Тензодатчики: принцип работы приборов и их виды

Содержание

Микросхема INA125

Здесь так же показана схема подключения тензодатчика мостового типа к данной микросхеме. Кроме инструментального усилителя в состав данной микросхемы сходит ИОН – источник опорного напряжения для питания моста тензодатчика. Выходное напряжение ИОН можно изменять дискретно, подключая к соответствующим выводам микросхемы, вывод 4. Эти же напряжения можно использовать в качестве опорного напряжения для АЦП при оцифровке выходного напряжения сигнала. Это уменьшает ошибки оцифровки при флуктуациях напряжения питания устройства. Еще одним из достоинств этой микросхемы является и то, что требуемый коэффициент усиления инструментального усилителя (масштабирующего), устанавливается всего одним резистором, на схеме – R1.

Микросхема и резистор, задающий коэффициент усиления инструментального усилителя установлены на небольшой печатной плате, рисунок 3.

Для проверки всей схемы был использован наспех собранный цифровой вольтметр, состоящий из АЦП преобразователя и микроконтроллера с индикатором. В качестве АЦП была применена микросхема ADS1286, это 12 разрядный АЦП, позволяющий оцифровывать напряжение сигнала на выходе INA125 с точностью до 0,001В. В программу контроллера была введена подпрограмма коррекции нуля. И так, выяснилось, что зона чувствительности моего датчика начинается с пятидесяти граммов, примерно. Потом идет нелинейный участок до 370 граммов. Далее начинается линейный участок. Точность линеаризации проверить не удалось за неимением точных разновесов. Таким образом, в случае использования датчика в составе цифровых весов, последний должен быть преднагружен 370 граммами. Повторяемость показаний в принципе не плохая. Дрейф показаний при длительных нагрузках особо не проверял. Но при нагрузке в 1000 граммов через 9 часов непрерывного взвешивания показания изменились на 1 грамм. Это мое первое знакомство с данными датчиками, поэтому сделать однозначный конкретный вывод не могу. Но думаю, что существуют определенные места, где можно будет использовать эти «сверхточные» устройства.

Как подключить

Подключение тензодатчика легко выполняется своими руками, если под рукой есть схема. Для начала Вам нужно будет купить устройство, при этом, учитывайте, какой длины нужен кабель для тензодатчиков. Его можно будет удлинить при острой необходимости, но тогда у индикатора значительно упадет точность. Нормализовать этот параметр путем встройки поможет контроллер se 01 тензодатчика, работающий как модуль-усилитель.


Если в весах используется несколько индикаторов, то их при помощи соединительных коробок нужно подключить параллельно. Независимо от типа питания также нужно заземлить провода датчиков. Монтаж заземления должен производиться в одной общей точке, для этого также может использоваться разветвительная коробка, например, CAS.

Будет интересно Применение тензометра: тензометрирование конструкций, принцип действия и устройство

После производится исследование датчиков на правильность соединения. Перед выходом рекомендуется проверить все контакты и заземляющие петли. Установка приборов производиться при помощи экранированного кабеля, который глушит помехи, поэтому дополнительные модули не понадобятся. Аналогичным путем подключается преобразователь в дозатор.


От чрезмерного усилия преобразователь может сломаться, в таком случае не пытайтесь проводить его ремонт вручную.

Очень популярны модели тензодатчиков производства Utilcell, Zemic, Ацп, KELY (Кели), HBM (НВМ), НСК К-Б-12А и ДСТ. У моделей разные технические характеристики и применение, поэтому перед покупкой внимательно изучайте параметры.

Схемы подключения

На практике применяются различные способы подключения тензодатчика в общую цепь. Наиболее простой вариант – схема четырехпроводного подключения, которая приведена на рисунке 6 ниже:

В данном случае схема подключения подразумевает строгое соблюдение цветовой маркировки проводов: красного и белого для подачи напряжения питания, а черного и зеленого для съема получаемого сигнала. Пятый провод используется для заземления корпуса оборудования, в некоторых моделях используется экран для устранения помех. Такой вариант применяется для силовых датчиков, слаботочного оборудования, устанавливаемого непосредственно в месте измерения и фиксации результата. На практике может реализоваться следующим образом:

Когда весоизмерительный блок удален от контрольного блока, используется шестипроводная схема для исключения влияния омического сопротивления проводов питания на результат измерений.

Выводы + E и – E применяются для подачи напряжения питания на тензодатчик. С клемм + Sen и – Sen снимается падение напряжения на проводах, которое затем вычитается из результирующего сигнала. Контакты + S и – S используются для съема показаний, функция вычитания реализуется следующим образом:

Схемы подключения

Конструкции тензометрических датчиков, в частности, их малая жесткость, вынуждают применять особые способы подключения рассматриваемых элементов. Например, участки проволочной решетки в местах возможного изгиба при деформации часто располагаются поперечно к направлению измерений. Они воспринимают составляющие удлинения, действующие именно в этом направлении, и поэтому недостаточно точно реагируют на силы и деформации продольного направления. Отношение чувствительности измерения удлинений в продольном и поперечном направлениях для датчиков проволочного исполнения находятся в пределах от -0,01 до +0,04.

Влияние описанного фактора уменьшается, если для измерения напряжений, крутящих моментов или усилий использовать фольговые силоизмерительные датчики. По аналогии с печатными схемами, измерительная фольговая решетка, которая расположена на пластмассовой подложке, может быть получена в результате травления тонкой металлической фольги. Кроме того, токовая нагрузка на тензометрические датчики фольгового типа больше, чем на проволочные, вследствие чего тепло от фольговых тензометров отводится лучше.

Тензорезисторы часто приклеиваются к исследуемому конструктивному элементу. Клеевое соединение обеспечивает постоянную передачу деформации через подложку на измерительную решетку. Поэтому к клеям предъявляется также и ряд особых требований:

  • Высокое сопротивление ползучести.
  • Отсутствие гистерезиса.
  • Влагостойкость.
  • Адгезионная способность.
  • Температуростойкость.

Наибольшую эксплуатационную надежность проявляют эпоксидные смолы холодного твердения. Для экспериментального определения многосторонней деформации используют розеточную систему данных устройств, которые образуют измерительный мост. При этом образованная схема состоит из не менее, чем четырех закрепленных на подложке датчиков, которые размещаются крестообразно, треугольником, т-образно, в виде звезды. Благодаря многолучевому размещению тензорезисторов их удлинения измеряются в двух, трех или четырех направлениях.

Проверка заземления в автомобиле

Электронные модули и многие электрические компоненты двигателя, трансмиссии и пассажирского салона используют кузов в качестве электрического заземления. Этот тест проверяет наличие нежелательного сопротивления в этих точках, в том числе вторичного заземления между аккумулятором и шасси, используемого некоторыми старыми моделями. При необходимости обратитесь к руководству по ремонту вашего автомобиля.

  • Подсоедините черный провод вашего измерителя к клемме батареи (-), а красный провод вашего измерителя к месту соединения провода с кузовом.
  • Попросите помощника провернуть двигатель на несколько секунд.

Вы должны получить падение напряжения на 0,2 В или менее. Если падение напряжения выше, перейдите к следующим шагам.

Переместите красный провод вашего измерителя к клемме на конце вторичного заземляющего провода. Снимите показания падения напряжения.

Если вы получили значение выше 0,2 вольт, переходите к следующему шагу.

Переместите красный измерительный провод вашего измерителя на следующую клемму, и точку заземления. Снимите показания падения напряжения в каждой точке.

Когда вы получаете показание около 0,2 В или ниже, нежелательное сопротивление находится между этой и предыдущей контрольной точкой. Проверьте на наличие коррозии, оборванных или ослабленных проводов.

Кроме того, проверьте падение напряжения на цепях заземления, которые соединяют двигатель с шасси.

Поиск, проверка и замена оснований передачи при необходимости.

Это интересно: Почему дымит двигатель синим дымом

Нужна ли масса на корпус эбу

И. Н. Скрыдлов, ака Aktuator г. Люберцы, Московской области

29 сентября 2005 г.Внимание! Данная методика применима только на семейство 2110 и 2113 – 2115 «нового» образца, в которых управление вентилятором идет по массовому проводу. В семействе 2108 – 2115 «старого» типа управление вентилятором может осуществляться коммутацией + 12 V

Больной: А/м ВАЗ 21114 , 2005 г. выпуска, пробег 7500 км., 8 V, 1 , 6 L.

Жалоба: На прогретом двигателе положение ДПДЗ 1 – 2 %% на ХХ. Ощутимый ( 100 – 200 оборотов) дрейф оборотов ХХ при включении электро вентилятора радиатора. От экземпляра датчика не зависящий (Отечественный или GM). При проверке выявлено изменение напряжение на выходе ДПДЗ от 0 , 41 до 0 , 57 В при включении электро вентилятора радиатора. Далее в тексте в вилке измеренных напряжений, значение слева от дефиса при выключенном, а справа при включенном электровентиляторе радиатора. Измерения проводились при помощи цифрового тестера производства фирмы Mastech

Диагноз: недостаточно надежный контакт массы ЭСУД с массой автомобиля.

Лечение: Дополнительным, толстым проводом в двойной изоляции, сечением 3 х 2 , 5 кв.мм. проложена дополнительная масса от минусовой клеммы АКБ до металлического каркаса центральной консоли панели приборов. Клеммы на обоих концах дополнительного провода обжаты и пропаяны. На каркасе провод закреплен на шпильку крепления проводов массы ЭСУД, вместе с его штатными проводами массы. Так же пропаяны клеммы на штатном проводе масса, установленном между минусом АКБ и кузовом автомобиля.

Провод (белый, толстый) с обжатой и пропаянной клеммой привинчен к минусовой клемме АКБ и проложен в штатном тоннеле вместе с подкапотным жгутом. Разделанный для обжатия клеммы второй конец провода, проложенный к месту будущего крепления. Обжатая и пропаянная клемма. Провод прикручен на предназначенное место.

Результат: Напряжение на выходе ДПДЗ стало меняться в пределах 0 , 39 – 0 , 46 В.

Далее провод массы идущий на реле включения электро вентилятора радиатора, откушен от жгута ЭСУД и подсоединен к металлическому каркасу отдельным проводом. Наращивание провода выполнено методом обжатия в переходной луженой медной трубке.

Результат 2 : 0 , 37 – 0 , 39 В.

Сопутствующие измерения: Напряжение на зеленом, массовом проводе ДПДЗ до перекоммутации 0 , 056 – 0 , 215 В. После перекоммутации 0 , 03 – 0 , 03 В! Т.е. практически не меняется! Кроме того, налицо тенденция снижения напряжения на выходе ДПДЗ при закрытой дроссельной заслонке по мере улучшения контакта контроллера ЭСУД с массой автомобиля.

Вывод: Все заверения ОАО АВТОВАЗ об улучшении качества электрических соединений в выпускаемых, а/м гроша ломанного не стоят. Добиться штатной работы двигателя под управлением ЭСУД И 7 . 9 . 7 и Январь 7 . 2 , можно в большинстве случаев только произведя дополнительные, и не акцептуемые изготовителем как гарантийные, работы по изменению электрической схемы автомобиля.

PS. Такое толстое сечение провода взято, поскольку провода с другим сечением под руками не оказалось, и разделывать его на отдельные провода было просто лень. На самом деле хватило бы и 2 , 5 квадратов.

Восстановление массы на а/м «Калина»

Константин Зибров, (aka Мурзик) г. Майкоп. 18 октябра 2012 г.

На а/м «Калина» существует очень актуальная проблема с пропаданием массы в жгуте ЭБУ, это выражается в плавании АЦП некоторых датчиков, скачки температуры при перегазовках с кратковременными включениями ВСО…

Способ устранения этой проблемы. Вся работа начинается с отключения АКБ, отсоединения ЭБУ, откручивания планки с реле. Далее следует снять накладку переднего правого порожка, отсоединить под полочкой разъем от косы, отогнуть ковролин и аккуратно разрезать шумоизоляцию.

Какие отличия данных тензодатчиков для весов

Можно назвать такие отличительные качества тензодатчиков для весов:

  • точность измерений максимально высокая;
  • диапазон измерений расширен;
  • прибор одинаково хорошо работает в неблагоприятных погодных и других условиях окружающей среды;
  • корпус герметичен, благодаря чему внутренность инструмента не подвержена воздействию влаги, попаданию пылевых частичек.
  • компактность;
  • легко использовать, подключение данных тензодатчиков производится легко и без усилий;
  • может использоваться на высокотехнологичных производствах.

Не менее известным производителем является отечественный бренд Zemic.

В чем преимущества продукции фирмы? Перечислим приоритеты выбора продукции Zemic.

  • точность показаний повышена;
  • большая степень надежности и стойкости к неблагоприятным окружающим условиям;
  • стойкость к износу;
  • удлиненный срок эксплуатации приборов.

Компания выпускает датчики различных модификаций с целью обеспечения клиентов всеми необходимыми видами данной продукции под их потребности.

Как осуществить подключение тензодатчиков самостоятельно? Во-первых, нужна соответствующая схема. Покупаете прибор, учитывая при этом, сколько вам понадобится кабеля. Далее необходимо узнать, насколько успешно состоялось соединение. Проверяем контакты и петли для заземления. Чтобы произвести установку, необходим экранированный кабель. Потом по тому же принципу осуществляется подключение преобразователя в дозатор. Если преобразователь не выдержал усилие и пришел в негодность, не производите ремонтные работы самостоятельно.

Подключение тензодатчика – довольно простой процесс. Но если оно произошло неправильно, то может пострадать точность измерений прибора или система будет работать некорректно. Поэтому следует довольно внимательно отнестись к данному вопросу.

  • https://odinelectric.ru/kipia/chto-takoe-tenzodatchik
  • https://voronezh.cxt.su/info/tenzometricheskie-datchiki-opisanie-instruktsija-po-primeneniju-kharakteristiki-i-otzyvy/
  • https://ProDatchik.ru/vidy/tenzometricheskij-datchik/
  • https://amperof.ru/instrument/tenzometr-raznovidnosti-pribora.html
  • https://paes250.ru/elektromontazh/tipy-tenzodatchikov.html
  • https://terropt.ru/tenzometrija-v-medicine/
  • https://www.asutpp.ru/tenzodatchik.html
  • https://lightika.com/elektromontazh/chto-takoe-tenzodatchik-i-kak-on-rabotaet.html
  • https://fintaxi.ru/kak-podklyuchit-tenzodatchiki-k-vesovomu-terminalu/
  • https://osensorax.ru/davleniye/tenzometricheskij-datchik
  • https://RkzSp.ru/montazh/tenzopreobrazovatel-eto.html

Следующая
ИнформацияОбзор оптических трансиверов: виды, назначение и принцип работы

Подключение HX711 к Arduino


Поскольку резисторы тензорного датчика включены по мостовой схеме, от устройства отходят 4 проводника, имеющих разную цветовую маркировку. На два плеча моста подаётся опорное напряжение, а с двух других плеч снимается выходное напряжение, которое подаётся на вход операционного усилителя микросхемы НХ711. Подключение по цветам проводов осуществляется следующим образом:

  • Красный – Е +
  • Чёрный – Е –
  • Белый – А –
  • Зелёный – А +

Для дальнейшей обработки и передачи информации осуществляется подключение НХ711 к Ардуино UNO. Для этого контакты питания GND и VCC HX711 подключаются к точкам GND и 5V разъёма POWER модуля Arduino UNO, а контакты DT и SCK подключаются к точкам A1 и A0 разъёма ANALOG IN. Тензодатчик НХ711 через контроллер Arduino UNO можно подключить к жидкокристаллическому дисплею LCD 1602 или компьютеру, используя USB порт и стандартные библиотеки для Ардуино.

Поскольку на выходе измерительного моста изменяется напряжение, то именно оно преобразуется в бинарный код. Диапазон контролируемых напряжений зависит от выбранного коэффициента усиления. Если коэффициент равен 128, диапазон измеряемых напряжений варьируется от – 20 mV до + 20 mV, выбор коэффициента усиления 64 определяет пределы измерения от – 40 mV до + 40 mV и при коэффициенте равном 32 пределы измерения определяются величинами – 80 mV и + 80 mV. Эти данные будут корректными только при напряжении питания +5 V. Если входное напряжение выйдет за нижнюю границу диапазона, АЦП выдаст код 800000h, а если за верхнюю, то код будет 7FFFFFh. Для калибровки и измерений можно использовать следующие коды: //код для калибровки //код для калибровки #include «HX711.h» HX711 scale(A1, A0); // DT, CLK float Calibration_Factor_Of_Load_cell = -3.7; // этот калибровочный коэффициент настраивается в соответствии с тензодатчиком float U; float O; void setup() { Serial.begin(9600); Serial.println(«HX711 calibration sketch»); Serial.println(«Remove all weight from scale»); Serial.println(«After readings begin, place known weight on scale»); Serial.println(«Press + or a to increase calibration factor»); Serial.println(«Press — or z to decrease calibration factor»); scale.set_scale(); scale.tare(); //Сбросьте масштаб до 0 long zero_factor = scale.read_average(); //Получаем базовое чтение Serial.print(«Zero factor: «); //Это можно использовать, чтобы устранить необходимость тарирования шкалы. Полезно в проектах постоянного масштаба. Serial.println(zero_factor); } void loop() { scale.set_scale(Calibration_Factor_Of_Load_cell); //Отрегулируйте этот калибровочный коэффициент Serial.print(«Reading: «); U = scale.get_units(); if (U < 0) { U = 0.00; } O = U * 0.035274; Serial.print(O); Serial.print(» grams»); Serial.print(» Calibration_Factor_Of_Load_cell: «); Serial.print(Calibration_Factor_Of_Load_cell); Serial.println(); if (Serial.available()) { char temp = Serial.read(); if (temp == ‘+’ || temp == ‘a’) Calibration_Factor_Of_Load_cell += 1; else if (temp == ‘-‘ || temp == ‘z’) Calibration_Factor_Of_Load_cell -= 1; } }

Где находится масса ЭБУ

Масса ЭБУ обычно устроена так. Сам корпус блока управления двигателем прикручен к металлическому кронштейну, который, в свою очередь, прикручен к кузову автомобиля. Также из разъема ЭБУ выведен отдельный провод массы, который подключен к двигателю за болт крепления стартера

Всё просто и надёжно. Но в реальности со временем на данном участке цепи начинает падать напряжение, медленно, но уверенно, нарушая работу системы.

Эта статья является логическим продолжением прошлой статьи, где мы проверяли падение напряжения в цепи массы от двигателя к кузову. Советую ознакомиться сначала с ней, а затем продолжить воплощать в жизнь доработку, приведенную ниже в этой статье.

В общем, в прошлый раз мы обнаружили падение напряжения в цепи массы от двигателя к ЭБУ

И на этой странице мы решим эту проблему путём прокладки дополнительной массы от ЭБУ к двигателю и от генератора к кузову.

Массу от генератора рассмотрим в другой статье совсем скоро (дам тут ссылку), а на этой странице сосредоточимся на дополнительной массе ЭБУ.

Подключение тензоустройства: вопросы экранирования и заземления

Важным вопросом при создании успешной и точной весовой системы с применением тензодатчиков является организация экранирования и заземления. Грамотное решение подобной задачи – залог правильного функционирования тензометрического устройства в области генерации слаботочных сигналов. При этом, кабели устройств обязаны иметь оплетку для экранирования, которая бы защищала их от электростатики и иных помех, при условии ее правильного монтажа.

Главным и нерушимым правилом в этом случае должен стать принцип избегания «земляных» петель, что означает необходимость заземления устройства в ОДНОЙ и ОБЩЕЙ точке. Если же подключать кабельный экран с обоих концов, то возникновение петли неминуемо. Таким образом, если тело датчика надежно соединено и правильно закреплено с экраном – то этого будет достаточно, в ином случае – возможно присоединить экран к заземлению только с ОДНОГО любого окончания, к примеру, в электрощите. Стоит помнить, что использовать в качестве «заземлителя» «нейтраль» крайне не рекомендуется.

В случае, ежели датчики соединены параллельно, то нужно не забыть и присоединить друг к дружке экранные кабельные оплетки, посредством сопутствующего клеммного контакта в соединительной коробке.  После соединения немедленно «заземлить» их одновременно с корпусом самой коробки.

Также, с ОДНОЙ стороны необходимо присоединять к заземлению общий кабель, проходящий от прибора к соединительной коробке, при этом нельзя допускать образования «земляной» петли. Эту схему предпочтительнее реализовать со стороны приемника, т. е. около входа в измерительный прибор.

Прямо сверху изоляции кабеля датчика (примерно на расстоянии в 4-5 см от клеммы оборудования), необходимо защелкнуть фильтр ферритовый, в целях блокирования различных помех на «земле». Указанные фильтры выпускаются под кабели различных размеров и диаметров. Их также можно установить и на других удлиненных линиях, к примеру RS-485, как на передающем, так и на приемном устройствах. Иногда может случиться так, что индуктивности одного-единственного фильтра может не хватать. Тогда нужно будет дополнительно и последовательно позащелкивать фильтры на некотором расстоянии друг от дружки. Это повысит индуктивность до нужного уровня и надежно уменьшит уровень помех.

Масса ЭБУ

Как устроена масса ЭБУ, как проверить массу ЭБУ, какие могут возникнуть проблемы и как её доработать, чтобы избежать неприятностей в будущем.

Именно эти очень важные вопросы мы и затронем на этой странице.

Надежная масса ЭБУ имеет очень важное значение для полноценной работы системы управления двигателем и двигателя в целом. Казалось бы, примитивная и надежная конструкция, которая может исправно служить годами

Но на самом деле это далеко не так

Казалось бы, примитивная и надежная конструкция, которая может исправно служить годами. Но на самом деле это далеко не так.

Перечислить все возможные проблемы, которые могут возникнуть из-за плохой массы ЭБУ очень сложно, так как она может повлиять на всё, что угодно. Но основные проблемы можно разделить на два пункта:

  • Некорректный сбор информации с датчиков системы управления двигателем. Лично мне приходилось сталкиваться с некорректными показаниями MAP сенсора. Он выдавал завышенные показания барометрического давления именно из-за плохой массы ЭБУ.
  • Так как практически все современные блоки управления двигателем умеют адаптироваться к реальным условиям работы, то в результате некорректного сбора информации с датчиков, адаптация приводит к нарушениям работы двигателя. Именно поэтому у многих после сброса адаптаций двигатель начинает работать намного лучше. Но затем проблемы возвращаются, так как ЭБУ адаптируется заново. И снова это происходит не совсем адекватно.

Схема подключения

Грамотно подключить датчик не составит труда, если воспользоваться схемой. Перед покупкой приспособления нужно определиться с длиной провода, потому что правильно удлинить кабель будет сложно. Зачастую после этого точность данных сбивается. Решить эту проблему можно контролером se 01 тензодатчика, являющимся модулем-усилителем. Его надо вмонтировать в само устройство.

В весах могут быть 2 и более индикатора. Они должны подключаться соединительными коробками параллельно. Если аппарат работает от сети, то его нужно заземлить. Провода заземляются в общую точку при помощи разветвлительной коробки. После подключения производится визуальный осмотр на правильность соединения элементов датчика. Также проверяется заземление и все контакты.

Если преобразователь чрезмерно перегрузить работой, то он может выйти из строя. В таком случае не рекомендуется проводить самостоятельные ремонтные работы. Придется нести приспособление в специализированную мастерскую.

Среди всех моделей большим спросом пользуются: ДСТ, НСК К-Б-12А, Кели, Utilcell, Zemic, Ацп и НВМ. Они отличаются друг от друга техническими характеристиками, следовательно, покупая датчик, нужно внимательно изучить все параметры.

Какие применяются тензометрические датчики

Больше всего распространены типы тензометрических датчиков с изменением активного сопротивления при механическом воздействии — тензорезисторы. Проволочные тензорезисторы Наиболее простым примером является прямолинейный отрезок тонкой проволоки, который крепят на исследуемой детали. Его сопротивление составляет: r = pL/s, где p — удельное сопротивление, L — длина, s — площадь сечения. Вместе с деталью упруго деформируется наклеенная проволока. При этом меняются ее геометрические размеры.

При сжатии поперечное сечение проводника увеличивается, а при растяжении — уменьшается. Поэтому изменение сопротивления меняет знак в зависимости от направления деформации. Характеристика является линейной. Низкая чувствительность тензорезистора привела к необходимости увеличения длины проволоки на небольшом участке измерения. Для этого его делают в виде спирали ( решетки) из проволоки, оклеенной с обеих сторон пластинками изоляции из пленки лака или бумаги.

Для подключения к электрической цепи устройство снабжено двумя медными выводными проводниками. Они привариваются или припаиваются к концам проволочной спирали и достаточно прочны, чтобы подключиться к электрической схеме. Тензорезистор крепится на упругом элементе или исследуемой детали с помощью клея.

Проволочные тензодатчики имеют следующие достоинства:

  • простота конструкции;
  • линейная зависимость от деформации;
  • небольшие размеры;
  • малая цена.

К недостаткам относятся низкая чувствительность, влияние температуры среды, потребность в защите от влаги, применение только в области упругих деформаций. Проволока будет деформироваться в том случае, когда сила сцепления с ней клея значительно превосходит усилия, требуемые для ее растяжения. Отношение поверхности склеивания к площади поперечного сечения должно быть 160 к 200, что соответствует ее диаметру 0,02—0,025 мм. Допускается его увеличение до 0,05 мм. Тогда при нормальной работе тензорезистора клеевой слой не разрушится. Кроме того, датчик хорошо работает на сжатие, поскольку нити из проволоки составляют одно целое с пленкой клея и деталью.

Тензодатчики из фольги

Параметры и принцип действия фольгового тензодатчика те же самые, что и у проволочных. Только материалом является фольга из нихрома, константана или титан-алюминия. Технология изготовления методом фотолитографии позволяет получить сложную конфигурацию решетки и автоматизировать процесс.

По сравнению с проволочными, фольговые тензометрические датчики более чувствительны, пропускают больший ток, лучше передают деформацию, имеют более прочные выводы и сложней рисунок.

Полупроводниковые тензодатчики

Чувствительность датчиков приблизительно в 100 раз выше проволочных, что позволяет часто применять их без усилителей. Недостатками являются хрупкость, большая зависимость от окружающей температуры и значительный разброс параметров.

Виды тензодатчиков

Существуют различные виды тензодатчиков

. Одноточечные датчики, преобразуют механическую деформацию изгиба, в сигнал, который пропорционален, этой деформации. Тензоризисторные, консольные датчики, преобразуют механическую деформацию сдвига, в электрический сигнал, пропорциональный степени этой деформации. Они, представляют, из себя, консольную балку. S-образные датчики, преобразуют в электрический сигнал, механическое усилие, сжатия или растяжения, направленное вдоль оси датчика.

Параметры сигнала, соответствуют величине, приложенной к объекту исследования, силы. Цилиндрические тензорезисторные датчики, осуществляют, преобразование усилия сжатия, в электрический сигнал, пропорциональный энергии сжатия. Эти датчики, в различных источниках, также, называются – шайбами или бочками. Существует ряд направлений, для применения тензорезисторных датчиков. Они используются, для исследования напряжений в строительных конструкциях.

Привариваемые датчики, служат, для контроля за металлическими составляющими, зданий и сооружений. Датчик крепится к объекту исследования, методом точечной сварки. Для защиты, от неблагоприятных факторов внешней среды, он защищается, слоем гарметика. Для защиты от случайного механического разрушения, сверху его прикрывают, металлическим кожухом. В случае невозможности использования, сварки, могут использоваться привинчивающиеся датчики. Также, возможно крепление, с помощью специального клея, на каменные, бетонные, кирпичные и другие подобные поверхности. Тензометрические датчики, используются во всех типах электронных весов, например на бетонных заводах. В зависимости от конструктивных особенностей и характера, решаемых оборудованием задач, могут применяться все типы датчиков. Используются тензодатчики, также, в системах пожарной и охранной сигнализации и контроля доступа. Датчики измерения моментов, используются в строительной технике, автомобилестроении, на железнодорожном транспорте и в авиации. Для осуществления контроля, за износом оборудования, тензорезисторные датчики служат в машиностроении, металлообработке, сталелитейной промышленности. Датчики S-образного типа, широко применяются в такелажном оборудовании. Они крепятся на металлические тросы, для определения, степени приближения к опасным перегрузкам. Для работ связанных с измерением механических нагрузок, в условиях повышенных или пониженных температур, используются специальные типы тензодатчиков. Они проходят специальную калибровку, позволяющую учитывать, изменение сопротивления датчика, связанного с изменением температуры и отфильтровывать эти помехи, от истинного сигнала. При работе датчиков при особо высоких температурах или в агрессивных средах, датчики оборудуются защитой. Используются датчики, также, при проведении, неразрушающего контроля за различными изделиями. Высокая точность измерений и низкая себестоимость тензодатчиков, позволяет широко использовать их в космической технике, для оснащения разгонных блоков, ракет-носителей. Небольшая масса тензодатчиков и возможность их установки в труднодоступных местах, позволяет использовать их, также, для оборудования пилотируемых и беспилотных космических кораблей.

Заключение

В целях экономии заказать и приобрести тензометрию можно и через интернет-площадки. Популярность данного способа обусловлена еще и тем, что на сайтах продавцов и производителей очень удобно осуществлять поиск нужной модели по заданным параметрам. Отдельно стоит отметить, что в отличие от розницы, цены в интернете будут гораздо ниже. Тем более, в случае, если требуется оптовая поставка большого количества товара (например, для обеспечения промышленного объекта), то брендовый специализированный магазин вполне может предоставить и скидку. К тому же, датчики – это тот товар, который вряд ли возможно испортить даже в условиях чрезвычайно небрежной пересылки, поэтому опасаться по большому счету нечего.