Закон кулона

Электризация тела

Для того чтобы получить электрически заряженное макроскопическое тело или, как говорят, наэлектризовать

его, нужно отделить часть отрицательного заряда от связанного с ним положительного.

Проще всего это сделать с помощью трения . Если провести расческой по волосам, то небольшая часть наиболее подвижных заряженных частиц – электронов – перейдет с волос на расческу и зарядит ее отрицательно, а волосы зарядятся положительно. При электризации трением оба тела приобретают противоположные по знаку, но одинаковые по модулю заряды.

Еще один способ электризации тел – воздействие на них различных излучений (в частности, ультрафиолетового, рентгеновского иγ -излучения). Этот способ наиболее эффективен для электризации металлов, когда под действием излучений с поверхности металла выбиваются электроны, и проводник приобретает положительный заряд.

Электризация через влияние или «электрическая индукция ». При поднесении к проводнику положительного заряда электроны к нему притягиваются и накапливаются на ближайшем конце проводника. На нем оказывается некоторое число «избыточных» электронов, и эта часть проводника заряжается отрицательно. На удаленном конце образуется недостаток электронов и, следовательно, избыток положительных ионов: здесь появляется положительный заряд. При поднесении к проводнику отрицательно заряженного тела электроны накапливаются на удаленном конце, а на ближнем конце получается избыток положительных ионов. После удаления заряда, вызывающего перемещение электронов, они вновь распределяются по проводнику, так что все участки его оказываются по-прежнему незаряженными. Индуцированные заряды можно разделить, если в присутствии заряженного тела разделить проводник на части. В этом случае сместившиеся электроны уже не могут вернуться обратно после удаления внешнего заряда.

*Механизм электризации трением

Наэлектризовать тела с помощью трения очень просто. А вот объяснить, как это происходит, оказалось очень непростой задачей.

1 версия

. При электризации тел важен тесный контакт между ними. Электрические силы удерживают электроны внутри тела. Но для разных веществ эти силы различны. При тесном контакте небольшая часть электронов того вещества, у которого связь электронов с телом относительно слаба, переходит на другое тело. Перемещения электронов при этом не превышают размеров межатомных расстояний (10-8 см). Но если тела разъединить, то оба они окажутся заряженными. Так как поверхности тел никогда не бывают идеально гладкими, то необходимый для перехода тесный контакт между телами устанавливается только на небольших участках поверхностей. При трении тел друг о друга число участков с тесным контактом увеличивается, и тем самым увеличивается общее число заряженных частиц, переходящих от одного тела к другому. Но не ясно, как в таких не проводящих ток веществах (изоляторах), как эбонит, плексиглас и другие, могут перемещаться электроны. Они ведь связаны в нейтральных молекулах.

2 версия

. На примере ионного кристалла LiF (изолятора) это объяснение выглядит так. При образовании кристалла возникают различного рода дефекты, в частности вакансии – незаполненные места в узлах кристаллической решетки. Если число вакансий для положительных ионов лития и отрицательных – фтора неодинаково, то кристалл окажется при образовании заряженным по объему. Но заряд в целом не может сохраняться у кристалла долго. В воздухе всегда имеется некоторое количество ионов, и кристалл будет их вытягивать из воздуха до тех пор, пока заряд кристалла не нейтрализуется слоем ионов на его поверхности. У разных изоляторов объемные заряды различны, и поэтому различны заряды поверхностных слоев ионов. При трении поверхностные слои ионов перемешиваются, и при разъединении изоляторов каждый из них оказывается заряженным.

А могут ли электризоваться при трении два одинаковых изолятора

, например те же кристаллы LiF? Если они имеют одинаковые собственные объемные заряды, то нет. Но они могут иметь и различные собственные заряды, если условия кристаллизации были разными и появилось разное число вакансий. Как показал опыт, электризация при трении одинаковых кристаллов рубина, янтаря и др. действительно может происходить. Однако приведенное объяснение вряд ли правильно во всех случаях. Если тела состоят, к примеру, из молекулярных кристаллов, то появление вакансий у них не должно приводить к заряжению тела.

Электризация тел

Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.

  • трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
  • через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
  • при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
  • при ударе;
  • под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряжен­ных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов. Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

.

где |q1| и |q2| — модули зарядов; r — расстояние между ними; k — коэффициент пропорциональнос­ти, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединя­ющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока — 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока 1 А за 1 с.

Заряд в 1 Кл очень велик. Сила взаимодействия двух точечных зарядов по 1 Кл каждый, расположенных на расстоянии 1 км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой 1 т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в 1 А — вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент k в законе Кулона при его записи в СИ выражается в Н · м 2 /Кл 2 . Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

k = 9 · 10 9 Н·м 2 /Кл 2 .

Часто его записывают в виде , где ɛ =8,85 · 10 — 12 Kл 2 H·м 2 — электрическая постоянная. В среде с диэлектрической проницаемостью ɛ закон Кулона имеет вид:

.

Делимость электрического заряда. Электрон

В эксперименте с электрометрами металлическим стержнем часть заряда переносится от одного электрометра на другой. Из опыта видно, что заряд делится. Если коснуться стержня второго электрометра рукой, то заряд с него снимется, и распределится по всему телу (человеческое тело является хорошим проводником электричества). Если снова соединить приборы стержнем из металла, оставшийся заряд опять разделится. При повторении тех же шагов заряд каждый раз будет делиться. Кажется, что этот процесс будет происходить до бесконечности.

Заряды постепенно настолько уменьшаются, что электрометр уже не в состоянии их измерить. Уже очень точные опыты показали, что делить заряд до бесконечности нельзя, существует наименьший электрический заряд, который поделить уже нельзя. Называют его элементарным зарядом с абсолютной величиной e. Заряды измеряют в кулонах (Кл) в честь Шарля Кулона, французского физика.

Элементарным электрическим зарядом с отрицательным знаком обладает частица электрон (греч. «еlectron» – «янтарь»).

Электризация тела

Для того чтобы получить электрически заряженное макроскопическое тело или, как говорят, наэлектризовать

его, нужно отделить часть отрицательного заряда от связанного с ним положительного.

Проще всего это сделать с помощью трения . Если провести расческой по волосам, то небольшая часть наиболее подвижных заряженных частиц – электронов – перейдет с волос на расческу и зарядит ее отрицательно, а волосы зарядятся положительно. При электризации трением оба тела приобретают противоположные по знаку, но одинаковые по модулю заряды.

Еще один способ электризации тел – воздействие на них различных излучений (в частности, ультрафиолетового, рентгеновского иγ -излучения). Этот способ наиболее эффективен для электризации металлов, когда под действием излучений с поверхности металла выбиваются электроны, и проводник приобретает положительный заряд.

Электризация через влияние или «электрическая индукция ». При поднесении к проводнику положительного заряда электроны к нему притягиваются и накапливаются на ближайшем конце проводника. На нем оказывается некоторое число «избыточных» электронов, и эта часть проводника заряжается отрицательно. На удаленном конце образуется недостаток электронов и, следовательно, избыток положительных ионов: здесь появляется положительный заряд. При поднесении к проводнику отрицательно заряженного тела электроны накапливаются на удаленном конце, а на ближнем конце получается избыток положительных ионов. После удаления заряда, вызывающего перемещение электронов, они вновь распределяются по проводнику, так что все участки его оказываются по-прежнему незаряженными. Индуцированные заряды можно разделить, если в присутствии заряженного тела разделить проводник на части. В этом случае сместившиеся электроны уже не могут вернуться обратно после удаления внешнего заряда.

*Механизм электризации трением

Наэлектризовать тела с помощью трения очень просто. А вот объяснить, как это происходит, оказалось очень непростой задачей.

1 версия

. При электризации тел важен тесный контакт между ними. Электрические силы удерживают электроны внутри тела. Но для разных веществ эти силы различны. При тесном контакте небольшая часть электронов того вещества, у которого связь электронов с телом относительно слаба, переходит на другое тело. Перемещения электронов при этом не превышают размеров межатомных расстояний (10-8 см). Но если тела разъединить, то оба они окажутся заряженными. Так как поверхности тел никогда не бывают идеально гладкими, то необходимый для перехода тесный контакт между телами устанавливается только на небольших участках поверхностей. При трении тел друг о друга число участков с тесным контактом увеличивается, и тем самым увеличивается общее число заряженных частиц, переходящих от одного тела к другому. Но не ясно, как в таких не проводящих ток веществах (изоляторах), как эбонит, плексиглас и другие, могут перемещаться электроны. Они ведь связаны в нейтральных молекулах.

2 версия

. На примере ионного кристалла LiF (изолятора) это объяснение выглядит так. При образовании кристалла возникают различного рода дефекты, в частности вакансии – незаполненные места в узлах кристаллической решетки. Если число вакансий для положительных ионов лития и отрицательных – фтора неодинаково, то кристалл окажется при образовании заряженным по объему. Но заряд в целом не может сохраняться у кристалла долго. В воздухе всегда имеется некоторое количество ионов, и кристалл будет их вытягивать из воздуха до тех пор, пока заряд кристалла не нейтрализуется слоем ионов на его поверхности. У разных изоляторов объемные заряды различны, и поэтому различны заряды поверхностных слоев ионов. При трении поверхностные слои ионов перемешиваются, и при разъединении изоляторов каждый из них оказывается заряженным.

А могут ли электризоваться при трении два одинаковых изолятора

, например те же кристаллы LiF? Если они имеют одинаковые собственные объемные заряды, то нет. Но они могут иметь и различные собственные заряды, если условия кристаллизации были разными и появилось разное число вакансий. Как показал опыт, электризация при трении одинаковых кристаллов рубина, янтаря и др. действительно может происходить. Однако приведенное объяснение вряд ли правильно во всех случаях. Если тела состоят, к примеру, из молекулярных кристаллов, то появление вакансий у них не должно приводить к заряжению тела.

Положительные и отрицательные заряды

Носителями двух видов зарядов являются протоны и электроны. По историческим причинам заряд электрона считается отрицательным, имеет значение -1 и обозначается -e. Протон имеет положительный заряд +1 и обозначается +e.

Если тело содержит больше протонов, чем электронов, то оно считается положительно заряженным. Ярким примером положительного вида заряда в природе является заряд стеклянной палочки после того, как ее потрут шелковой тканью. Соответственно, если тело содержит больше электронов, чем протонов, оно полагается отрицательно заряженным. Этот вид электрического заряда наблюдается на пластиковой линейке, если ее потереть шерстью.

Отметим, что заряд протона и электрона хоть и очень маленький, он не является элементарным. Обнаружены кварки — «кирпичики», образующие элементарные частицы, которые имеют заряды ±1/3 и ±2/3 относительно заряда электрона и протона.

ЕГЭ Закон Кулона. ЗАДАЧИ с решениями

Формулы, используемые на уроках «Задачи на взаимодействие зарядов и закон Кулона».

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
 Два шарика, расположенных на расстоянии г = 20 см друг от друга, имеют одинаковые по модулю заряды и взаимодействуют в воздухе с силой F = 0,3 мН. Найти число нескомпенсированных электронов N на каждом шарике.

Задача № 2.
 С какой силой взаимодействовали бы в воздухе две капли воды массами по m = 1 г, расположенные на расстоянии г = 50 см друг от друга, если бы одной из них передали 10% всех электронов, содержащихся в другой капле?

Задача № 3.
 Два одинаковых шарика зарядили так, что заряд одного из них оказался по модулю в п раз больше другого. Шарики привели в соприкосновение и развели на вдвое большее, чем прежде, расстояние. Во сколько раз изменилась сила их кулоновского взаимодействия, если их заряды до соприкосновения были разноименными?

Задача № 4.
 Два маленьких заряженных шарика взаимодействуют в вакууме с некоторой силой, находясь на расстоянии r1 друг от друга. На каком расстоянии r2 друг от друга они будут взаимодействовать в среде с диэлектрической проницаемостью ε2, если сила их взаимодействия останется прежней?

Задача № 5.
 Маленьким шариком с зарядом q коснулись внутренней поверхности очень большого незаряженного металлического шара, в результате чего на большом шаре поверхностная плотность зарядов стала равна σ. Найти объем V большого шара. Среда — воздух.

Задача № 6.
 Два металлических шарика имеют массу m = 10 г каждый. Какое число электронов N надо удалить с каждого шарика, чтобы сила их кулоновского отталкивания стала равна силе их гравитационного тяготения друг к другу?

Задача № 7.
 Между двумя одноименными точечными зарядами q1 = 1 • 10–8 Кл и q2 = 4 • 10–8 Кл, расстояние между которыми r = 9 см, помещают третий заряд q так, что все три заряда оказываются в равновесии. Чему равен этот третий заряд q и каков его знак? На каком расстоянии r1 от заряда q1 он располагается?

Задача № 8.
 Заряды q1 = 20 нКл и q2 = –30 нКл расположены на некотором расстоянии друг от друга (рис. 1-10). Заряд q помещают сначала в точку 1, расположенную слева от заряда q1 на расстоянии r/2 от него, а затем в точку 2, расположенную между зарядами q1 и q2. Найти отношение силы F1, с которой заряды q1 и q2 действуют на заряд q в точке 1, к силе F2, с которой они действуют на него в точке 2.

Задача № 9.
 В вершинах равностороннего треугольника находятся одинаковые заряды q = 2 нКл (рис. 1-11). Какой заряд q надо поместить в центр треугольника С, чтобы система всех этих зарядов оказалась в равновесии? Будет ли равновесие устойчивым? 

Задача № 10.
 В вершинах квадрата расположены заряды q (рис. 1-12). Какой заряд q и где надо поместить, чтобы вся система зарядов оказалась в равновесии? Будет ли равновесие устойчивым? 

Задача № 11.
 В трех соседних вершинах правильного шестиугольника со стороной а расположены положительные заряды q, а в трех других — равные им по модулю, но отрицательные заряды. С какой силой F эти шесть зарядов будут действовать на заряд q, помещенный в центр шестиугольника (рис. 1-13)? 

Задача № 12.
 Два одинаковых маленьких шарика массами по m = 10 г каждый заряжены одинаково и подвешены на непроводящих и невесомых нитях так, как показано на рис. 1-14. Какой заряд q должен быть на каждом шарике, чтобы нити испытывали одинаковое натяжение? Среда — воздух, длина каждой нити l = 30 см. 

Задача № 13.
 На изолирующей нити подвешен маленький шарик массой m = 1 г, имеющий заряд q1 = 1 нКл. К нему снизу подносят на расстояние г = 2 см другой заряженный маленький шарик, и при этом сила натяжения нити уменьшается вдвое. Чему равен заряд q2 другого шарика? Среда — воздух.

Задача № 14.
 Два одинаковых маленьких шарика подвешены на невесомых нитях длиной I каждая в одной точке. Когда им сообщили одинаковые заряды q, шарики разошлись на угол а (рис 1-16). Найти силу натяжения Fн каждой нити. Среда — воздух. 

Задача № 15.
 Два одинаково заряженных шарика, подвешенных на нитях равной длины, разошлись на некоторый угол (рис. 1-17, а). Чему равна плотность материала шариков р, если после погружения их в керосин угол между нитями не изменился (рис. 1-17, б)? Относительная диэлектрическая проницаемость воздуха ε1 = 1, относительная диэлектрическая проницаемость керосина ε2 = 2. Плотность керосина р = 800 кг/м3. 

(с) В учебных целях использованы цитаты из учебного пособия «Новый репетитор по физике для подготовки к ЕГЭ : задачи и методы их решения / И.Л. Касаткина; под ред. Т.В. Шкиль. — Ростов н /Д : Феникс».

Это конспект по теме «ЕГЭ Закон Кулона. ЗАДАЧИ с решениями». Выберите дальнейшие действия:

  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

Поляризация диэлектрика

Давайте возьмем два, на первый взгляд, одинаковых задания из ЕГЭ.

Задание 1

Если к незаряженному металлическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?

Мы только что это разобрали: то электростатическая индукция.

Задание 2

Если к незаряженному диэлектрическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?

Кажется, что очень похоже на электростатическую индукцию, но это явление будет называться поляризация. В чем разница:

В первом случае — это проводник, а во втором — диэлектрик. Если не вдаваться в подробности, то поляризация диэлектрика — процесс, очень похожий по природе своей на электростатическую индукцию, только происходит в непроводящих материалах.

Опыт Кулона

Необходимость проведения экспериментов Кулона была вызвана тем, что в середине XVIII в. накопилось много качественных данных об электрических явлениях. Возникла потребность дать им количественную интерпретацию. Поскольку силы электрического взаимодействия были относительно невелики, возникла серьезная проблема в создании метода, который позволил бы произвести замеры и получить необходимый количественный материал.

Французский инженер и ученый Шарль Кулон предложил метод измерения малых сил, который основывался на следующем экспериментальном факте, обнаруженном самим ученым: сила, возникающая при упругой деформации металлической проволоки, прямо пропорциональна углу закручивания, четвертой степени диаметра проволоки и обратно пропорциональна ее длине:

где d – диаметр, l – длина проволоки, φ – угол закручивания. В приведенном математическом выражении коэффициент пропорциональности k находился опытным путем и зависел от природы материала, из которого изготавливалась проволока.

Данная закономерность была использована в так называемых крутильных весах. Созданные весы позволили измерить ничтожно малые силы порядка 5·10-8 Н.

Рис. 3

Крутильные весы (рис. 3, а) состояли из легкого стеклянного коромысла 9 длиной 10,83 см, подвешенного на серебряной проволоке 5 длиной около 75 см, диаметром 0,22 см. На одном конце коромысла располагался позолоченный бузиновый шарик 8, а на другом – противовес 6 – бумажный кружок, смоченный в скипидаре. Верхний конец проволоки прикреплялся к головке прибора 1. Здесь же имелся указатель 2, с помощью которого отсчитывался угол закручивания нити по круговой шкале 3. Шкала была проградуирована. Вся эта система размещалась в стеклянных цилиндрах 4 и 11. В верхней крышке нижнего цилиндра имелось отверстие, в которое вставлялась стеклянная палочка с шариком 7 на конце. В опытах применялись шарики с диаметрами в пределах 0,45 – 0,68 см.

Перед началом эксперимента указатель головки устанавливался на нулевой отметке. Затем шарик 7 заряжался от предварительно наэлектризованного шарика 12. При соприкосновении шарика 7 с подвижным шариком 8 происходило перераспределение заряда. Однако из-за того, что диаметры шариков были одинаковыми, одинаковыми были и заряды на шариках 7 и 8.

Вследствие электростатического отталкивания шариков (рис. 3, б) коромысло 9

поворачивалось на некоторый уголγ (по шкале10 ). С помощью головки1 это коромысло возвращалось в исходное положение. По шкале3 указатель2 позволял определять уголα закручивания нити. Общий угол закручивания нитиφ =γ +α . Сила же взаимодействия шариков была пропорциональнаφ , то есть по углу закручивания можно судить о величине этой силы.

При неизменном расстоянии между шариками (оно фиксировалось по шкале 10 в градусной мере) исследовалась зависимость силы электрического взаимодействия точечных тел от величины заряда на них.

Для определения зависимости силы от заряда шариков Кулон нашел простой и остроумный способ изменения заряда одного из шариков. Для этого он соединял заряженный шарик (шарики 7

или8 ) с таким же по размерам незаряженным (шарик12 на изолирующей ручке). Заряд при этом распределялся поровну между шариками, что и уменьшало исследуемый заряд в 2, 4 и т. д. раз. Новое значение силы при новом значении заряда опять определялось экспериментально. При этом выяснилось,что сила прямо пропорциональна произведению зарядов шариков :

Зависимость силы электрического взаимодействия от расстояния была обнаружена следующим образом. После сообщения шарикам заряда (он был у них одинаковый) коромысло отклонялось на некоторый угол γ

. Затем поворотом головки1 уменьшался этот угол доγ 1. Общий угол закручиванияφ 1 =α 1 + (γγ 1)(α 1 – угол поворота головки). При уменьшении углового расстояния шариков доγ 2 общий угол закручиванияφ 2 =α 2 + (γγ 2) . Было замечено, что, еслиγ 1 = 2γ 2, ТОφ 2 = 4φ 1, т. е. при уменьшении расстояния в 2 раза сила взаимодействия возрастала в 4 раза. Во столько же раз увеличился момент силы, так как при деформации кручения момент силы прямо пропорционален углу закручивания, а значит, и сила (плечо силы оставалось неизменным). Отсюда вытекает вывод:сила взаимодействия двух заряженных шариков обратно пропорциональна квадрату расстояния между ними: Дата: 29.04.2015

Электризация тел

Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация
— это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.

Один из способов электризовать тело — сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.

Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк — отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть — положительно.

Данный способ электризации тел называется электризацией трением
. С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову;-)

Другой тип электризации называется электростатической индукцией
, или электризацией через влияние
. В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других — отрицательные.

Рис. 2. Электростатическая индукция

Давайте посмотрим на рис. 2
. На некотором расстоянии от металлического тела находится положительный заряд . Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.

Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая — положительно.

Наблюдать электризацию тела можно с помощью электроскопа. Простой электроскоп показан на рис. 3
(изображение с сайта en.wikipedia.org).

Рис. 3. Электроскоп

Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются нескомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.

Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4
мы видим идущую над землёй грозовую тучу.

Рис. 4. Электризация земли грозовой тучей

Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней — положительный.

Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд — хорошо известная вам молния.