Ампер: единица измерения, соотношения по системе (си)

Применение электрического тока

У электрического тока множество свойств, которые позволяют применять его почти во всех сферах человеческой деятельности. Способы использования электротока:

  • носитель разнородных сигналов в бытовых приборах (стационарном телефоне, телевизионном пульте, кнопке дверного замка), а также в спецсвязи и радио;
  • носитель энергии в двигателях, генераторах, аккумуляторах;
  • поставщик теплоэнергии в обогревательных приборах, печах, при электросварке;
  • источник светоэнергии в сигнальных и осветительных устройствах;
  • получение материалов путём электролиза;
  • создание звуков и музыки с помощью электроинструментов;
  • электродиагностика в медицине, лечение электростимуляцией.

Все о единицах мощности

Единицей измерения мощности принято считать ватт. Эта единица была изобретена инженером Джеймсом Уаттом в то самое время, когда появилась паровая машина. Ученому необходимо было усовершенствовать свое изобретение, чтобы его работа была продуктивной. Поэтому ему пришлось сравнивать заданную величину машины с мощностью лошадиной силы. Главной его задачей было определить, сколько лошадь выполнит работы за заданное время. В результате эксперимента была определена единица одной лошадиной силы, что составило 746 ватт.

Бытовые электроприборы обязательно маркируются потребляемой мощностью. В некоторых светильниках, например, нельзя использовать лампочку большей производительности, чем 60 ватт. Такие ограничения указывают на то, что если в патрон вкрутить лампу с мощностью выше, чем у светильника, то электроприбор просто не выдержит такую нагрузку и будет поврежден. Лампочка тоже может прослужить менее определенного срока эксплуатации. Это относится к лампам накаливания. Недавно изобретенные лампы со светодиодными и люминесцентными излучателями подходят для любых светильников, так как они имеют небольшую мощность и хорошо разгораются при накаливании, из-за чего пользуются широким спросом у большого числа потребителей.

Электроприборы очень сильно отличаются друг от друга по своей мощности. Эти параметры зависят и от того, кто их изобрел и от качества электродеталей, вложенных при производстве техники. Итак, характеристика мощности некоторых электроприборов имеет такие примерные данные:

  • мощность кондиционеров и сплит-систем составляет 20-40 кВт;
  • мощность оконных кондиционеров может составить от 1 до 2 кВт;
  • мощность духовых шкафов от 2,1 до 3,6 кВт;
  • машины для стирки и сушки могут потреблять от 2 до 3,5 кВт;
  • в машинах для мытья посуды единица измерения составит от 1,5 до 2,5 кВт;
  • электрочайники потребляют 2 кВт;
  • в микроволновых печах мощность составляет от 0,5 до 1,5 кВт;
  • холодильные агрегаты потребляют до 1 кВт;
  • в тостерах мощность может колебаться до 1 кВт.

Для измерения этой величины в наше время используют специальный прибор – динамометр. Такое устройство позволяет измерять такую единицу как в бытовых целях, так и в производственных.

Применение

При изучении электрического тока было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие — электроэнергетика.

Электрический ток используется как носитель сигналов разной сложности и видов в разных областях (телефон, радио, пульт управления, кнопка дверного замка и так далее).

В некоторых случаях появляются нежелательные электрические токи, например блуждающие токи или ток короткого замыкания.

Использование электрического тока как носителя энергии

  • получения механической энергии во всевозможных электродвигателях,
  • получения тепловой энергии в нагревательных приборах, электропечах, при электросварке,
  • получения световой энергии в осветительных и сигнальных приборах,
  • возбуждения электромагнитных колебаний высокой частоты, сверхвысокой частоты и радиоволн,
  • получения звука,
  • получения различных веществ путём электролиза, зарядка электрических аккумуляторов. Здесь электромагнитная энергия превращается в химическую,
  • создания магнитного поля (в электромагнитах).

Использование электрического тока в медицине

Электрофорез

  • диагностика — биотоки здоровых и больных органов различны, при этом бывает возможно определить болезнь, её причины и назначить лечение. Раздел физиологии, изучающий электрические явления в организме называется электрофизиология.
    • Электроэнцефалография — метод исследования функционального состояния головного мозга.
    • Электрокардиография — методика регистрации и исследования электрических полей при работе сердца.
    • Электрогастрография — метод исследования моторной деятельности желудка.
    • Электромиография — метод исследования биоэлектрических потенциалов, возникающих в скелетных мышцах.
  • Лечение и реанимация: электростимуляции определённых областей головного мозга; лечение болезнь болезни Паркинсона и эпилепсии, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

Мощность электрического тока

Работа, произведенная в единицу времени, называется мощностью и обозначается буквой P.

Из этой формулы имеем:

A = P × t.

Единица измерения мощности:

1 (Дж/сек) иначе называется ваттом (Вт). Подставляя в формулу мощности выражение для работы электрического тока, имеем:

P = U × I (Вт).

Формула мощности электрического тока может быть выражена также через потребляемый ток и сопротивление потребителя:

Кроме ватта, на практике применяются более крупные единицы измерения электрической мощности. Электрическая мощность измеряется в:

100 Вт = 1 гектоватт (гВт); 1000 Вт = 1 киловатт (кВт); 1000000 Вт = 1 мегаватт (МВт).

Электрическая мощность измеряется специальным прибором – ваттметром. Ваттметр имеет две обмотки (катушки): последовательную и параллельную. Последовательная катушка является токовой и включается последовательно с нагрузкой на участке цепи, где производятся измерения, а параллельная катушка – это катушка напряжения, она соответственно включается параллельно этой нагрузке.  Принцип действия ваттметра основан на взаимодействии двух магнитных потоков создаваемых током, протекающим по обмотке подвижной катушки (токовой катушки), и током, проходящим по неподвижной катушке (катушке напряжения). При прохождении измеряемого тока по обмотке подвижной и неподвижной катушек образуются два магнитных поля, при взаимодействии которых подвижная катушка стремится расположится так, чтобы направление ее магнитного поля совпадало с направлением магнитного поля неподвижной катушки. Вращающему моменту противодействует момент, созданный спиральными пружинками, через которые в подвижную катушку проводится измеряемый ток. Противодействующий момент пружинок прямо пропорционален углу поворота катушки. Стрелка, укрепленная на подвижной катушке, указывает значение измеряемой величины. Схема включения ваттметра показана на рисунке 2.

Рисунок 2. Схема включения ваттметра

Если вы решили измерить потребляемую мощность, какой либо имеющейся у вас нагрузки, и при этом у вас отсутствует ваттметр, вы можете “изготовить” ваттметр своими руками. Из формулы P = I × U видно, что мощность, потребляемую в сети, можно определить, умножив ток на напряжение. Поэтому для определения мощности, потребляемой из сети, следует использовать два прибора, вольтметр и амперметр. Измерив амперметром потребляемый ток и вольтметром напряжение питающей сети, необходимо показание амперметра умножить на показание вольтметра.

Так, например, мощность, потребляемая сопротивлением r, при показании амперметра 3 А и вольтметра 220 В будет:

P = I × U = 3 × 220 = 660 Вт.

Для практических измерений электрической работы (энергии) джоуль является слишком мелкой единицей.

Если время t подставлять не в секундах, а в часах, то получим более крупные единицы электрической энергии:

1 Дж = 1 Вт × сек; 1 Вт × ч = 3600 ватт × секунд = 3600 Дж; 100 Вт × ч = 1 гектоватт × час (гВт × ч); 1000 Вт × ч = 1 киловатт × час (кВт × ч).

Электрическая энергия измеряется счетчиками электрической энергии.

Видео 1. Работа и мощность электрического тока

Видео 1. Работа и мощность электрического тока

Видео 2. Еще немного о мощности

Пример 1. Определить мощность, потребляемую электрическим двигателем, если ток в цепи равен 8 А и двигатель включен в сеть напряжением 220 В.

P = I × U = 8 × 220 = 1760 Вт = 17,6 гВт = 1,76 кВт.

Пример 2. Какова мощность, потребляемая электрической плиткой, если плитка берет из сети ток в 5 А, а сопротивление спирали плитки равно 24 Ом?

P = I 2 × r = 25 × 24 = 600 Вт = 6 гВт = 0,6 кВт.

При переводе механической мощности в электрическую и обратно необходимо помнить, что 1 лошадиная сила (л. с.) = 736 Вт; 1 киловат (кВт) = 1,36 л. с.

Пример 3. Определить энергию, расходуемую электрической плиткой мощностью 600 Вт в течение 5 часов.

A = P × t = 600 × 5 = 3000 Вт × ч = 30 гВт × ч = 3 кВт × ч

Пример 4. Определить стоимость горения двенадцати электрических ламп в течение месяца (30 дней), если четыре из них по 60 Вт горят по 6 часов в сутки, а остальные восемь ламп по 25 Вт горят по 4 часа в сутки. Цена за энергию (тариф) 2,5 рубля за 1 кВт × ч.

Мощность четырех ламп по 60 Вт.

P = 60 × 4 = 240 Вт.

Число часов горения этих ламп в месяц:

t = 6 × 30 = 180 часов.

Энергия, расходуемая этими лампами:

A = P × t = 240 × 180 = 43200 Вт × ч = 43,2 кВт × ч.

Мощность остальных восьми ламп по 25 Вт.

P = 25 × 8 = 200 Вт.

Число часов горения этих ламп в месяц:

t = 4 × 30 = 120 часов.

Энергия, расходуемая этими лампами:

A = P × t = 200 × 120 = 24000 Вт × ч = 24 кВт × ч.

Общее количество расходуемой энергии:

43,2 + 24 = 67,2 кВт × ч

Стоимость всей потребленной энергии:

67,2 × 2,5 = 168 рублей.

Виды электричества

Для обывателей электричество больше знакомо в виде переменного тока (сетевые розетки, освещение) и постоянного тока (батарейки). Привычный для людей комфорт создает в основном переменное электричество, которое отличается от постоянного тока лучшей трансформацией от источника к потребителю. Работу переменного тока хорошо видно на таком осветительном приборе, как люминесцентная лампа, когда в процессе розжига происходит ее мигание и заметно движение из одной стороны в другую заряженных частиц.

Специалисты в основном рассматривают переменный ток, так как он в большем количестве применяется в бытовых системах. Для расчета тока на участке электроцепи системы переменного напряжения применяется закон Ома, а именно, находится ампер (единица силы) по формуле.

Формула для переменного тока полной цепи

Способы измерения силы тока

Метод определения величины силы тока магнитоэлектрическим способом считается наиболее точным, он чувствителен к процессам в цепи, не берет много энергии, но применяется только для цепей постоянного тока.

Электромагнитный способ измерения значения силы тока применяется для переменного электротока и цепей постоянного тока.

Косвенный метод нахождения силы — это когда применяется измерительный прибор напряжения для нахождения его значения на сопротивлении.

В электротехнике силу тока измеряют специальным устройством – амперметром. Для незначительных величин применяется микроамперметр или миллиамперметр, а также гальванометр.

Микроамперметр, миллиамперметр

Сила тока в цепи измеряется амперметром следующим образом: он включается в цепь последовательно в ее разрыв, ток должен пойти через прибор к потребителю, на амперметре будет показываться значение силы тока в цепи в текущее время. В каком месте делать разрыв для измерения силы тока, значения не имеет, можно до потребителя энергии или же после него.

Место разрыва цепи не имеет значения, когда измеряется величина тока

Амперметры могут иметь на шкале значений разную цену деления, это зависит от назначения измерительного устройства. По шкале можно увидеть возможности измерений прибора, по этой причине не рекомендуется его включать в цепь с током, который больше его измерительных возможностей. Правила включения амперметра в цепь постоянного тока:

  • делаем разрыв цепи, последовательно включаем прибор;
  • амперметр имеет клемму (+), на нее подключаем провод со стороны источника (+);
  • на минусовую клемму подключаем провод со стороны источника (-).

Безопасным током для человека определена сила тока, имеющая значение меньше 1 миллиампера, свыше 100 миллиампер может нанести серьезные травмы человеку, значение в несколько ампер смертельно для организма человека. Работая с электричеством, кроме принятых безопасных значений, надо всегда в учет брать личные качества человека и его особенности по отношению к воздействию на него электротока.

Практический способ измерения силы тока

Для практического измерения значения силы тока в сети специалисты рекомендуют сделать удлинитель, который имеет две розетки, внешне он не отличается от промышленных удлинителей, однако розетки соединяются последовательно, а не параллельно, как показано на фото:

Двурозеточный удлинитель

Верхние клеммы розеток соединяются между собой, а на нижние контакты подается напряжение. В одну розетку включаем любой электрический прибор, во вторую — щупы амперметра. Перед тем как вставить щупы в розетку, надо выставить правильный параметр тока на приборе (постоянный или переменный) и убедиться в максимальном значении выбранного параметра тока, как показано на фото ниже:

Клеммы удлинителя
Проверка работоспособности

Из представленного примера видно, что сила потребляемого тока = 0,25 А, если прибор измерений не позволяет сделать отсчет по шкале, надо выполнить расчет. Установленный предел 0,5 А, цена деления шкалы измерений 0,5. Делим на количество делений шкалы, получается 0,005 А, показания прибора — 50 делений, что равняется 0,25 А.

Амперметр

Расчет мощности устройств по току

Зная величину силы тока, можно простыми расчетами определить мощность подключенного к сети потребителя — лампочки, кондиционера, холодильника или телевизора. Для этой цели используем установленный Джоулем и Ленцом закон:

Формула мощности

Сделаем простой расчет на примере автомобильной лампочки с потребляемым током в 5 А. Питание автомобиля 12 вольт, тогда мощность лампочки = 5*12 = 60 ватт. Для стирального агрегата в квартире: напряжение сети 220 вольт, потребляемый ток 10 А по измерительному прибору, тогда мощность = 10*220 = 2200 ватт, или 2,2 кВт.

Преимущества переменного тока

В наших розетках протекает переменный ток. Но почему именно он, чем он лучше постоянного?

Дело в том, что только величину переменного напряжения можно изменять с помощью преобразовательных устройств – трансформаторов. А делать это приходится многократно.

Теплоэлектростанции, гидроэлектростанции и атомные электростанции находятся далеко от потребителей. Возникает необходимость передачи больших мощностей на расстояния, исчисляемые сотнями и тысячами километров. Провода линий электропередач имеют малое сопротивление, но все же оно присутствует. Поэтому ток, проходя по ним, нагревает проводники. Более того, за счет разности потенциалов в начале и конце линии, к потребителю приходит меньшее напряжение, чем было на электростанции.

Бороться с этим явлением можно, либо уменьшив сопротивление проводов, либо снизив значение тока. Уменьшение сопротивления возможно только с увеличением сечением проводов, а это дорого, а порой – невозможно технически.

А вот уменьшить ток можно, увеличив значение напряжения линии. Тогда при передаче одной и той же мощности ток по проводам пойдет меньший. Уменьшаться потери на нагрев проводов.

Технически это выглядит так. От генераторов переменного тока электростанции напряжение подается на повышающий трансформатор. Например, 6/110 кВ. Далее по линии электропередач напряжением 110 кВ (сокращенно – ЛЭП-110 кВ) электрическая энергия отправляется до следующей распределительной подстанции.

Если эта подстанция предназначена для питания группы деревень в районе, то напряжение понижается до 10 кВ. Если при этом нужно отправить весомую часть принятой мощности энергоемкому потребителю (например, комбинату или заводу), могут использоваться линии напряжением 35 кВ. На узловых подстанциях для разделения напряжения между потребителями, находящихся на разном удалении и потребляющими разные мощности, используются трехобмоточные трансформаторы. В нашем примере это – 110/35/6 кВ.

Теперь напряжение, полученное на сельской подстанции, претерпевает новое преобразование. Его величина должна стать приемлемой для потребителя. Для этого мощность проходит через трансформатор 10/0,4 кВ. Напряжение между фазой и нулем линии, идущей к потребителю, становится равным 220 В. Оно и доходит до наших розеток.

Думаете, что это все? Нет. Для полупроводниковой техники, являющейся начинкой наших телевизоров, компьютеров, музыкальных центров эта величина не подойдет. Внутри них 220 В понижаются до еще меньшего значения. И преобразуется в постоянный ток.

Вот такая метаморфоза: передавать на большие расстояния лучше переменный ток, а нужен нам, в основном – постоянный.

Еще одно достоинство переменного тока: проще погасить электрическую дугу, неизбежно возникающую между размыкающимися контактами коммутационных аппаратов. Напряжение питания изменяется и периодически переходит через нулевое положение. В этот момент дуга гаснет самостоятельно при соблюдении определенных условий. Для постоянного напряжения потребуется более серьезная защита от подгорания контактов. Но при коротких замыканиях на постоянном токе повреждения электрооборудования от действия электрической дуги серьезнее и разрушительнее, чем на переменном.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:


формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.


таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

закон Ома

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

задача на силу тока в проводнике

Решение:

КПД электрической цепи

Выполняя продвижения зарядов через замкнутую цепь, двухполюсник проделывает некоторую работу. Когда генератор двигает заряды по внешнему контуру цепи, то это полезная работа. Когда ИТ продвигает электрические носители по всей цепи, говорят о полной работе.

Внимание! В этой цепочке перемещения зарядов особое значение имеет КПД (коэффициент полезного действия) источника. Он равен соотношению сопротивлений внешней цепи и полному сопротивлению цепи. Обращая внимание на КПД электроцепи, нужно отметить, что он напрямую зависит от физических величин, определяющих скорость передачи или трансформации электрической энергии

Одной из таких величин является мощность Р (Вт)

Обращая внимание на КПД электроцепи, нужно отметить, что он напрямую зависит от физических величин, определяющих скорость передачи или трансформации электрической энергии. Одной из таких величин является мощность Р (Вт). Формулы мощности:

Формулы мощности:

P = U * I = U2/R = I2 * R,

где

  • U – напряжение на нагрузке, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом.

Для разных цепей значения напряжения и сила тока различаются, следовательно, производимая ими работа будет разной

Когда предстоит оценить скорость передачи и преобразования электрического тока, то обращают внимание на Р. Она соответствует работе, проделанной за единицу времени:. P = A/∆t,

P = A/∆t,

где:

  • P – мощность, Вт;
  • A – работа, Дж;
  • ∆t – временной интервал, с.

Исходя из этой формулы, чтобы найти работу А, нужно умножить Р на время:

A=P∙∆t

Чтобы найти КПД (η) электроцепи, нужно найти отношение полезно потраченной энергии к количеству всей энергии, поданной в цепь. Формула для расчёта:

η = A/Q *100%,

где:

  • А – проделанная потребителем работа, Дж;
  • Q – количество энергии, взятой от источника, Дж.

Важно! КПД не может быть выше единицы. В основном он или равен ей, или меньше её. Этому причина – Закон сохранения энергии

Согласно ему, полезная совершённая работа никогда не превысит затраты энергии, необходимые для её выполнения

Этому причина – Закон сохранения энергии. Согласно ему, полезная совершённая работа никогда не превысит затраты энергии, необходимые для её выполнения.

Наглядно это можно объяснить на примере электрической цепи, в которую включен проводник, имеющий определённое сопротивление. При прохождении электричества через цепь часть энергии будет рассеиваться на проводнике, превращаясь в тепло и нагревая его. Потери мощности будут зависеть от величины этого сопротивления.

КПД электрической цепи

Применение электрического тока

У электрического тока множество свойств, которые позволяют применять его почти во всех сферах человеческой деятельности. Способы использования электротока:

  • носитель разнородных сигналов в бытовых приборах (стационарном телефоне, телевизионном пульте, кнопке дверного замка), а также в спецсвязи и радио;
  • носитель энергии в двигателях, генераторах, аккумуляторах;
  • поставщик теплоэнергии в обогревательных приборах, печах, при электросварке;
  • источник светоэнергии в сигнальных и осветительных устройствах;
  • получение материалов путём электролиза;
  • создание звуков и музыки с помощью электроинструментов;
  • электродиагностика в медицине, лечение электростимуляцией.

В дифференциальной форме

Формулу очень часто представляют в дифференциальном виде, поскольку проводник обычно неоднородный и потребуется разбить его на минимально возможные участки. Ток, проходящий через него, связан с величиной и направлением, поэтому считается скалярной величиной. Всякий раз, когда нужно найти результирующий ток через провод, берут алгебраическую сумму всех отдельных токов. Поскольку это правило действует только для скалярных величин, ток принимают также в качестве скалярной величины. Известно, через сечение проходит ток dI = jdS. Напряженье, на нем равняется Еdl, тогда для провода с постоянным сечением и равной протяженности будет верно соотношение:

Дифференциальная форма

Поэтому, выражение тока в векторном виде будет: j = E.

Важно! В случае металлических проводников с ростом температуры проводимость падает, а для полупроводников — растет. Омовский закон не демонстрирует строгую пропорциональность. Сопротивление большой группы металлов и сплавов исчезает при температуре, близкой к абсолютному нулю, а процесс называется сверхпроводимостью

Сопротивление большой группы металлов и сплавов исчезает при температуре, близкой к абсолютному нулю, а процесс называется сверхпроводимостью.

Ампер – единица измерения силы тока в СИ

Ампер — что это такое

По самому популярному международному стандарту (СИ) силе постоянного тока один ампер (1А) соответствует прохождение единичного заряда (1 кулон) за время 1 с:

1А = 1Кл/ 1 с.

Другое базовое определение создано с дополнительным использованием механических составляющих. В соответствии с ним, аналогичный ток создает силу взаимодействия 2*10-7 Ньютонов на каждый метр погонный конструкции, состоящей из двух параллельных проводников. Подразумевается размещение такого устройства в нейтральной среде (вакууме), полностью изолированной от внешних электромагнитных излучений.