Какие существуют системы заземления

Система заземления IT

Рассмотренные ранее системы с глухозаземленной нейтралью хотя и считаются достаточно надежными, однако обладают существенными недостатками. Значительно безопаснее и совершеннее являются схемы с нейтралью, полностью изолированной от земли. В некоторых случаях для ее заземления применяются приборы и устройства, обладающие значительным сопротивлением.

Подобные схемы используются в системе заземления IT. Они наилучшим образом подходят для медицинских учреждений, сохраняя бесперебойное питание оборудования жизнеобеспечения. Схемы IT хорошо зарекомендовали себя на энергетических и нефтеперерабатывающих предприятиях, других объектах, где имеются сложные высокочувствительные приборы.

Основной деталью системы IT является изолированная нейтраль источника I, а также контур защитного заземления Т, установленный на стороне потребителя. Подача напряжения от источника к потребителю производится с использованием минимального количества проводов. Кроме того, выполняется подключение к заземлителю всех токопроводящих деталей, имеющихся на корпусах оборудования, установленного у потребителя. В системе IT нет нулевого функционального проводника N на участке от источника до потребителя.

Таким образом, все системы заземления TN-C, TN-S, TNC-S, TT, IT обеспечивают надежное и безопасное функционирование приборов и электрооборудования, подключаемых к потребителям. Использование этих схем исключает поражение электротоком людей, пользующихся оборудованием. Каждая система применяется в конкретных условиях, что обязательно учитывается в процессе проектирования и последующего монтажа. За счет этого обеспечивается гарантированная безопасность, сохранение здоровья и жизни людей.

Что такое TN-C

TN-C — одна из разновидностей (по стандарту МЭК) систем искусственного заземления в сети с глухозаземлённой нейтралью, подвид TN (заземленная нейтраль). Это наиболее распространенная в наше время система заземления.

Ее отличительной особенностью от других систем является совмещение нулевого рабочего и защитного проводника на всем протяжении линии. Рабочая нейтраль N в таких сетях соединяется с PE (контуром заземления) на подстанции и одним проводником PEN (см. расшифровку аббревиатур МЭК) в линии поступают (чаще всего по воздушным линиям электропередачи) к конечным потребителям.

Система заземления IT

Рассмотренные ранее системы с глухозаземленной нейтралью хотя и считаются достаточно надежными, однако обладают существенными недостатками. Значительно безопаснее и совершеннее являются схемы с нейтралью, полностью изолированной от земли. В некоторых случаях для ее заземления применяются приборы и устройства, обладающие значительным сопротивлением.

Подобные схемы используются в системе заземления IT. Они наилучшим образом подходят для медицинских учреждений, сохраняя бесперебойное питание оборудования жизнеобеспечения. Схемы IT хорошо зарекомендовали себя на энергетических и нефтеперерабатывающих предприятиях, других объектах, где имеются сложные высокочувствительные приборы.

Основной деталью системы IT является изолированная нейтраль источника I, а также контур защитного заземления Т, установленный на стороне потребителя. Подача напряжения от источника к потребителю производится с использованием минимального количества проводов. Кроме того, выполняется подключение к заземлителю всех токопроводящих деталей, имеющихся на корпусах оборудования, установленного у потребителя. В системе IT нет нулевого функционального проводника N на участке от источника до потребителя.

Таким образом, все системы заземления TN-C, TN-S, TNC-S, TT, IT обеспечивают надежное и безопасное функционирование приборов и электрооборудования, подключаемых к потребителям. Использование этих схем исключает поражение электротоком людей, пользующихся оборудованием. Каждая система применяется в конкретных условиях, что обязательно учитывается в процессе проектирования и последующего монтажа. За счет этого обеспечивается гарантированная безопасность, сохранение здоровья и жизни людей.

Преобразование системы TN-C в систему TN-C-S

Основные моменты по модернизации внутридомовой электросети представим следующим образом:

  • При однофазном питании жилого дома (квартиры) необходимо перейти от двухпроводной внешней сети (проводники L, PEN) к трёхпроводной сети внутри дома (проводники L, N, PE).
  • При трёхфазном питании и наличии в доме однофазных потребителей (что практически всегда имеет место) необходимо перейти от четырёхпроводной внешней сети (L1, L2, L3, PEN) к пятипроводной сети внутри жилого строения (L1, L2, L3, N, PE).

Для наглядности рассмотрим процесс разделения PEN проводника в виде следующей условной картинки:

Как видно из рисунка, процесс разделения проводника PEN на два раздельных проводника (PE и N), как при однофазном вводе, так и при трехфазном, по сути, одинаков. Хотя, нужно отметить, что при трёхфазном вводе в дом, подключение трёхфазных потребителей (например, циркулярной пилы или бетономешалки) будет отличаться от подключения однофазных потребителей (телевизор, холодильник и т. д.)

Возвращаясь к нашему рисунку, отметим следующее:

Для того чтобы правильно выполнить преобразование системы TN-C в систему TN-C-S, необходимо выполнить и учесть ряд требований:

1. Правильно выбрать место разделения PEN проводника в электроустановке.
2. Не допускать присоединения проводников N и PE (в точке разделения) под один болт.
3. После разделения проводника PEN на проводники PE и N в электроустановке, последние не должны иметь электрического контакта между собой.
4. Защитный проводник PE ни при каких обстоятельствах не должен иметь разрывов в цепи или установленных в этой цепи коммутационных аппаратов.

Важно также понимать и учитывать, что система TN-C-S является комбинацией систем TN-C и TN-S. Т

е. на участке до точки разделения в электроустановке (на рисунке точка разделения обозначена шинкой) она сохраняет все недостатки, присущие системе TN-C

Т. е. на участке до точки разделения в электроустановке (на рисунке точка разделения обозначена шинкой) она сохраняет все недостатки, присущие системе TN-C.

Виды заземления в зависимости от удаления объекта от защитного контура

По этой характеристике, виды заземляющих устройств подразделяют:

  • выносное;
  • контурное устройство.

Разберем каждое из них подробнее.

Выносное устройство

При этом типе, расположение заземлителя производится за пределами помещения. Выносное (сосредоточенное) защитное устройство монтируют при невозможности оснащения контура на участке со скальным, каменистым грунтом, либо при наличии за участком наиболее подходящего для заземления качества земли.

Разброс производственного оборудования на значительном расстоянии друг от друга – это еще одна причина установки выносной системы.

К преимуществу этого типа, относят возможность выбора места установки с лучшими свойствами грунтов, с малым уровнем сопротивления. К таким грунтам относят – глинистый или песчаный влажный грунт. Но есть у способа существенный минус. Значение коэффициента касания проводника равно 1, из-за удаленности от производственных объектов.

Такой вид защиты монтируют для обслуживания объектов с малыми токами короткого замыкания (не более кВ). Потенциальное напряжение при касании поврежденного участка цепи не меньше потенциала заземлителей.

Контурное устройство

Заземляющие электроды располагаются равномерно, по границам контура обслуживаемого участка и на нем самом. Поэтому, второе название этого типа – распределенное.

При таком способе установки заземлителей, безопасность использования приборами обеспечивается понижением потенциалов на каждом заземлителе и потенциалы их выравниваются. Такой метод позволяет понижать пиковый ток КЗ. Одиночнорасположенные на территории контура заземлители позволяют решать эту проблему.

Каждый метод заземления, при долгой эксплуатации, может повысить сопротивление контура. Для раннего обнаружения неисправности, необходимо периодически осматривать контур и подтягивать гайки на креплении проводов.

Системы заземления, применяемые в электротехнике

В электротехнике применяют несколько систем заземления – TN-C, TN-S, TN-C-S, IT, TT. Расшифровываются эти обозначения следующим образом:

۞ первая буква латинского алфавита определяет, как заземлен источник питания:

  • T – нейтральный проводник источника питания соединен с землей;
  • I – любые токопроводящие части изолированы от контакта с землей.

۞ вторая буква указывает на характер заземления открытых токопроводящих частей электроустановки:

  • T – открытые проводящие части связаны с землей независимо от заземления источника питания;
  • N – все открытые токопроводящие элементы связаны с точкой, в которой заземлен источник питания.

۞ буквы, которые указываются в обозначении после буквы N через дефис, определяют как устроен защитный и рабочий проводники:

  • C – функции защитного и рабочего проводников выполняются одним общим PEN;
  • S – функции защитного PE и рабочего N проводника обеспечиваются раздельно.

В «Правилах устройства электроустановок» используют именно такие обозначения.

Система TN-C

Самая простая и самая «древняя» схема заземления, в которой нулевой и заземляющий проводники объединены. При «пробое» фазы на токопроводящие части, ток уходит в землю, а автоматический выключатель обесточивает цепь.

Однако у этой системы есть существенный недостаток. При больших нагрузках нулевой провод может медленно «подгорать». При коротком замыкании, которое образуется при «падении» фазы на корпус, уже поврежденная нейтраль может отгореть так быстро, что автомат не успеет среагировать – в цепи еще не возникнет ток отключения. В результате вместе с нейтралью пропадет и защитное заземление, а вот фаза останется на корпусе, так как автомат не отключил ее.

Если произойдет касание проводящих частей человеком, его тело образует проводник между фазой и землей. В этом случае поражение электрическим током неминуемо.

Система TN-S

Это более современная система, в которой нейтральный и заземляющий проводник разделяют по всей цепи. Такая система намного сложнее, чем TN-C, однако она и намного безопаснее. Третий, заземленный проводник в однофазной сети, или пятый в трехфазной, соединяют с заземляющим контуром на трансформаторной подстанции.

Система TN-C-S

Устройство такой электропроводки предполагает комбинирование совмещенного провода PEN и отдельного заземляющего проводника. Так бывает, например, если во всем доме проводка выполнена с отдельным заземляющим проводом, который подключен к самостоятельному заземляющему контуру, а подключение дома от трансформаторной подстанции произведено совмещенным PEN-проводником.

Такая схема оказывается более экономичной по сравнению с TN-S, так как наиболее протяженный участок электролинии можно изготовить без отдельного заземляющего провода. Тем не менее, эта схема так же надежна, как и TN-S.

Системы IT и TT

С системой ТТ все предельно ясно — заземлен корпус источника (трансформаторной подстанции), и отдельно заземлены все электроприборы в доме. Такая схема редко, но встречается при устройстве электропроводки в частных домах.

Система IT практически не встречается в быту. Она применяется в специфических случаях — например, при электроснабжении помещений с чувствительным к помехам оборудованием. Отсутствие заземления источника питания позволит минимизировать наведенные токи в сети. Безопасность обеспечивается заземлением каждого электроприбора. Такую схему применяют в лабораториях, больницах.

TN-C

Системой заземления TN-S сегодня оборудуются все современные жилые и нежилые объекты. К сожалению, такая схема применяется только на объектах, введенных в строй не раньше, чем 15–20 лет назад. Подавляющее большинство жилого фонда, построенного во времена СССР, оборудованы системой TN-C. Это не значит, что все эти объекты построены с нарушениями СНиП. Просто в те времена, стандарты (включая ПУЭ) были иными.

В идеале, необходимо переоснастить все существующие сети до стандарта TN-S. Но это потребует огромных капиталовложений. К тому-же, прокладка дополнительных линий «земли» от питающих подстанций не всегда возможна технически. А значит, в некоторых местах придется менять всю сеть силовых кабелей.

Заземление TN-C не обеспечивает полной безопасности по следующей причине:

«Земля» и рабочий нуль представляют собой одну линию, которая расположена в силовом кабеле от источника питания, до потребителя. Заземлитель (контур заземления, физически соединенный с грунтом), расположен в непосредственной близости от питающей подстанции. Такой способ организации заземления называется глухозаземленной нейтралью. Силовой кабель состоит из четырех жил: три фазы (L1, L2, L3), и рабочий нуль, совмещенный с рабочим заземлением (PEN).

Поскольку рабочий нуль находится под нагрузкой (через него протекает активный электрический ток), он находится в так называемой зоне риска. Нередки случаи, когда от перегрева этот проводник просто отгорал. Что происходит при этом с конечными потребителями, оставим за скобками — напряжение может скакнуть до 600 вольт. Главная опасность в том, что все электроустановки в этом случае теряют защитное заземление. Прикоснувшись к корпусу, на котором может оказаться потенциал фазы, человек гарантированно будет поражен электротоком. Особую опасность при такой аварии, представляет одновременное прикосновение к электроустановке, находящейся под напряжением, и металлическим конструкциям, имеющим физический контакт с грунтом: системы отопления, водопровода, арматура в стенах. Даже влажный цементный пол, соединенный с арматурой в стяжке, может стать причиной трагедии.

В многоквартирных домах, и других объектах, оборудованных системой TN-C, вообще отсутствует защитное заземление в привычном понимании. Все знают, как выглядят розетки советского образца: в них нет контактов заземления. Даже если владельцы производят замену на трех контактные современные розетки, клемма защитного заземления остается невостребованной: ее просто не к чему подключить.

По этой причине, на объектах, оснащенных заземлением TN-C, в помещениях с повышенной влажностью (санузлы, бани, прачечные), запрещено использовать незаземленные электроприборы. Если вы устанавливаете бойлер, или стиральную машину — подводить к ней заземление (или организовывать систему дополнительного уравнивания потенциалов) на основе рабочей нейтрали, запрещено!

Необходимо организовать заземлитель (полноценный контур, имеющий физический контакт с грунтом). Причем параметры такого заземлителя должны соответствовать требованиям Правил устройства электроустановок.

Затем в квартиру заводится заземляющий проводник (сечением не менее 2.5 мм², и не имеющий разъединителей на всей протяженности), который соединяется непосредственно с электроустановкой. Разумеется, необходимо установить щиток или клеммную колодку заземления, завести на нее розетки и корпуса опасных электроприборов.

Система IT

Система IT предназначена для использования в учреждениях, где могут использоваться высокочувствительные приборы (лаборатории, медучреждения).

Особенность IT сводится к тому, что нейтраль трансформаторной подстанции заизолирована по отношению к земле, или же для заземления используются специальные приборы и устройства, обладающие высоким сопротивлением.

А вот открытые участки электроустановок заземлены классическим способом – через заземляющий контур.

Использование системы IT обеспечивает минимальное воздействие электромагнитных полей на чувствительную аппаратуру.

ВАЖНО ЗНАТЬ: Как заземлить стиральную машину

Система TN и ее разновидности

В схемах TN при подключении нолей используется нейтраль источника, наглухо соединенная с заземлителем. Все элементы сети, проводящие электроэнергию, подключаются к общему нолю, который соединен с нейтралью.

Существует несколько типов нулевых проводников:

  • функциональный (N);
  • защитный (PE);
  • комбинация проводников (PEN).

Система заземления нейтрали TN имеет несколько подвидов, отличающихся типом подключения N и PE.

Подсистема TN-C

Схема заземления TN-C

В TN-C проводники с защитной и рабочей функцией совмещены в PEN по всей длине. Производится так называемое защитное зануление. Классическая схема состоит из трех фазных и одного нулевого провода. К нейтрали, заземленной наглухо, подключаются открытые токопроводящие металлические элементы с помощью дополнительных нолей.

Плюсы:

  • простой монтаж;
  • экономичность, за счет выполнения двух функций одним проводом.

Минусы:

при нарушении целостности проводника потребители могут оказаться незащищенными.

Подобные типы заземления устарели и не используются в новых постройках. Их можно встретить в старых домах или в уличном освещении.

Подсистема TN-S

Схема заземления TN-S

TN-S более современна и безопасна. Нулевые проводники в ней разделены. Каждый из них выполняет свое предназначение: рабочее или же защитное. N и PE разделяются на подстанции, ноли подключаются через глухо заземленную нейтраль энергоисточника. Трехфазное напряжение подается посредством пяти проводов, в однофазном участвует три провода. Состояние контура заземления в данной системе не нуждается в контроле.

Плюсы:

  • высокая безопасность;
  • эффективная защита от поражения электричеством;
  • отсутствие помех на силовых линиях пользователей.

Минусы:

дорогостоящий монтаж.

TN-S применяется в новых зданиях и телекоммуникационных сетях.

Подcистема TN-C-S

Схема заземления TN-C-S

В TN-C-S проводник PEN в определенном месте (обычно в главном распределительном щите при входе в здание) разветвляется на отдельные N и PE проводники. В целях бесперебойной работы в системе устанавливается дополнительный заземлитель после места разделения. При однофазном питании электроснабжение выполняется с помощью кабеля из трех жил. При трехфазном питании – из пяти жил.

Плюсы:

  • простой монтаж конструкции;
  • высокий уровень безопасности;
  • выгодное соотношение «цена/качество».

Минусы:

высокая степень риска электротравм при нарушении изоляции PEN проводника вне здания.

Эта система защитного заземления считается одной из самых оптимальных для жилых зданий.

Типы заземления в частном доме

По виду заземляющего контура заземление разделяют на искусственное и естественное.

Искусственное создается преднамеренно в процессе устройства электросетей. Такой тип предполагает наличие искусственно созданного заземлителя, непосредственно соприкасающегося с землей. Это может быть только специально созданный контур, характеристики и параметры которого тщательно рассчитываются.

В качестве естественного заземления могут применять металлические элементы конструкций, контактирующие с землей. Это могут быть заземленные рельсовые пути, стальные трубы скважин, арматура фундаментов. Такие конструкции не могут обладать точными параметрами, поэтому допускается использовать естественное заземление для защиты отдельных устройств, но не электроустановки в целом.

TN-C-S

Для минимизации проблем со схемой TN-C, введена система заземления TN C S. Это некий компромисс, переходный вариант от старой C к современной S.

Как она устроена, и в чем отличие от TN-S?

В произвольном месте, глухозаземленная нейтраль объединяется с защитным заземлением. Точнее, от рабочего нуля выполняется ответвление. Как правило, такая точка организуется на входе силового кабеля в объект.

На вводном щитке потребителя (обычно, это общий ввод на объекте: многоквартирный дом, офисное здание и прочее) имеются уже две шины: рабочий нуль, и защитное заземление. Далее к потребителям идут привычные и безопасные силовые кабели: трехжильный к однофазным электроустановкам, и пятижильный к трехфазным.

В каждый вводной щиток квартиры, или обособленного помещения внутри объекта, линии защитного заземления и нуля заходят уже в разделенном виде. Для конечного потребителя, система заземления по схеме TN-C-S выглядит, как обычная и безопасная TN-S. На самом деле, уровень безопасности далеко не 100%.

Почему система TN-C-S не обеспечивает полную защиту от поражения электротоком? Слабое место находится на участке от питающей подстанции до точки объединения нуля и защитного заземления. Если на пути от подстанции, где глухозаземленная нейтраль соединена с заземлителем, до вводного распределительного устройства на объекте, произойдет разрыв линии PEN, все потребители останутся без контура заземления.

При проведении капитального ремонта на объектах жилого фонда советской постройки, обязательно организуется система заземления. Для экономии средств, выполняется она по схеме TN-C-S. В лучшем случае, при объединении линии PEN с вновь проложенной шиной защитного заземления, производится электрическое подключение к реальному контуру заземления. В большинстве домов присутствует основная система уравнивания потенциалов, имеющая надежный контакт с грунтом. Но зачастую, чтобы упростить себе задачу, бригады ремонтников просто устанавливают перемычку между новой шиной заземления и рабочей нейтралью, внутри вводного распределительного устройства.

Как быть, если ваш дом подключен по системе TN-C, а до ближайшего капремонта еще много лет? Организовывать индивидуальное заземление в квартире, или объединяться хотя бы с соседями по подъезду. Иначе использование современных электроприборов (бойлеры, электрические духовки, стиральные машинки и пр.) станет источником повышенной опасности.

Есть горе мастера, немного разбирающиеся в электротехнике, но не понимающие ответственности за нарушение ПУЭ. Зачастую, вместо организации контура заземления по ГОСТу, шина защитного заземления соединяется с металлическими элементами инфраструктуры. В лучшем случае, со стояками холодной или горячей воды, в худшем — с системой отопления.

Действительно, при строительстве дома, эти трубы соединялись с контуром основной системы уравнивания потенциалов. Изначально был организован физический контакт с «землей». Но в процессе эксплуатации (особенно если вашему дому несколько десятков лет), целые участки трубопроводов заменены на полипропилен. Разумеется, ни о каком заземлении в этом случае не может быть и речи.

Организовав такое подключение, владелец квартиры пребывает в ложной уверенности, что у него с безопасностью полный порядок. Мало того, при появлении на корпусе электроустановки опасного потенциала (достаточно напряжения более 42 вольт), опасности подвергаются все соседи.

Это интересно: Система заземления TN-C-S

Что такое заземление

Фактически, заземление это намеренное (!) соединение частей электроустановки, которые могут проводить ток, с естественным или искусственным заземлителем.

В свою очередь, заземлитель это проводник, имеющий необходимый, поверхностный или глубинный, контакт с землей.

Формально, любой железный прут, вбитый в землю является заземлителем. Фактически, чтобы стать заземлителем, вбитый прут должен иметь нормативное электрическое сопротивление. По норме ПУЭ 7 разд. 1.7.101 это не более 2,4,8 Ом при 660, 380 и 220В (три фазы) и 380, 220 и 127В (одна фаза).

Также по нормативам, в качестве заземлителя могут выступать железные части строения и сооружений электрически связанные с землей. Но опятьтаки, при выполнении определенных условий. А именно: сопротивление должно быть в нормативе, напряжение прикосновение должно быть в нормативе и естественный заземлитель должен быть достаточно надежен, чтобы не разорваться в аварийной ситуации, например, при коротком замыкании.

Категории

Наша земля является колоссальным поглотителем электроэнергии любого происхождения, и это ее качество используется человеком для обеспечения безопасности при использовании электрических приборов.

Все заземлители делятся на две естественные и искусственные. К первым относятся все металлические изделия, находящиеся в соприкосновении с землей. Это арматура в железобетонных конструкциях, в буронабивных сваях, канализационные, водопроводные трубы и прочие электропроводные предметы.

Но проводимость земли в разных местах сильно различается, зависит от типа почвы, места расположения, поэтому нормировать ее проводимость в местах растекания электрических зарядов от этих предметов не представляется возможным. Кроме этого, использование арматуры, труб, металлических ферм приводит к ускоренной коррозии и ухудшению их прочностных характеристик. В связи с этим, запрещается использовать естественное заземление при эксплуатации электроприборов и оборудования.

Классификация систем заземления

В зависимости от схем электрических сетей и других условий эксплуатации, применяются системы заземления TN-S, TNC-S, TN-C, TT, IT, обозначаемые в соответствии с международной классификацией. Первый символ указывает на параметры заземления источника питания, а второй буквенный символ соответствует параметрам заземления открытых частей электроустановок.

Буквенные обозначения расшифровываются следующим образом:

  • Т (terre – земля) – означает заземление,
  • N (neuter – нейтраль) – соединение с нейтралью источника или зануление,
  • I (isole) соответствует изоляции.

Нулевые проводники в ГОСТе имеют такие обозначения:

  • N – является нулевым рабочим проводом,
  • РЕ – нулевым защитным проводником,
  • PEN – совмещенным нулевым рабочим и защитным проводом заземления.

Это интересно: Система заземления TN-S — разбираем обстоятельно