энергетика России

После распада Советского Союза в 1991 году на территории России находились 28 энергоблоков, общая мощность которых превышала 20 тысяч МВт. За время с 1991 по 2015 годы АЭС России на карте страны получили в эксплуатацию еще 7 ядерных реакторов общей мощностью почти 7 тысяч МВт. В то же время после 2000х остановили работу Обнинской и Сибирской АЭС из-за окончания срока их эксплуатации.

Сегодня АЭС на карте России – это десять атомных станций, большинство из которых были открыты во времена Советского Союза и дополнены новыми реакторами уже в независимое время.

Карта АЭС России включает в себя 10 работающих атомных станций. Действующие атомные станции в России – Балаковская, Белоярская, Билибинская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Ростовская, Смоленская.

На десяти АЭС России эксплуатируются 34 энергоблока общей мощностью 26 240 МВт. А именно:

  1. 18 энергоблоков с реакторами типа ВВЭР (водо-водяные реакторы), из них 11 реакторов ВВЭР–1000 и 6 атомных реакторов ВВЭР–440.
  2. 15 энергоблоков с канальными реакторами, 11 энергоблоков с реакторами типа РБМК–1000 (водо-водяные кипящие реакторы) и 4 энергоблока с реакторами типа ЭГП–6 (графито — водные реакторы).
  3. 1 энергоблок с реактором на быстрых нейтронах с натриевым охлаждением, БН–600.

Долгое время БН-600 был единственным реактором в мире, работающим на быстрых нейтронах. Этот реактор работает на уране-238, что экономит деньги на обогащении урана-235, кроме того, он способен работать на так называемом «отвальном уране», то есть остатках отработанного урана из привычных реакторов на медленных нейтронах. Реактор БН-600 работает на Белоярской АЭС России. Он был запущен в 1980 году. В апреле 2010 года было выдано разрешение на продление его эксплуатации до 2020 года. Атомные станции России на карте страны сосредоточены в основном на северо-западе. Карта АЭС России сегодня выглядит так: Атомные станции России производят около 18.6% от всей электроэнергетики страны. При этом в Европейской части России доля атомной электроэнергии – около 30%, на Северо-Западе страны и того больше – 37%.

Вклад АЭС России в мировую атомную энергетику – 6%. Для сравнения, в США производят 26% от мировой атомной энергетики, во Франции – 17%, в Японии – 12%. В Китае 4%. Россия в этом рейтинге на четвертом месте.

Атомные станции России, карта мировых АЭС.  Кроме проектирования и строительства ядерных реакторов в России ведется добыча и переработка урановых руд. Таким образом, АЭС в России получают местное урановое топливо. Расскажет о том, чем «питаются» АЭС России карта добычи российского урана. 

КПД атомной электростанции

Наиболее высокий КПД (92-95%) – достоинство гидроэлектростанций. На них генерируется 14% мировой электро мощности.

Однако, этот тип станций наиболее требователен к месту возведения и, как показала практика, весьма чувствителен к соблюдению правил эксплуатации.

Пример событий на Саяно-Шушенской ГЭС показал, к каким трагическим последствиям может привести пренебрежение правилами эксплуатации в стремлении снизить эксплуатационные издержки.

Высоким КПД (80%) обладают АЭС. Их доля в мировом производстве электроэнергии составляет 22%.

Но АЭС требуют повышенного внимания к проблеме безопасности, как на стадии проектирования, так и при строительстве, и во время эксплуатации.

Малейшие отступления от строгих регламентов обеспечения безопасности для АЭС, чревато фатальными последствиями для всего человечества.

Пример тому авария на АЭС в Чернобыле и японское землетрясение в марте 2011 года, приведшее к аварии на АЭС, расположенной на острове Хонсю, в городе Окума, префектуры Фукусима.

Кроме непосредственной опасности в случае аварии, использование АЭС сопровождается проблемами безопасности, связанными с утилизацией или захоронением отработанного ядерного топлива.

КПД тепловых электростанций не превышает 34%, на них вырабатывается до шестидесяти процентов мировой электроэнергии.

Кроме электроэнергии на тепловых электростанциях производится тепловая энергия, которая в виде горячего пара или горячей воды может передаваться потребителям на расстояние в 20-25 километров. Такие станции называют ТЭЦ (Тепло Электро Централь).

ТЕС и ТЕЦ не дорогие в строительстве, но если не будут приняты специальные меры, они неблагоприятно воздействуют на окружающую среду.

Неблагоприятное воздействие на окружающую среду зависит от того, какое топливо применяется в тепловых агрегатах.

Наиболее вредны продукты сгорания угля и тяжёлых нефтепродуктов, природный газ менее агрессивен.

ТЭС являются основными источниками электроэнергии на территории России, США и большинства стран Европы.

Однако, есть исключения, например, в Норвегии электроэнергия вырабатывается в основном на ГЭС, а во Франции 70% электроэнергии генерируется на атомных станциях.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так: После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

С чего начиналась атомная энергетика

В 1949 году в СССР были успешно проведены экспериментальные взрывы атомной бомбы. В процессе экспериментов осуществлялась выработка плутония, для нужд ядерного реактора производился обогащенный уран. Разработки в данной области позволили вплотную подойти к решению задачи, чтобы использовать ядерную энергию в мирных целях. Тогда же приступили к созданию плана первой установки.

На тот момент в Советском Союзе уже накопился определенный опыт по созданию промышленных реакторов, производящих материал для атомных бомб. Они имели существенное отличие от энергетических установок, поскольку для выработки электроэнергии требовалось разогреть теплоноситель до высокой температуры. Для этого понадобились совершенно другие материалы и сплавы, способные работать в экстремальных условиях, не поглощающие большого количества нейтронов, устойчивые к коррозии и т.д. Эти проблемы были определены еще до проектирования, и вся сложность заключалась лишь во времени.
Строительство 1-й АЭС велось с 1950 по 1954 годы в городе Обнинске. Пуск первой в мире атомной электростанции и введение в действие произошел 27.06.1954 года. В первоначальной конструкции оборудования использовался реактор АМ-1, мощность у которого составляла всего 5 МВт. Данный объект смог непрерывно прослужить целых 48 лет и в апреле 2002 года работа в плановом порядке прекратилась по причине физического износа и невозможности ее дальнейшего использования с точки зрения экономики.

Первые энергетические сооружения на ядерном топливе проложили путь для строительства новых, более совершенных станций, использующих возможности атома в мирных целях. Накоплен большой объем инженерно-технических и научных разработок, позволивших успешно проектировать новые сооружения. Первая в мире атомная электростанция была своеобразной кузницей для подготовки и обучения кадров, научных сотрудников и технического персонала, которые нашли свое место на других, вновь созданных объектах.

Ядерное топливо БалАЭС

Ядерное топливо для Балаковской АЭС производится Новосибирским заводом химконцентратов и поставляется компанией «ТВЭЛ».

На АЭС ядерное топливо приходит в виде сложных машиностроительных изделий — тепловыделяющих сборок (ТВС), состоящих из тепловыделяющих элементов (ТВЭЛов), содержащих таблетки из диоксида урана, слабообогащённого по 235-му изотопу.

Применяющиеся на БАЭС бесчехловые ТВС представляют собой шестигранник длиной около 4,5 м и массой около 760 кг, с размером «под ключ» 234 мм, общее их число в активной зоне — 163.

Каждая состоит из 312 ТВЭЛов и имеет 18 трубчатных каналов для входа органов регулирования (поглощающих элементов, ПЭЛов).

ТВЭЛ представляет собой трубку из циркония, легированного ниобием наружным диаметром 9,1 мм, внутри него находится столб из топливных таблеток, каждая высотой 20 мм и диаметром 7,57 мм с отверстием 1,5 мм в середине.

ПЭЛы такого же диаметра содержат уплотнённый порошок карбида бора и, в нижней части, титанат диспрозия.

В активной зоне 61 орган регулирования, в каждом пучке 18 поглощающих стержней. Также в ТВС в различной форме присутствует выгорающий поглотитель, необходимый для выравнивания величины энерговыделения в течение топливной кампании, первоначально в виде стержней с выгорающим поглотителем (СВП), позднее его стали вносить непосредственно в топливную матрицу. По заводской терминологии ТВС с ПЭЛами и СВП в сборе называют кассетами.

Перегрузка топлива осуществляется частями, в конце борной кампании реактора треть ТВС выгружается и такое же количество свежих сборок загружается в активную зону, для этих целей в гермооболочке имеется специальная перегрузочная машина МПС-В-1000-3, изготовленная ПО «Атоммаш».

При загрузке свежих ТВС полностью меняют конфигурацию топлива в активной зоне, приводя её в состояние, рассчитанное в специальном комплексе промышленного программного обеспечения «КАСКАД» разработки Курчатовского института.

Сложнейшие нейтронно-физические и технико-экономические расчёты производятся на годы вперёд, в соответствии с ними заводу заказываются ТВС с различными обогащениями, содержаниями поглотителя и другими характеристиками.

После выгрузки из активной зоны реактора отработанного топлива его помещают в специальный бассейн выдержки, располагающийся рядом с реактором.

В отработавших ТВС содержится большое количество продуктов деления урана, сразу после выгрузки каждый ТВЭЛ в среднем содержит 1,1·1016 Бк радиоактивных веществ, с мощностью тепловыделения 100 КВт.

За счёт этой энергии использованное ядерное топливо имеет свойство саморазогреваться до больших температур без принятия специальных мер (недавно выгруженное топливо может разогреться на воздухе примерно до 300 °C) и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определённым температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения.

По мере выдержки уменьшается радиоактивность топлива и мощность его остаточного тепловыделения. Обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки.

Безопасность атомной электростанции

Все системы атомной станции проектируются и работают с учетом многочисленных принципов безопасности. Например, концепция глубоко эшелонированной защиты подразумевает наличие нескольких барьеров на пути распространения ионизирующего излучения и радиоактивных веществ в окружающую среду. Очень похоже на принцип Кащея Бессмертного: топливо сгруппировано в таблетки, которые находятся в циркониевых ТВЭЛах, которые помещены в стальной корпус реактора, который помещен в железобетонную гермооболочку. Таким образом, разрушение одного из барьеров компенсируется следующим. Делается все, чтобы при любой аварии радиоактивные вещества не вышли за пределы зоны контролируемого доступа. Также, все системы имеют двух- и трехкратное резервирование, в соответствии с принципом единичного отказа, по которому система должна бесперебойно выполнять свои функции даже при отказе любого ее элемента. Вместе с этим применяется принцип разнообразия, то есть использования систем, имеющих разные принципы работы. Например, при срабатывании аварийной защиты в активную зону реактора падают стержни-поглотители и в теплоноситель первого контура дополнительно впрыскивается борная кислота.

Выбросы в атмосферу через трубу АЭС

  Наверное, самое большое число слухов и домыслов ходят вокруг выбросов атомных станций. Выбросы действительно есть и происходят они, в основном, через вентиляционные трубы — это те самые трубы, которые стоят возле каждого энергоблока и никогда не дымят. По большей части, в атмосферу попадают инертные радиоактивные газы — ксенон, криптон и аргон. Но перед сбросом в атмосферу воздух из помещений АЭС проходит систему сложных фильтров, где удаляется большая часть радионуклидов. Короткоживущие изотопы распадаются еще до того, как газы достигнут верха трубы, еще больше снижая радиоактивность. В итоге, вклад в естественный радиационный фон газоаэрозольных выбросов АЭС в атмосферу незначителен и им вообще можно пренебречь. Поэтому атомная энергия является одной из самых чистых, в сравнении с другими электростанциями. В любом случае, все радиоактивные выбросы атомных станций строго контролируются экологами и разрабатываются способы дальнейшего их снижения.

Принцип работы ядерного (атомного) реактора

У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем, отражатель нейтронов, теплоноситель, система управления и защиты. В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232).  Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель). Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций — пар вращает турбину, а энергия движения преобразуется в электрическую энергию.

Приведем ниже схему работы ядерного реактора.

Схема ядерного реактора на АЭС

Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

Здесь нужно упомянуть коэффициент размножения нейтронов. Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.

Цепная реакция

Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо. ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.

ТВЭЛы, помещенные в топливную кассету

Преимущества и недостатки атомных станций:

К плюсам и преимуществам АЭС следует отнести:

– отсутствие выбросов парниковых газов в атмосферу. Вредные выбросы присутствуют лишь в тех случаях, когда подключаются резервные дизельные генераторы, что происходит редко,

– существенное сокращение эмиссии углекислого газа. Согласно расчетам специалистов, в Европе атомные станции позволяют сократить выбросы углекислого газа примерно на 700 млн тонн в год,

– более низкий уровень радиоактивного излучения в сравнении с угольными электростанциями,

– отсутствие зависимости от источников топлива ввиду того, что для работы АЭС оно требуется в небольших объемах,

– высокую мощность (от 1000 до 1600 мегаватт на энергоблок) и круглосуточную работу,

– низкую стоимость производства энергии (что особенно относится к тепловой).

Недостатки атомных электростанций:

– опасность облученного топлива, переработка которого является сложной и дорогостоящей,

– весьма тяжкие последствия для окружающей среды в случае возникновения чрезвычайных ситуаций,

– необходимость высоких капиталовложений.

Несмотря на свои минусы, атомная энергетика на сегодняшний день рассматривается в качестве наиболее перспективного способа получения энергии.

Примечание:  Фото //www.pexels.com, //pixabay.com

Найти что-нибудь еще?

карта сайта

Коэффициент востребованности
6 047

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» – «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой – D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов – графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Устройство АЭС

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

https://youtube.com/watch?v=_tcQpawPN_g

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Атомная электростанция и ее устройство:

Атомная электростанция (АЭС) – это ядерная установка, назначением которой является выработка электрической энергии.

Атомная электростанция (АЭС) – это ядерная установка для производства электрической энергии в заданных режимах и условиях применения, располагающаяся в пределах определенной проектом территории, на которой для осуществления этой цели используется ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом).

Отличие АЭС от иных видов электростанций заключается в том, что ее конструкция включает в себя ядерный реактор, являющийся ее основным компонентом. В качестве топлива в ней применяется уран-235.

АЭС располагается на территории нескольких зданий, в которых размещается комплекс сооружений, систем и оборудования, требуемых для обеспечения ее работы.

В главном корпусе АЭС находится реакторный зал, в котором располагаются:

– реактор,

– специальный бассейн, служащий для выдержки ядерного топлива,

– машина для выполнения перегрузок топлива (перегрузочная машина).

Работа этого оборудования контролируется персоналом – операторами, использующими в этих целях блочный щит управления.

Ключевой элемент реактора – зона, располагающаяся в бетонной шахте. В нем также предусмотрена система, обеспечивающая управление и защитные функции; с ее помощью можно выбирать режим, в котором должна проходить управляемая цепная реакция деления. Система обеспечивает и аварийную защиту, что позволяет оперативно прекратить реакцию в случае возникновения внештатной ситуации.

Во втором здании АЭС находится турбинный зал, в котором располагаются турбина и парогенераторы. Кроме того, имеется корпус, в котором перегружается ядерное топливо и хранится отработанное ядерное топливо в специально предусмотренных бассейнах.

На территории атомной станции располагаются конденсаторы, а также градирни, охладительный пруд и брызгальный бассейн, представляющие собой компоненты оборотной системы охлаждения. Градирнями называются башни, выполненные из бетона и по форме напоминающие усеченный конус; в качестве пруда может служить естественный или искусственный водоем. АЭС оборудована высоковольтными линиями электропередач, простирающимися за границы ее территории.

Строительство первой в мире атомной электростанции было начато в 1950 году в России и завершено четыре года спустя. Для осуществления проекта была выбрана территория неподалеку от пос. Обнинского (Калужская область).

Однако впервые вырабатывать электроэнергию начали в Соединенных Штатах Америки в 1951 году; первый успешный случай ее получения был зафиксирован в штате Айдахо.

В сфере производства электроэнергии лидируют США, где ежегодно вырабатывается более 788 млрд кВт/ч. В список лидеров по объемам выработки также входят Франция, Япония, Германия и Россия.

Электросиловое оборудование на БалАЭС

Электрооборудование и электросхемы БАЭС обладают развитой структурой, в нее входит большое количество силового оборудования и устройств релейной защиты и автоматики с обилием разнообразных агрегатов как собственно для выработки электроэнергии, так и для обеспечения работы реакторного и турбинного отделений.

Выдача мощности Балаковской АЭС осуществляется через шины ОРУ-220/500 кВ в объединённую энергосистему Средней Волги.

Шины высокого напряжения 220 и 500 кВ являются узловыми в энергосистеме и связывают Саратовскую энергосистему с Ульяновской, Самарской, Волгоградской и Уральской.

Через шины может осуществляться переток мощности из одной энергосистемы в другую и выдача избыточной мощности Саратовской ГЭС.

На БАЭС установлены трёхфазные синхронные турбогенераторы ТВВ-1000-4УЗ, изготовленные заводом «Электросила». Активная мощность — 1000 МВт, напряжение 24 кВ, частота вращения ротора 1500 об/мин.

  • водородного охлаждения генератора;
  • водяного охлаждения обмотки статора генератора;
  • газоохлаждения генератора;
  • уплотнения вала генератора;
  • смазки подшипников генератора;
  • охлаждения выводов генератора;
  • возбуждения генератора.

К каждому турбогенератору через генераторные выключатели КАГ-24-30-30000УЗ подключается два повышающих трёхфазных трансформатора ТЦ-630000/220 (энергоблок 1) и ТЦ-630000/500 (энергоблоки 2,3,4) мощностью по 630 МВА каждый, которые, соединённые параллельно, позволяют выдавать номинальную мощность блока в сеть.