Кпд цепи постоянного тока

Мгновенная электрическая мощность

Установленная мощность

В соответствии с названием, величину данного параметра определяют мгновенные значения измеряемых величин. Основное определение можно рассмотреть с учетом перемещения единичного элементарного заряда (q), которое выполняется за время Δt. На выполнение работы будет затрачена мощность эл тока PF1-F2 = U/ Δt или (U/ Δt) * q = U * (q/ Δt) c учетом перемещаемого заряда. Так как ток по стандартному определению равен заряду, который переходит из F1 в F2 (I = q/ Δt), несложно вывести итоговую формулу:

PF1-F2 = U * I.

Принимая бесконечно малым интервал времени, можно получить соответствующее определение мощности для участка цепи:

P(t) = U(t) * I(t).

Аналогичные выводы делают с учетом соответствующей величины сопротивления:

P (t) = (I (t))2 * R = (U(t))2/ R.

Видео

Электротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.

Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:

механической энергии вращения роторов генераторов;

протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;

теплоты в терморегуляторах;

магнитных полей в магнитогидродинамических генераторах;

световой энергии в фотоэлементах.

Электрический ток в металлическом проводнике

Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.

Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.

На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).

Схемы обозначения и вольт-амперные характеристики источников ЭДС

Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.

На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.

постоянного и переменного напряжения;

управляемые напряжением или током.

Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.

Схемы обозначения и вольт-амперная характеристика источника тока

Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.

Реальный источник тока отличается от идеального значением внутреннего сопротивления.

Примерами источника тока могут служить:

Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.

Катушки индуктивности, по которым проходил ток в течение некоторого времени после снятия питания со схемы. Быстрое отключение индуктивной нагрузки (резкое возрастание сопротивления) может привести к пробою зазора.

Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.

В различной литературе источники тока и напряжения могут обозначаться неодинаково.

Виды обозначений источников тока и напряжения на схемах

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

, (10)

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R<< r). Зависимость к.п.д. от силы тока в цепи с учётом формул (8), (9), (10) примет вид

(11)

Таким образом, к.п.д. достигает наибольшего значения h =1 в случае разомкнутой цепи ( I = 0), а затем уменьшается по линейному закону, обращаясь в нуль при коротком замыкании.

Зависимость мощностей Р1, Рполн = EI и к.п.д. источника тока от силы тока в цепи показаны на рис.1.

Рис.1. I0 E/r

Из графиков видно, что получить одновременно полезную мощность и к.п.д. невозможно. Когда мощность, выделяемая на внешнем участке цепи Р1, достигает наибольшего значения, к.п.д. в этот момент равен 50%.

Мощность тока

Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

Будет интересно Что такое индуктивность

Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».

Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.

Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).

Расчетные формулы мощности тока

Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.

Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.

КПД и мощность электродвигателя

КПД и мощность – это то, на что в первую очередь стоит обратить внимание при выборе асинхронного электродвигателя АИР. Суть работы любого эл двигателя заключается в том, что электрическая энергия, с сопутствующими преобразованию потерями, превращается в механическую

Чем меньше потери при протекании данного процесса, тем выше его КПД и тем эффективнее эл двигатель

Но, при всей важности коэффициента полезного действия, не стоит забывать о мощности мотора. Ведь даже при чрезвычайно высоком КПД и выдаваемой им мощности может быть недостаточно для решения необходимых вам задач

Поэтому при покупке очень важно знать не только, чему равен КПД электродвигателя, но и какую полезную мощность он сможет выдать на своем валу. Оба эти значения должны быть указаны производителем. Порой бывает и такое, что нет доступа к паспорту мотора (например, если вы покупаете его “с рук”, что крайне не рекомендуется делать) и приходится самостоятельно вычислять столь важные параметры. Для начала стоит определить: что такое коэффициент полезного действия, или попросту КПД. И так, это отношение полезной работы к затраченной энергии.

Определение КПД электродвигателя

Получается, для того чтобы определить этот параметр необходимо сравнить выдаваемую им энергию с энергией, необходимой ему чтобы функционировать. Вычисляется КПД с помощью выражения:

η=P2/P1где η – КПД

P2- полезная механическая мощность электромотора, ВтP1- потребляемая двигателем электрическая мощность, Вт;

Коэффициент полезного действия это величина, находящаяся в диапазоне от 0 до 1, чем ближе ее значение к единице, тем лучше. Соответственно, если КПД имеет значение 0,95 – это показывает, что 95 процентов электрической энергии будут преобразованы им в механическую и лишь 5 процентов составят потери. Стоит отметить, что КПД не является постоянной величиной, он может меняться в зависимости от нагрузки, а своего максимума он достигает при нагрузках в районе 80 процентов от номинальной мощности, то есть от той, которую заявил производитель мотора. Современные асинхронные электродвигатели имеют номинальный КПД (заявленные производителем) 0,75 – 0,95 . Потери при работе двигателя в основном обусловлены нагревом мотора (часть потребляемой энергии выделяется в виде тепловой энергии), реактивными токами, трением подшипников и другими негативными факторами. Под мощностью мотора понимают механическую мощь, которую он выдает на своем валу. В целом же мощность – это параметр, который показывает, какую работу совершает механизм за определенную единицу времени.

КПД электродвигателя это очень важный параметр определяющий, прежде всего эффективность использования энергоресурсов предприятия . Как известно КПД электродвигателя значительно снижается после его ремонта, об этом мы писали в этой статье . При уменьшении коэффициента полезного действия будут соответственно увеличены потери электроэнергии. В последнее время набирают популярность энергоэффективные электродвигатели разных производителей, в России популярны моторы производства ОАО «Владимирский электромоторный завод». Любые асинхронные электродвигатели представлены в каталоге продукции. Дополнительную полезную информацию Вы можете посмотреть в каталоге статей .

Электродвигатели появились достаточно давно, но большой интерес к ним возник тогда, когда они стали представлять собой альтернативу двигателям внутреннего сгорания. Особо интересен вопрос КПД электродвигателя, который является одной из главных его характеристик.

Каждая система обладает каким-либо коэффициентом полезного действия, который характеризует эффективность ее работы в целом. То есть он определяет, насколько хорошо система или устройство отдает или преобразовывает энергию. По значению КПД величины не имеет, и чаще всего оно представляется в процентном соотношении или числе от нуля до единицы.

Как устроена солнечная батарея

Все современные солнечные батареи работают благодаря открытию, сделанным физиком Александром Беккерелем в 1839 году — самого принципа работы полупроводников.

Если нагревать кремниевые фотоэлементы на верхней пластине, то атомы кремниевого полупроводника высвобождаются. Их стремятся захватить атомы нижней пластины. В полном соответствии с законами физики, электроны нижней пластины должны вернуться в первоначальное состояние. Этим электронам открывается один путь — по проводам. Сохранённая энергия передается аккумуляторам и возвращается вновь в верхнюю кремниевую пластину.

Измерения

Как показано выше, некоторые исходные данные можно получить в ходе практических измерений. Ниже отмечены особенности типовых специализированных приборов.

Прямые замеры

Ваттметры выпускают в разных модификациях для сетей ~220V и ~380V. Соответствующие коррекции делают в процессе выполнения рабочих операций. Следует подключать щупы с учетом инструкций производителя и соответствующего расположения проводников. Как правило, в конструкциях приборов применяют две катушки с параллельным и последовательным подсоединением к нагрузке. Для повышенной точности пользуются профессиональными приборами «лабораторной» категории.

Косвенные замеры

Эти операции выполняют с применением мультиметров. Измеряют сопротивление, ток и напряжение, после чего вычисляют мощность.

Фазометры

С помощью этих приборов измеряют фазовый сдвиг между несколькими электрическими параметрами. Таким аппаратом можно определить cos ϕ, если паспортное значение отсутствует в сопроводительных документах к оборудованию.

Регулирование cos

Отмеченное выше негативное влияние реактивных составляющих компенсируют специальными дополнениями в общую электрическую схему. Расчеты выполняют с применением представленных формул.

КПД в термодинамике

В термодинамике КПД — очень важная величина. Она полностью определяет эффективность такой штуки, как тепловая машина.

Тепловой двигатель (машина) – это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

Схема теплового двигателя выглядит так:

У теплового двигателя обязательно есть нагреватель, который (не может быть!) нагревает рабочее тело, передавая ему количество теплоты Q1 или Qнагревателя (оба варианта верны, это зависит лишь от учебника, в котором вы нашли формулу).

Рабочее тело — это тело, на котором завязан процесс (чаще всего это газ). Оно расширяется при подводе к нему теплоты и сжимается при охлаждении. Часть переданного Q1 уходит на механическую работу A. Из-за этого производится движение.

Оставшееся количество теплоты Q2 или Qхолодильника отводится к холодильнику, после чего возвращается к нагревателю и процесс повторяется.

КПД такой тепловой машины будет равен:

КПД тепловой машины

η = (Aполезная/Qнагревателя) * 100%

η — коэффициент полезного действия

Aполезная — полезная работа (механическая)

Qнагревателя — количество теплоты, полученное от нагревателя

Если мы выразим полезную (механическую) работу через Qнагревателя и Qхолодильника, мы получим:

A = Qнагревателя — Qхолодильника.

Подставим в числитель и получим такой вариант формулы.

КПД тепловой машины

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

η — коэффициент полезного действия

Qнагревателя — количество теплоты, полученное от нагревателя

Qхолодильника — количество теплоты, отданное холодильнику

А возможно ли создать тепловую машину, которая будет работать только за счет охлаждения одного тела?

Точно нет! Если у нас не будет нагревателя, то просто нечего будет передавать на механическую работу. Любой такой процесс — когда энергия не приходит из ниоткуда — означал бы возможность существования вечного двигателя.

Поскольку свидетельств такого процесса в мире не существует, то мы можем сделать вывод: вечный двигатель невозможен. Это второе начало термодинамики.

Запишем его, чтобы не забыть:

Невозможно создать периодическую тепловую машину за счет охлаждения одного тела без изменений в других телах.

Задача

Найти КПД тепловой машины, если рабочее тело получило от нагревателя 20кДж, а отдало холодильнику 10 кДж.

Решение:

Возьмем формулу для расчета КПД:

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

Подставим значения:

η = 20 — 10/20 *100% = 50%

Ответ: КПД тепловой машины равен 50%

Зависимость мощности от силы тока, формула мощности, физический смысл

Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами. Отцом же науки об электричестве считается французский ученый Кулон – именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор. Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно – расстоянию между ними, возведенному в квадрат.

Свойства в теории и практике

Основное свойство этой радиодетали – это сопротивление. Измеряется в омах (Ом).

Разберем для начала понятие активного сопротивления. Оно так называется потому, что есть у всех материалов (даже у сверхпроводников, пусть и 0,00001 Ом). И именно оно является основным у резисторов.

Что говорит теория

В теории у резистора есть постоянное сопротивление, которое на зависит от внешних условий (температуры, давления, напряжения и т.п.).

График зависимости тока от напряжения прямолинеен.

В идеальных и математических условиях у резистора только активное сопротивление. По типам бывают нелинейные и линейные резисторы.

Что на самом деле

На самом у всех резисторов непрямолинейная зависимость тока от напряжения. То есть, его сопротивление тоже зависит от внешних условий, конкретно от температуры.

«Механическая работа. Механическая мощность»

Код ОГЭ 1.16. Механическая работа. Формула для вычисления работы силы. Механическая мощность.

Работа силы – физическая величина, характеризующая результат действия силы.

Механическая работа А постоянной силы равна произведению модуля вектора силы на модуль вектора перемещения и на косинус угла а между вектором силы и вектором перемещения: А = Fs cos а.

Единица измерения работы в СИ – джоуль: = Дж = Н • м. Механическая работа равна 1 Дж, если под действием силы в 1 Н тело перемещается на 1 м в направлении действия этой силы.

Анализ формулы для расчёта работы показывает, что механическая работа не совершается если:

  • сила действует, а тело не перемещается;
  • тело перемещается, а сила равна нулю;
  • угол между векторами силы и перемещения равен 90° (cos a = 0).

Внимание! При движении тела по окружности под действием постоянной силы, направленной к центру окружности, работа равна нулю, так как в любой момент времени вектор силы перпендикулярен вектору мгновенной скорости. Работа – скалярная величина, она может быть как положительной, так и отрицательной. Работа – скалярная величина, она может быть как положительной, так и отрицательной

Работа – скалярная величина, она может быть как положительной, так и отрицательной.

  1. Если угол между векторами силы и перемещения 0° ≤ а < 90°, то работа положительна.
  2. Если угол между векторами силы и перемещения 90° < a ≤ 180°, то работа отрицательна.

Работа обладает свойством аддитивности: если на тело действует несколько сил, то полная работа (работа всех сил) равна алгебраической сумме работ, совершаемых отдельными силами, что соответствует работе равнодействующей силы.

Примеры расчёта работы отдельных сил:

Работа силы тяжести: не зависит от формы траектории и определяется только начальным и конечным положением тела: A = mg(h1 – h2)

По замкнутой траектории работа силы тяжести равна нулю.Внимание! При движении вниз работа силы тяжести положительна, при движении вверх работа силы тяжести отрицательна

Работа силы трения скольжения: всегда отрицательна и зависит от формы траектории. Если сила трения не изменяется по модулю, то её работа А = –Fтр l , где l – путь, пройденный телом (длина траектории). Очевидно, что чем больший путь проходит тело, тем большую по модулю работу совершает сила трения. Работа силы трения по замкнутой траектории не равна нулю!

Мощность N – физическая величина, характеризующая быстроту (скорость) совершения работы и равная отношению работы к промежутку времени, за который эта работа совершена: .

Мощность показывает, какая работа совершается за 1 с. Единица измерения мощности в СИ – ватт: = Дж/с = Вт. Мощность равна одному ватту, если за 1 с совершается работа 1 Дж.

Может пригодиться! 1 л. с

(лошадиная сила) ~ 735 Вт.Внимание! Для случая равномерного движения (равнодействующая сила равна нулю) при расчете мощности отдельных сил, действующих на тело, получим

Для равноускоренного движения (F = const) где ʋср– средняя скорость движения за расчётный промежуток времени.

Конспект урока «Механическая работа. Механическая мощность».

Следующая тема: «Кинетическая и потенциальная энергия» (код ОГЭ 1.17)

Взаимосвязь полезной мощности и КПД

Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.

кВа в кВт — как правильно перевести мощность

Формула имеет вид:

η = А/Q,

где:

  • А – полезная работа (энергия);
  • Q – затраченная энергия.

По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:

  • электродвигатель – до 98%;
  • ДВС – до 40%;
  • паровая турбина – до 30%.

Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае η ≤ 1.

Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого

Получение максимальной энергии на выходе ИП

К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.

Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.

Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.

График зависимости Рпол и η от тока в цепи

Достижение максимального КПД

Формула КПД источника тока имеет вид:

η = Pн/Pобщ = R/Rн+r,

где:

  • Pн – мощность нагрузки;
  • Pобщ – общая мощность;
  • R – полное сопротивление цепи;
  • Rн – сопротивление нагрузки;
  • r – внутреннее сопротивление ИТ.

Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.

Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:

  • изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
  • приближения их значений к параметрам окружающей среды по окончании расширения.

Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.

К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.

Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:

  • некоторая часть давления уходит на внешнюю среду;
  • достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
  • нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
  • использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.

Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:

  • ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
  • наиболее полно перед расширением использовать оба вида энергии рабочего тела;
  • осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.

Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.

КПД двигателя внутреннего сгорания

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​\( R_1 \)​ в четыре раза меньше сопротивления резистора ​\( R_2 \)​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​\( R_1 \)​ в 3 раза больше сопротивления резистора ​\( R_2 \)​. Количество теплоты, которое выделится в резисторе 1

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​\( A_1 \)​ и ​\( A_2 \)​ в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \)​ и ​\( A_2 \) в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

ФОРМУЛЫ
1) ​\( \frac{q}{t} \)​
2) ​\( qU \)​
3) \( \frac{RS}{L} \)​
4) ​\( UI \)​
5) \( \frac{U}{I} \)​

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Коэффициент полезного действия электрического прибора

Как известно, идеальных машин и механизмов не существует (то есть таких, которые бы полностью превращали один вид энергии в другой или генерировали бы энергию). Во время работы устройства обязательно часть затраченной энергии уходит на преодоление нежелательных сил сопротивления или просто «рассеивается» в окружающую среду. Таким образом, только часть затраченной нами энергии уходит на выполнение полезной работы, для выполнения которой и было создано устройство.

Другими словами, КПД показывает, насколько эффективно используется затраченная работа при ее выполнении, например, электрическим прибором.

КПД (обозначается греческой буквой η («эта»)) — физическая величина, которая характеризует эффективность электрического прибора и показывает, какая часть полезной работы в затраченной.

КПД определяется (как и в механике) по формуле:

Если известна мощность электрического тока, формулы для определения ККД будут выглядеть так:

Прежде чем определять КПД некоторого устройства, необходимо определить, что является полезной работой (для чего создано устройство), и что является затраченной работой (работа выполняется или какая энергия затрачивается для выполнения полезной работы).

Математический рассчет

Рассмотрим пример.
У нас есть аккумуляторная батарея с напряжением питания 12 Вольт. К ней напрямую подключен резистор (сопротивление) 10 Ом. Для того что бы рассчитать какая мощность приложена к нашему резистору, можно воспользоваться формулой.
P = E2/R
P = 122/10
P = 144/10.P = 14.4 wattsМощность рассеиваемая на резисторе состовляет 14,4 Ватта.
Если вы хотите определить величину тока протекающего через проводник, мы используем другую формулу
I = E/R
I = 12/10I = 1.2 ampsСила тока протекающего через цепь составляет 1,2 Ампера
—————-
Калькуляторы зависимости напряжения, силы тока и сопротивления.