Заряд конденсатора — формула для расчета емкости и тока

Содержание

Энергия заряженного конденсатора

Как и любая система заряжен­ных тел, конденсатор обладает энер­гией. Вычислить энергию заряжен­ного плоского конденсатора с одно­родным полем внутри него не­сложно.

Энергия заряженного конденса­тора.Для того чтобы зарядить конденсатор, нужно совершить рабо­ту по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта ра­бота равна энергии конденсатора.

В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, со­держащую лампу накаливания, рас­считанную на напряжение в не­сколько вольт (рис.4). При раз­рядке конденсатора лампа вспыхи­вает.

Энергия конденсатора пре­вращается в другие формы: тепло­вую, световую.

Выведем формулу для энергии плоского конденсатора.

Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе. В однородном поле одной пластины находится заряд q, распределенный по поверхности дру­гой пластины (рис.5). Согласно формуле Wp=qEd. для потенциальной энергии заряда в однородном поле энергия конденсатора равна:

(1)

где q — заряд конденсатора, a d — расстояние между пластинами.

(2)

Так как Ed=U, где U — разность потенциалов между обкладка­ми конденсатора, то его энергия равна:

Эта энергия равна работе, ко­торую совершит электрическое поле при сближении пластин вплот­ную.

Заменив в формуле (2) раз­ность потенциалов или заряд с по­мощью выражения для элек­троемкости конденсатора, получим

(3)

Можно доказать, что эти форму­лы справедливы для энергии любого конденсатора, а не только для плос­кого.

Энергия электрического поля.Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электриче­ском поле этих тел. Значит, энергия может быть выражена через основную характеристику поля — напря­женность.

Совет

Так как напряженность электри­ческого поля прямо пропорциональ­на разности потенциалов

(U = Ed),то согласно формуле

(4)

энергия конденсатора прямо пропор­циональна напряженности электри­ческого поля внутри него: Wp~E2. Детальный расчет дает следующее значение для энергии поля, приходя­щейся на единицу объема, т.е. для плотности энергии:

где ε0 — электрическая постоянная

Постоянный ток. Сила и плотность тока. Закон Ома.

Постоянный электрический ток

Краткие теоретические сведения

1. Сила тока определяется по формуле

Для постоянного тока

где – заряд, прошедшей через поперечное сечение проводника за время .

2.Если ток постоянный, плотность тока во всем сечении однородного проводника не изменяется ,

где – площадь поперечного сечения проводника.

Закон Ома

для однородного участка цепи имеет вид:

где – разность потенциалов (напряжение) на концах участка; – сопротивление.

Для неоднородного участка цепи этот закон записывается так:

где – ЭДС источника тока на этом участке; – внутреннее сопротивление источника;

– внешнее сопротивление цепи; – падение напряжения на участке 1-2.

· Для замкнутой цепи .

4.Сопротивление цилиндрического однородного проводника равно ,

где – удельное сопротивление; – удельная проводимость;

– длина; S – площадь поперечного сечения проводника.

Вектор магнитной индукции.

Вектор магнитной индукции – аналог напряженности электрического поля. Основной силовой характеристикой маг­нитного поля является вектор магнитной индукции.Вектор индукции магнитного поля B⃗направлен от южного полюса S стрелки (свободно вращающейся в магнитном поле) к северному N

Закон Ампера.

Закон Ампера – сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником.

Магнитный момент витка с током – физическая величина характеризующий магнитные свойства системы в виде кругового витка с током Где, I ток протекающий по витку S площадь витка с током n нормаль к плоскости в которой находится виток

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.

Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

По мере зарядки, лампочка начинает тусклее светиться.

Лампочка затухает при полной зарядке.

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.

Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.

Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Что такое конденсатор и его основные характеристики

Конденсатор — это радиодеталь, которая работает как накопитель электрической энергии. Чтобы понятнее было, как он работает, его можно представить как своего рода небольшой аккумулятор. Обозначается двумя параллельными чёрточками.

Обозначения различных типов конденсаторов на схемах. Чаще всего из строя выходят электролитические конденсаторы, так что стоит запомнить их обозначение

Основная характеристика конденсатора любого типа — ёмкость. Это то количество заряда, которое он в состоянии накопить. Измеряется в Фарадах (сокращенно просто буква F или Ф), а вернее, в более «мелких» единицах:

Вторая важная характеристика — номинальное напряжение. Это то напряжение, при котором гарантирована длительная безотказная работа. Например, 4700 мкФ 35 В, где 35 В — это номинальное напряжение 35 вольт.

У крупных по размеру конденсаторов, ёмкость и напряжение указаны на корпусе

Можно использовать конденсаторы на 50 вольт вместо конденсаторов на 25 вольт. Но это порой нецелесообразно, так как те, которые рассчитаны на более высокое напряжение, дороже, да и габариты у них больше.

Принцип работы и назначение

В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь. При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд. В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам, сам, как бы становится источником питания.

Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд. Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах. Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это – конденсатор постоянной емкости.

Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть – металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.

Для увеличения площади обкладок пластины некоторых конденсаторов изготавливают из полосок фольги, разделенных полоской диэлектрика и скрученных в рулон. Увеличить емкость также можно уменьшением толщины диэлектрика между обкладками и применением материалов с большей диэлектрической проницаемостью. Между обкладками конденсаторов располагают твердые, жидкие вещества и газы, в том числе и воздух.

Из формулы очевиден и такой факт: даже при небольших площадях обкладок и на любых расстояниях между обкладками емкость не равна нулю. Два проложенных рядом проводника тоже обладают емкостью. В связи с этим высоковольтная кабельная линия способна накапливать заряд, а на высоких частотах проводники вносят в устройства связи «паразитные» емкости, с которыми приходится бороться.

Конденсаторы небольшой емкости получают на печатных платах, располагая две дорожки напротив друг друга. Каким бы качественным не был диэлектрик в конденсаторе, он все равно имеет сопротивление. Его величина велика, но в заряженном состоянии конденсатора ток между обкладками все равно есть. Это приводит к явлению «саморазряда»: заряженный конденсатор со временем теряет свой заряд. В таблице ниже подробно рассмотрена маркировка и расшифровка конденсаторов по их основным свойствам.

Таблица типовых обозначений и маркировки конденсаторов.

Емкость конденсатора измеряется в Фарадах, 1 фарад – это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах  (mF), пикофарадах  (nF), нанофарадах ( nF).

Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF.  Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя. Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе.

Соединение конденсаторов: формулы

  1. Последовательное соединение
  2. Онлайн калькулятор
  3. Смешанное соединение
  4. Параллельное соединение
  5. Видео

В электронных и радиотехнических схемах широкое распространение получило параллельное и последовательное соединение конденсаторов. В первом случае соединение осуществляется без каких-либо общих узлов, а во втором варианте все элементы объединяются в два узла и не связаны с другими узлами, если это заранее не предусмотрено схемой.

Последовательное соединение

При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = ic1 = ic2 = ic3 = ic4.

В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Qобщ= Q1 = Q2 = Q3.

Если рассмотреть три конденсатора С1, С2 и С3, соединенные в последовательную цепь, то выясняется, что средний конденсатор С2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.

Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.

Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/Cобщ = 1/C1 + 1/C2 + 1/C3.

Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.

Онлайн калькулятор, для расчета емкости конденсаторов соединенных последовательно в электрической цепи.

Параллельное соединение конденсаторов

Параллельным считается такое соединение, при котором конденсаторы соединяются между собой двумя контактами. Таким образом в одной точке может соединяться сразу несколько элементов.

Данный вид соединения позволяет сформировать единый конденсатор с большими размерами, площадь обкладок которого будет равна сумме площадей обкладок каждого, отдельно взятого конденсатора. В связи с тем, что емкость конденсаторов находится в прямой пропорциональной зависимости с площадью обкладок, общая емкость составить суммарное количество всех емкостей конденсаторов, соединенных параллельно. То есть, Собщ = С1 + С2 + С3.

Поскольку разность потенциалов возникает лишь в двух точках, то на все конденсаторы, соединенные параллельно, будет падать одинаковое напряжение. Сила тока в каждом из них будет отличаться, в зависимости от емкости и значения напряжения. Таким образом, последовательное и параллельное соединение, применяемое в различных схемах, позволяет выполнять регулировку различных параметров на тех или иных участках. За счет этого получаются необходимые результаты работы всей системы в целом.

electric-220.ru

Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.

Работа электрического поля

Электрическое поле называется потенциальным. Это значит, что работа его сил не зависит от траектории движения заряда, исключительно от энергии начального и конечного положения. Напомним, согласно определению:

Электрическое поле воздействует исключительно на электрические заряды. Создаётся двумя путями:

  1. Электрическими зарядами. Силовые линии начинаются на положительных и заканчиваются на отрицательных зарядах.
  2. Изменяющимся магнитным полем. При этом образуется электромагнитная волна, что используется в генераторах.

Когда говорят, что излучение приборов действует на человека, подразумеваются и магнитная, и электрическая составляющие. Особенно опасна первая, которая с большим трудом экранируется. Электрическое поле, рассматриваемое в физике школьного курса, считается стационарным, а линии напряжённости его параллельны. Приводятся два примера:

  1. Допустим, заряд перемещается вдоль линий поля на некоторое расстояние l. Тогда работа находится по упрощённой формуле A = Fl, где F – сила, действующая на заряд.
  2. Теперь предположим, что заряд переместился из прежней точки по косой линии. Так, что проекция пути lb на силовые линии снова равна l. Участок прямолинейный, угол отклонения – В. Работа вычисляется по формуле с учётом геометрических соотношений как A = FlbcosB = Fl.

Этот простой случай, легко распространяется на любую форму линий напряжённости. Сие означает, что в электрическом поле работа не зависит от траектории, а значит, равна разнице потенциалов поля: А = П1 – П2. Формула применима для любого поля. Чтобы адаптировать выражение, вводят понятие электрического потенциала как энергию единичного положительного заряда – ф = П / q1. Тогда формула для работы принимает иной вид.

Электрическим напряжением между двумя точками называется разница потенциалов между ними. Умножая указанное значение на величину заряда, поскольку величина удельная, получаем: А = (ф1 – ф2) q = U q. Потенциал через величины поля находится:

ф = q / 4 ε Пи r,

где q – величина заряда, создающего поля; ε – диэлектрическая проницаемость среды (для воздуха и вакуума равна единице); Пи = 3,14; r – расстояние до исследуемой точки от упомянутого заряда. Формула годится далеко не для любых случаев, приведена для примера. Допустимо применять для заряда, распределённого по поверхности шара, и точек, лежащих вне указанной поверхности.

Электрическая ёмкость

Способность устройства накапливать заряд прежде всего зависит от его ёмкости. Найти её величину можно разделив заряд, сосредоточенный на пластинах, на разность потенциалов между ними: C = q / U. Полученный результат измеряется в фарадах . Так, ёмкость в 1 фарад будет равняться значению заряда в 1 кулон создавшему напряжение на выводах конденсатора 1 вольт. Кулон — это довольно большая величина. Поэтому на практике при различных расчётах приходится иметь дело с микрофарадами (µF), нанофарадами (nF) и пикофарадами (pF).

После создания «Лейденской банки» учёные провели ряд экспериментов, направленных на увеличение количества запасаемой энергии устройством. Так было обнаружено, что если между обкладками конденсатора поместить диэлектрик, то он не только предотвращает замыкание проводников, но и влияет на ёмкость.

Пусть имеется устройство пластины которого имеют площадь S. Между обкладками размещён непроводник тока, характеризующийся диэлектрической проницаемостью ε. Это коэффициент, показывающий во сколько раз напряжённость в однородном поле меньше чем создаваемое значение теми же зарядами в вакууме.

Можно предположить, что положительный заряд будет скапливаться на левой пластине, а отрицательный на правой. Чтобы найти ёмкость конденсатора нужно воспользоваться следующей последовательностью действий:

  1. Найти напряжённость поля в середине устройства. Для этого каждую обкладку нужно представить, как бесконечно однородно заряженную плоскость. Тогда: E1 = σ / (2 * ε * ε0). Так как поля внутри складываются, то расчётная формула примет вид: E = σ / (ε * ε0).
  2. Определить поверхностную плотность зарядов. Это величина, показывающая чему равняется отношение заряда к площади, по которой он распределён: σ = q / S.
  3. Выразить напряжение между пластинами через заряд. Между обкладками поле однородное. Значит, напряжение можно найти умножением напряжённости на расстояние: U = E * d. Тогда, пользуясь полученными формулами для E и σ, можно записать: U = (q * d) / (ε * ε0 * S).
  4. Вычислить электрическую ёмкость, подставив выражения в формулу: C = q / U. В результате получится: C = (ε * ε0 * S) / d.

Что он из себя представляет и как работает

В самом простейшем случае конденсатор состоит из двух токопроводящих пластин (обкладок), разделённых слоем диэлектрика.

Между обкладками находится слой диэлектрика — материала плохо проводящего электрический ток

На пластины подаётся постоянный или переменный ток. Вначале, пока энергия накапливается, потребление энергии конденсатором высокое. По мере «наполнения» ёмкости оно снижается. Когда заряд набран полностью, токопотребления вообще нет, источник питания как бы отключается. В это время конденсатор сам начинает отдавать накопленный заряд. То есть, он на время становится своеобразным источником питания. Поэтому его и сравнивают с аккумулятором.

Характеристики конденсатора

Основной характеристикой данного элемента является емкость, или С. Она определяет способность устройства собирать электрический заряд, зависит от геометрической конфигурации крышек и от электрической проницаемости диэлектрика между крышками.

Важно! Емкость зависит от типа используемого диэлектрика, а также от геометрических размеров элемента. Для того, чтобы описать принцип работы устройства формулой, необходимо понять, что это постоянная пропорциональность в уравнении, представляющая собой взаимную зависимость накопленного заряда q от площади пластинок и от разности потенциалов V между ними. Для того, чтобы описать принцип работы устройства формулой, необходимо понять, что это постоянная пропорциональность в уравнении, представляющая собой взаимную зависимость накопленного заряда q от площади пластинок и от разности потенциалов V между ними

Для того, чтобы описать принцип работы устройства формулой, необходимо понять, что это постоянная пропорциональность в уравнении, представляющая собой взаимную зависимость накопленного заряда q от площади пластинок и от разности потенциалов V между ними.

Мощность выражается в единицах, называемых фарадами F. Но на практике используются и более мелкие единицы, такие как микрофарады и пикофарады.

Таким образом, если напряжение U приложено к конденсатору, электрический заряд накапливается на крышках детали. Значение накопленного заряда на каждой пластинке одинаково, они отличаются только знаком. Этот процесс накопления электрического показателя на называется зарядкой.

Другим параметром детали является номинальное напряжение, а именно, его максимальное значение, которое может подаваться на конденсатор. При подключении более высокого напряжения возникает пробой диэлектрика. Это приводит к короткому замыканию элемента. Каким будет номинальное значение напряжения, зависит от типа диэлектрика и его толщины.

Важно! Чем толще диэлектрик, тем выше номинальное напряжение, которое он выдерживает. Условные обозначения

Ещё одним параметром является ток утечки -значение проводящего показателя, возникающее при подаче постоянного напряжения на концы элемента.