Что такое тензодатчик и как он работает

Содержание

Разновидности

Одноточечные. Главное достоинство этого продукта – возможность создания полноценной весовой системы, используя всего один тензодатчик. Однако, это решение является и главным недостатком, так как поломка влечет дополнительные затраты на ремонт и покупку. Область применения небольшая, часто они встречаются в фасовочном и дозирующем оборудовании. Также некоторые пользователи используют эту модель в платформенных весах с низкой нагрузкой.
Консольные. Этот элемент применяется в чувствительной системе, а также в весах, которые работают с массой до 5-7 тонн, что делает их востребованными при серийном производстве различных предметов или продуктов.
S-образные. Сложный вариант, который предназначен для применения в подвесных или бункерных системах. Прибор оснащается специальными подвесами, благодаря которым сокращается время, затраченное на монтаж и пуск устройства. Принцип работы элемента основан на преобразовании механической силы в эклектический сигнал, который равен этому воздействию. Точность подобного оборудования находится на высоком уровне.
Цилиндрические. Подобные модели функционируют практически по такому же принципу, как предыдущий вариант, единственное отличие – преобразуется не сила, а механическая деформация. Такой вариант используется в области, где необходимо измерять несколько десятков тонн.
Колонные. Главный элемент изготавливается в виде колонны

Область применения – автомобильные или железнодорожные весы.
При производстве автомобилей, вагонов или специальных бункеров, используются платформенные датчики, которые способны работать с высокой массой, при этом, не подвергаясь износу.
Торсионные изделия применяются в конвейерном производстве, где важно постоянно следить за показаниями. Внешняя форма этого изделия круглая, главным элементом является мембрана.

Кроме перечисленных моделей встречаются тензодатчики узкоспециализированного типа. Их производят под конкретные требования.

Схемы подключения

Конструкции тензометрических датчиков, в частности, их малая жесткость, вынуждают применять особые способы подключения рассматриваемых элементов. Например, участки проволочной решетки в местах возможного изгиба при деформации часто располагаются поперечно к направлению измерений. Они воспринимают составляющие удлинения, действующие именно в этом направлении, и поэтому недостаточно точно реагируют на силы и деформации продольного направления. Отношение чувствительности измерения удлинений в продольном и поперечном направлениях для датчиков проволочного исполнения находятся в пределах от -0,01 до +0,04.

Влияние описанного фактора уменьшается, если для измерения напряжений, крутящих моментов или усилий использовать фольговые силоизмерительные датчики. По аналогии с печатными схемами, измерительная фольговая решетка, которая расположена на пластмассовой подложке, может быть получена в результате травления тонкой металлической фольги. Кроме того, токовая нагрузка на тензометрические датчики фольгового типа больше, чем на проволочные, вследствие чего тепло от фольговых тензометров отводится лучше.

Тензорезисторы часто приклеиваются к исследуемому конструктивному элементу. Клеевое соединение обеспечивает постоянную передачу деформации через подложку на измерительную решетку. Поэтому к клеям предъявляется также и ряд особых требований:

  • Высокое сопротивление ползучести.
  • Отсутствие гистерезиса.
  • Влагостойкость.
  • Адгезионная способность.
  • Температуростойкость.

Наибольшую эксплуатационную надежность проявляют эпоксидные смолы холодного твердения. Для экспериментального определения многосторонней деформации используют розеточную систему данных устройств, которые образуют измерительный мост. При этом образованная схема состоит из не менее, чем четырех закрепленных на подложке датчиков, которые размещаются крестообразно, треугольником, т-образно, в виде звезды. Благодаря многолучевому размещению тензорезисторов их удлинения измеряются в двух, трех или четырех направлениях.

Что такое тензодатчик?

Тензометрический датчик, в соответствии с п.2.1.2 ГОСТ 8.631-2013 представляет собой весоизмерительный элемент, который реагирует на изменение величины физического воздействия (усилия) и переводит его в электрический сигнал. Фактически это резистор, меняющий параметр омического сопротивления, по отношению к прилагаемой силе. На практике широко используются для измерения массы и нагрузки в весоизмерительных системах. В зависимости от сферы применения используются различные типы тензодатчиков, отличающихся как принципом действия, так и конструктивными особенностями.

Конструкция типичного металлического датчика

Осциллограф — понятие и конструкция прибора

Тензометрирование осуществляется с помощью металлических датчиков плёночного типа. Их изготавливают несколькими способами, но конструкция остаётся одной и той же. В одном случае на полимерную плёнку накладывают трафарет (маску) и сверху напыляют тонкий слой металлического сплава.

По-иному токопроводящую форму резистора создают методом фотолитографии. На напылённую металлическую поверхность наносят фоторезист. Через фототрафарет просвечивают поверхность ультрафиолетом. В зависимости от вида фоторезиста, растворителем смывают засвеченные участки или необлучённые поверхности. Открытый металлизированный слой смывают кислотой, получая фигурную металлическую плёнку.

Тензометрический рисунок датчика напоминает по форме сжатую пружину в плане. Чтобы снизить влияние температуры на показания тензометра, для печатной формы датчика применяют металлические сплавы с низким коэффициентом удельного сопротивления.


Схема металлического датчика

Датчики имеют самоклеящуюся подложку. Плёнки приклеивают к поверхности исследуемых объектов: это могут быть рычажные весы, динамометры, валы автомобилей, секции трубопроводов. Таким же способом измеряют степень деформации валопроводов и опорных подшипников в машиностроении, и др.

Обратите внимание! Чувствительность тензорезистора зависит от ориентирования датчика по направлению приложения нагрузки к объекту. Если происходит сжатие или растяжение детали, то продольные линии тензорезистора должны располагаться по оси приложения нагрузки

В противном случае чувствительность датчика будет равна нулю.

1) Проверка сопротивления изоляции.

Для выполнения данного теста, необходимо подключить мегомметр к кабелю тензодатчика и проверить на наличие тока утечки между корпусом тензодатчика и токоведущими частями. Для проверки тензометрических цепей Keli допускается применение мегомметра напряжением не более 50В постоянного тока.

Для функционирующего тензодатчика значение снятых замеров не должно быть ниже 5 Мом. Если значение сопротивления изоляции меньше 1кОм – это свидетельствует о явном коротком замыкании. Короткое замыкание может быть между корпусом тензодатчика и токоведущими частями (тензорезисторами), а также в кабеле. При коротком замыкании в кабеле, его можно заменить, если это предусматривает конструкция тензодатчика.

Тензодатчики веса

Прежде всего, это тензодатчики веса. Будь то напольные весы в спальне посадивших себя на диету женщин, неизменные электронные атрибуты современных магазинов, промышленные установки взвешивания автомобилей на стройплощадках или балочные платформенные весы, без тензорезисторов не обойтись. В настоящее время ассортимент тензодатчиков веса настолько велик, что любой заинтересованный потребитель сможет без особого труда выбрать требуемую именно для его случая комплектацию. Остановимся на нескольких конструктивных типах промышленных тензодатчиков веса.

Консольные устройства в алюминиевом или стальном исполнении. Диапазон весовых нагрузок этих приборов достаточно широк, а разнообразие вариантов корпусного решения позволяет использовать их во многих хозяйственных и бытовых сферах.

Стальные тензодатчики типа «бочка» или «шайба». Обладают хорошими показателями по герметичности и защите устройства от внешних воздействий. Это касается и материала оболочки и изоляции электропровода.

Балочные весовые регистраторы. Область применения – измерение весовых нагрузок на мостовые и платформенные конструкции. Регистрируют деформации изгиба и сдвига. Фиксировать натяжение крепежных элементов помогут тензодатчики на растяжке, а допустимость подвесного груза на стройке S-образные.

Сферы применения

Кроме определения удлинений, которые вызываются действием внешних нагрузок на конструктивные части оборудования, тензометрические датчики могут применяться для измерения собственных (остаточных) напряжений в момент их релаксации, это явление происходит при высверливании или разрезке некоторых конструктивных деталей и узлов.

Тонкопленочные датчики давления, которые изготавливаются путем осаждения из паровой фазы или распыления, используются для определения усилий, напряжений, крутящих моментов и деформаций в изоляционных элементах, которые размещаются непосредственно на полированных мембранах. Для калибровки резистивных элементов используется лазерная подгонка, повышающая точность замеров. Диффузионные полупроводниковые датчики давления могут проникать в кремниевую чувствительную к давлению диафрагму, и не связаны со свойствами поверхности. Это позволяет использовать их в технологиях миниатюрного тензометрирования.

Технология тонких пленок считается более современной и обеспечивает превосходную стабильность при нулевом температурном режиме и полной чувствительности, а также высокую долговечность.

Часто применяемые условия для использования тензодатчиков перечислены далее.

Измерение веса

Необходимо в системах напольного типа, при помощи которых определяют массу груза. Характеризуются минимальными требованиями к точности монтажа и наладки.

Измерение давления

Используется в технологических линиях обработки металлов давлением. Одновременно производится также измерение рабочих сил и упругих деформаций. Датчики снабжаются силоизмерительным устройством с цифровой индикацией.

Определение ускорения

Иногда используется в экспериментальных лабораториях, где занимаются проектированием и испытаниями высокоскоростной рельсовой и безрельсовой техники.

Контроль перемещения

Самые распространенные отрасли применения – сейсмологические станции и фундаменты высокоточного массивного оборудования, преимущественно энергетического.

Применение тензометрии

DC ток — понятие и виды постоянно тока

Тензометрия является неотъемлемой частью испытаний макетов и экспериментальных образцов, проектируемых ответственных строительных конструкций, продукции авиапрома, космической техники и пр. Тензометрии подвергают здания и сооружения, в которых были замечены нарушения целостности конструкций.

На принципах тензометрии проектируют и производят приборы измерительного назначения. К ним относятся весы, динамометры, торсиометры (датчики крутящего момента). Тензорезисторы играют большую роль в профилактике и предупреждении возникновения возможных аварийных ситуаций, связанных с разрушением строительных конструкций, различного оборудования тяжёлой промышленности и т.п.


Тензометрические методы измерения

Физические принципы тензометрии

Предложено много различных способов измерения деформаций, каждый из них имеет свои преимущества и недостатки, поэтому выбор того или иного метода зависит от конкретной задачи.

Оптические

Основаны на измерении малых смещений поверхностей, которые регистрируются, например, интерференционными методами, методами муаровых узоров и др.

Отдельную группу оптических методов составляют оптоволоконные датчики, основанные на измерении деформации приклеенной к исследуемому объекту оптоволоконной нити, в которой сформирована Брегговская решётка.

Для исследования деформаций оптически прозрачных деталей применяют методы, основанные на эффекте возникновения двойного лучепреломления или вращении плоскости поляризации в нагруженных деталях — явление фотоупругости. При этом деталь помещают между скрещённых поляризаторов и в проходящем свете наблюдают визуализированную картину напряжений. При этом обычно изучают деформации оптически прозрачных макетов деталей.

Пневматические

Основаны на измерении давления сжатого воздуха в сопле, примыкающем к поверхности исследуемой детали. Изменение расстояния до сопла от поверхности вызывает регистрируемое изменение давления.

Акустические

При нагружении деталей изменяются акустические параметры материала, такие как скорость звука, акустическое сопротивление, затухание. Эти изменения могут быть измерены пьезоэлектрическими датчиками.

Также к акустическим методам относят датчики, при нагружении которых изменяется частота собственных колебаний чувствительного элемента — например, струнные.

Электрические

Используют изменение электрических параметров материала чувствительного элемента тензодатчика при нагружении, обычно изменения электрического сопротивления (тензорезистивные датчики) или генерирующие напряжения при деформациях (пьезоэлектрические). Недостаток последних — они непригодны для измерений статических деформаций, но имеют очень высокую чувствительность.

Условно к электрическим методам можно отнести различные электрические измерители малых смещений — ёмкостные, индукционные датчики и др.

Рентгеновские

При деформации материала изменяются межатомные расстояния в кристаллической решётке материала исследуемого объекта, что может быть измерено рентгеноструктурными методами.

Проволочные тензорезисторы

Сейчас наиболее простейшим примером следует назвать отрезок тонкой проволоки, которую необходимо установить на исследуемой детали. Сопротивление при этом можно подсчитать по обычной формуле.

Вместе с данной деталью следует еще установить проволоку, которая будет деформироваться. При этом нужно менять геометрические размеры, тогда усиливается сжатие и также увеличивается поперечное сечение. Если говорить о растяжении, то этот показатель уменьшится. Именно поэтому сопротивление будет менять знак в зависимости от того, какое действие производится. Характеристика при этом считается линейной.

Учитывая то, что тензометрический датчик имеет низкую чувствительность, придется увеличить длину проволоки на одном из участков при совершении измерения. Для этого нужно сделать спираль из нити, которая с обоих сторон будет обклеена пластинкой изоляции с лаком или бумагой. Для того чтобы отключить устройство от электрической цепи, нужно использовать два медных проводника. Их следует припаять или приварить к проволочной спирали, а также они должны быть достаточно прочными для того, чтобы подключиться к схеме. Тензорезисторы всегда закрепляют на упругом элементе либо же на детали, которая приклеивается при помощи обычного клея.

Проволочные тензометрические датчики имеют особые преимущества. Они получили простую конструкцию, маленькие размеры, небольшое сопротивление и также имеют линейную зависимость от вида деформации.

Если говорить о минусах, то следует отметить не особо хорошую чувствительность, влияние температуры, также прибор нужно защищать от влаги и применять только в области, где осуществляется упругая деформация.

Принцип работы тензодатчиков

Во многих отраслях промышленности необходимо измерение размера деформации. Для таких целей применяется тензорезисторы, который помогает преобразовать уровень деформации в определенную электрическую величину. Благодаря этому можно определить её значение.

Тензодатчики – это устройства, которые могут преобразовать механическую деформацию тела в электрический сигнал, который позволяет определить уровень растяжения и сжатия конкретного предмета. Он является резистивным преобразователем и считается одним из главнейших составляющих высокоточного оборудования.

Устройство изготовлено из чувствительного тензорезистора, который производится из тензоматериалов. Чаще всего это фольга или алюминиевая проволока с небольшим сечением. тензодатчик шайбового типа

Бывают самые разные датчики, которые могут использоваться в любых отраслях: атомной, фармацевтической, металлургической и прочих. Виды тензодатчиков:Приборы для измерения нагрузки и силы (динамометры);Измерители давления;Тензодатчики крутящего момента для автомобильных и станочных двигателей.

Тензорезисторы классифицируются не только по своей форме, но и по конструктивным особенностям. Конструкция прибора зависит от типа чувствительного элемента. Для контроля деформации используются следующие типы тензорезисторов:Фольговые;Пленочные;Проволочные.

Пленочные являются аналогом фольговых, за исключением материала, из которого изготовлены. Производители изготавливают такие модели из тензочувствительных пленок с особым напылением, которое увеличивает чувствительность системы. Такие измерительные узлы удобно использовать при необходимости измерить динамические нагрузки. Производство пленок выполняется из таких материалов, как титан, висмут, германий.Проволочные способны измерить нагрузку от нескольких сотых грамма до целых тонн (скажем, весовой бункер и прочие). Их называют одноточечные, т. к в отличие от пленочных и фольговых моделей, они измеряют в одной точке, а не площади. Такая конструкция позволяет использовать проволочные тензодатчики для измерения деформации сжатия и растяжения.проволочная модель

Конструктивно прибор представляет собой тензорезистор с контактным элементом. Он закреплен на верхней панели устройства, которая соприкасается с измеряемым телом. Принцип работы любого тензодатчика основан на воздействии на чувствительный элемент определенной детали. Для включения датчика в сеть применяется специальные электрические отводы, которые подключаются к чувствительной пластине. Благодаря этому в контактном элементе наблюдается постоянное напряжение. Но, при работе датчика на специальную подложку устанавливается деталь. Её вес разрывает цепь и образовывается механическая деформация, которая при помощи контрольных контактов преобразуется в электрический сигнал.

Измерительный мост тензодатчика позволяет измерить наименьшие нагрузки, благодаря чему значительно расширяется использование прибора. Мостовая схема подключения тензометрического датчика основана на законе Ома, при котором если все сопротивления имеют равное значение, то ток, проходящий через резисторы, также будет иметь одинаковое значение. Здесь воздействие из вне принято называть «внешним фактором», а преобразование сигнала – «внутренним». Тогда принцип действия основан на анализе внешнего фактора при помощи внутреннего.

Принцип установки весовых тензодатчиков наглядно демонстрируют модули, которые обычно используют при изготовлении электронных или цифровых весов. В них установлены специальные модули, которые соединены с рабочей поверхностью весов.

Этот измерительный модуль обладает чрезвычайно высокой точностью взвешивания и защищает тензодатчик от повреждений

  • Высокая точность измерения;
  • Подходят для измерения статических и динамических напряжений, при этом, не искажают полученные данные. Это очень удобно при использовании устройств в транспортных средствах или экстремальных условиях работы;Небольшие размеры позволяют использовать такие датчики практически в любых измерительных устройства.

Разработка сайта Sigmasoft

2020 Тензодатчики веса | Датчики силы, крутящего момента, давдения, премещения | Тензорезисторы | Промышленные контроллеры НВМ

Основные неисправности тензометрических автомобильных весов часть 1.

Сегодня разберем вопрос сервисного ремонта на примере автомобильных электронных весов. Прогресс в сфере производства тензодатчиков неизбежно ведет за собой рост качества данных элементов, но так или иначе ничто не вечно, особенно кода данный модуль подвергается постоянному механическому воздействию. Опираясь на опыт нашей организации в сервисном обслуживании тензометрических весов, рассмотрим основные причины выхода их из строя:

• Обрыв цепи сигнала, либо питания •Разгерметизация тензометрического модуля • Нарушение изоляции сигнального кабеля, либо кабеля питания может повлечь за собой не только разрыв контактна, но и разгерметизацию самого тензодатчика • Деформация металлоконструкции • Инородные объекты, препятствующие полноценной работке механики конструкции • Неисправность весового преобразователя • Брак соединительной коробки тензодатчиков

Разберем каждую неисправность подробнее.

Обрыв цепи сигнала, либо питания

Довольно часто случается так, что весы не подвергались преждевременному износу, не перегружались и обслуживались согласно инструкции, предписанной производителем, однако в самый неподходящий момент просто перестали работать. Бить тревогу и судорожно обзванивать сервисные организации не стоит, если эта ситуация произошла не в гарантийный период, необходимо взять на вооружение вольтметр, набор отверток и попытаться выяснить причину неисправности.

Первым делом необходимо найти и раскрутить соединительную коробку, (как правило, она находится под весами, либо в специально отведенном под нее лючке) обнаружить ее довольно просто, из нее выходит сигнальный кабель, непосредственно ведущий к весовому терминалу. Далее записываем, либо фотографируем последовательность цветов сигнала и питания, затем раскручиваем клеммы и «прозваниваем» питание (как правило это черный «-» и красный «+» провода) и сигнал ( часто белый «-» и зеленый «+»). В случае подобной диагностики нет необходимости обладать специальными техническими знаниями, достаточно проанализировать показания всех датчиков и сделать очевидный вывод, если один из датчиков не «звонится», соответственно проблема в нем. Чаще всего причиной подобной неприятности служит перебитый либо надорваный кабель, останется лишь скоммутировать его по цветам, (в идеале пропаять) заизолировать и снова проверить его мультиметром, скорее всего проблема разрешится.

Разгерметизация тензометрического модуля

Разгерметизация тензодатчика подразумевает под собой попадание влаги на чувствительный элемент (тензорезистор), что выводит датчик из строя, без возможности какого-либо восстановления.

Довольно часто, но все же на порядок реже, первой причины, встречается проблема разгерметизации тензометрического датчика. Это происходит как по вине производителя – производственный брак, так и по вине пользователя – несоблюдение предписанных инструкций.

Эксплуатация весов не должным образом, в свою очередь, явление довольно распространенное, спустя год-два беспроблемной эксплуатации, многие забывают о том, что недопустима эксплуатация весов транспортом с перегрузом, так же как и превышение установленного скоростного режима авто на грузоприемной платформе. Ярким примером последствий данных пренебрежений служит деформация корпуса тензодатчика с последующей разгерметизацией. Подобное случается нередко и для того, чтобы этого избежать разгерметизации тензометрического датчика, следует придерживаться установленным требованиям эксплуатации. Так же не лишним будет периодический осмотр тензодатчиков, если к ним есть открытый доступ без применения подъемной техники, в ином случае подобные манипуляции лучше доверить компетентным лицам.

Источник

Подключение HX711 к Arduino


Поскольку резисторы тензорного датчика включены по мостовой схеме, от устройства отходят 4 проводника, имеющих разную цветовую маркировку. На два плеча моста подаётся опорное напряжение, а с двух других плеч снимается выходное напряжение, которое подаётся на вход операционного усилителя микросхемы НХ711. Подключение по цветам проводов осуществляется следующим образом:

  • Красный – Е +
  • Чёрный – Е –
  • Белый – А –
  • Зелёный – А +

Для дальнейшей обработки и передачи информации осуществляется подключение НХ711 к Ардуино UNO. Для этого контакты питания GND и VCC HX711 подключаются к точкам GND и 5V разъёма POWER модуля Arduino UNO, а контакты DT и SCK подключаются к точкам A1 и A0 разъёма ANALOG IN. Тензодатчик НХ711 через контроллер Arduino UNO можно подключить к жидкокристаллическому дисплею LCD 1602 или компьютеру, используя USB порт и стандартные библиотеки для Ардуино.

Поскольку на выходе измерительного моста изменяется напряжение, то именно оно преобразуется в бинарный код. Диапазон контролируемых напряжений зависит от выбранного коэффициента усиления. Если коэффициент равен 128, диапазон измеряемых напряжений варьируется от – 20 mV до + 20 mV, выбор коэффициента усиления 64 определяет пределы измерения от – 40 mV до + 40 mV и при коэффициенте равном 32 пределы измерения определяются величинами – 80 mV и + 80 mV. Эти данные будут корректными только при напряжении питания +5 V. Если входное напряжение выйдет за нижнюю границу диапазона, АЦП выдаст код 800000h, а если за верхнюю, то код будет 7FFFFFh. Для калибровки и измерений можно использовать следующие коды: //код для калибровки //код для калибровки #include «HX711.h» HX711 scale(A1, A0); // DT, CLK float Calibration_Factor_Of_Load_cell = -3.7; // этот калибровочный коэффициент настраивается в соответствии с тензодатчиком float U; float O; void setup() { Serial.begin(9600); Serial.println(«HX711 calibration sketch»); Serial.println(«Remove all weight from scale»); Serial.println(«After readings begin, place known weight on scale»); Serial.println(«Press + or a to increase calibration factor»); Serial.println(«Press — or z to decrease calibration factor»); scale.set_scale(); scale.tare(); //Сбросьте масштаб до 0 long zero_factor = scale.read_average(); //Получаем базовое чтение Serial.print(«Zero factor: «); //Это можно использовать, чтобы устранить необходимость тарирования шкалы. Полезно в проектах постоянного масштаба. Serial.println(zero_factor); } void loop() { scale.set_scale(Calibration_Factor_Of_Load_cell); //Отрегулируйте этот калибровочный коэффициент Serial.print(«Reading: «); U = scale.get_units(); if (U < 0) { U = 0.00; } O = U * 0.035274; Serial.print(O); Serial.print(» grams»); Serial.print(» Calibration_Factor_Of_Load_cell: «); Serial.print(Calibration_Factor_Of_Load_cell); Serial.println(); if (Serial.available()) { char temp = Serial.read(); if (temp == ‘+’ || temp == ‘a’) Calibration_Factor_Of_Load_cell += 1; else if (temp == ‘-‘ || temp == ‘z’) Calibration_Factor_Of_Load_cell -= 1; } }

* принцип действия;

1.1. Оптические

1.1.1. Оптические датчики давления могут быть построены на двух принципах измерения: волоконно-оптическом и оптоэлектронном. 1.1.1.1. Волоконно-оптические Волоконно-оптические датчики давления являются наиболее точными и их работа не сильно зависит от колебания температуры. Чувствительным элементом является оптический волновод. Об измеряемой величине давления в таких приборах обычно судят по изменению амплитуды и поляризации проходящего через чувствительный элемент света.

1.1.1.2. Оптоэлектронные Датчики этого типа состоят из многослойных прозрачных структур. Через эту структуру пропускают свет. Один из прозрачных слоев может изменять свои параметры в зависимости от давления среды. Есть 2 параметра, которые могут изменяться: первый это показатель преломления, второй это толщина слоя.

1.2. Магнитные

1.2.1. Другое название таких датчиков — индуктивные. Чувствительная часть таких датчиков состоит их Е-образной пластины, в центре которой находится катушка, и проводящей мембраны чувствительной к давлению. Мембрана располагается на небольшом расстоянии от края пластины. При подключении катушки, создается магнитный поток, который проходит через пластину, воздушный зазор и мембрану. Магнитная проницаемость зазора примерно в тысячу раз меньше магнитной проницаемости пластины и мембраны. Поэтому, даже небольшое изменение величины зазора влечет за собой заметное изменение индуктивности.

1.3. Емкостные

1.3.1. Имеет одну из наиболее простых конструкций. Состоит из двух плоских электродов и зазора между ними. Один из этих электродов представляет собой мембрану на которую давит измеряемое давление, вследствие, чего изменяется величина зазора. То есть, по сути, этот тип датчиков представляет собой конденсатор с изменяющейся величиной зазора. А как известно емкость конденсатора зависит от величины зазора. Емкостные датчики способны фиксировать очень маленькие изменения давления.

1.4. Ртутные

1.4.1. Тоже очень простой измерительный прибор. Работает по принципу сообщающихся сосудов. На один из этих сосудов давить измеряемое давление. Давление определяется по величине ртутного столба.

1.5. Пьезоэлектрические

1.5.1. Чувствительным элементом датчиков этого типа является пьезоэлемент — материал, выделяющий эклектический сигнал при деформации (прямой пьезоэффект). Пьезоэлемент находится в измеряемой среде, он будет выделять ток пропорциональный величине изменения давления. Так как электрический сигнал в пьезоматериале выделяется только при деформировании, а при постоянном давлении деформирование не происходит, то этот датчик пригоден только для измерения быстро меняющегося давления.

1.6. Пьезорезонансные

1.6.1. Этот тип тоже использует пьезоэффект, только в отличие от прошлого типа тут используется обратный пьезоэффект — изменение формы пьезоматериала в зависимости от подаваемого тока. В датчиках данного типа используется резонатор (например пластина) из пьезоматериала, на которую нанесены с двух сторон электроды. На электроды по переменно подается напряжение разного знака, таким образом пластина изгибается то в одну то в другую сторону с частотой подаваемого напряжения. Но если на эту пластину подать силу, например мембраной чувствительной к давлению, то частота колебания резонатора изменится. Частота резонатора и будет показывать величину, с которой давление давит на мембрану, а она в свою очередь давит на резонатор.

1.7. Резистивные

1.7.1. По-другому этот тип датчиков называет тензорезистивный. Тензорезистор — это элемент, изменяющий свое сопротивление в зависимости от деформирования. Эти тензоризисторы устанавливают на мембрану чувствительную к изменению давления. В итоге, при давлении на мембрану она изгибается и изгибает тензоризисторы, закрепленные на ней. Вследствие чего, сопротивление на них меняется и меняется величина тока в цепи.

Назначение и классификация

Что такое тензодатчик? Тензометрические датчики были разработаны для использования в составе высокоточного измерительного оборудования. В задачи тензодатчика входит выполнение функций преобразователя для переработки физической величины измеряемого веса в электрический сигнал. Позже этот сигнал также передается на последующее преобразование, которым может заниматься весовой индикатор или процессор. Основным предметом замеров тензометрического датчика является степень деформации объекта в момент, когда его структура нарушается и перестраивается для оказания сопротивления внешней силе, что влияет на него. Датчик улавливает колебания объекта от этого процесса и преобразует их в цифровые сигналы.

Таким образом, тензометрический датчик, применим для целого спектра измерительных задач:

  • Измерение веса.
  • Замеры степени ускорения
  • Контроль перемещения объекта.
  • Замеры крутящего момента.
  • Замеры давления.

Пригодность отдельно взятой модели замерочного устройства для какой-либо из перечисленных задач зависит от его архитектуры и назначения. По последним параметрам тензометрические датчики делятся на:

  • S-образные датчики получили свое название из-за формы корпуса. Их принцип действия включает в себя как реакцию на сжатие объекта измерения, так и на растяжение. В большинстве приборов этот тип тензодатчиков работает именно по последнему принципу.
  • Одноточечные виды в своей конструкции несут всего один датчик замер, который располагается строго по центру платформы. Это делает их одной из самых доступных разновидностей на рынке, встречающейся в торговых и вагонных весах, а также в дозаторах.
  • Колонные тензометрические датчики получили корпуса в виде колонн, которые позволяют им мониторить объект во время его сжатия. Наличие в их конструкции опорных поверхностей позволяет изделию самостоятельно возвращаться в исходное положение после проведения замер. Отличаются применением на весах с высокой грузоподъемностью, позволяя замерять вес крупных транспортных средств.
  • Цилиндрические используются для измерения реакции объекта на сжатие. Не самый богатый функционал этого типа объясняется отсутствием степеней свободы качения. Цилиндрические датчики полезны в вагоноизмерительных весах, т.к. могут работать с большими массами.
  • Мостовые представлены в виде статично закрепленной балки, на центр которой вешается груз. Встретить такие датчики можно в весах для небольших транспортных средств.
  • Балочные. Подобно мостовым, конструкция тензодатчика представлена балкой на неподвижной опоре. Однако, в отличие от аналога, в балонных устройствах основная нагрузка приходится на конец балки.
  • Миниатюрные тензодатчики разработаны для использования в условиях ограниченного пространства и являются самой мобильной разновидностью. Часто применяются в лабораторных условиях и на испытательных стендах.

Схемы подключения

На практике применяются различные способы подключения тензодатчика в общую цепь. Наиболее простой вариант –  схема четырехпроводного подключения, которая приведена на рисунке 6 ниже:

Рис. 6. Четырехпроводная схема подключения

В данном случае схема подключения подразумевает строгое соблюдение цветовой маркировки проводов: красного и белого для подачи напряжения питания, а черного и зеленого для съема получаемого сигнала. Пятый провод используется для заземления корпуса оборудования, в некоторых моделях используется экран для устранения помех. Такой вариант применяется для силовых датчиков, слаботочного оборудования, устанавливаемого непосредственно в месте измерения и фиксации результата. На практике может реализоваться следующим образом:

Рис. 7. Практическая реализация четырехпроводной схемы подключения

Когда весоизмерительный блок удален от контрольного блока, используется шестипроводная схема для исключения влияния омического сопротивления проводов питания на результат измерений.

Рис. 8. Шестипроводная схема с цепью обратной связи

Выводы + E и – E применяются для подачи напряжения питания на тензодатчик. С клемм + Sen и – Sen снимается падение напряжения на проводах, которое затем вычитается из результирующего сигнала.  Контакты + S и – S используются для съема показаний, функция вычитания реализуется следующим образом:

Рис. 9. Практическая реализация вычитания напряжения