Логические выражения

Алгебраические преобразования логических выражений

Любое логическое выражение, как и его переменные (утверждения), принимают два значения: ложь или истина. Ложь обозначается нулём, а истина — единицей. Разобравшись с областью определения и областью допустимых значений, мы можем рассмотреть действия алгебры логики.

Отрицание

Отрицание и инверсия — самое простое логическое преобразование. Ему соответствует частица «не.» Это преобразование просто меняет утверждение на противоположное. Соответственно, значение утверждения тоже меняется на противоположное. Если утверждение А истинно, то «не А» — ложно. Например, утверждение «прямой угол — это угол, равный девяносто градусов» — истина. Тогда его отрицание «прямой угол не равен девяноста градусам» — ложь.

Таблица истинности для отрицания будет такова:

А не А
Л И
И Л

Конъюнкция

Конъюнкция аналогична умножению и соответствует союзу «и». Такое выражение будет верно, только если верны все утверждения, объединённые конъюнкцией. То есть, утверждение «А и Б» будет истинным, только если А — истина и Б — истина. Во всех остальных случаях выражение «А и Б» ложно. Например, высказывание «Земля круглая и плоская» будет ложно, так как первая часть истина, а вторая — ложь.

Таблица истинности конъюнкции

А Б А и Б
Л Л Л
Л И Л
И Л Л
И И И

Дизъюнкция

Эта операция может быть обычной или строгой, их результаты будут различаться.

Обычная дизъюнкция или логическое сложение соответствует союзу «или». Она будет истинной если хотя бы одно из утверждений, входящих в неё — истина. Например, выражение «Земля круглая или стоит на трёх китах» будет истинным, так как первое утверждение — истинно, хоть второе и ложно.В таблице это будет выглядеть так:

А Б А или Б
Л Л Л
Л И И
И Л И
И И И

Строгую дизъюнкцию или сложение по модулю также называют «исключающим или». Эта операция может принимать вид грамматической конструкции «одно из двух: либо …, либо …». Здесь значение логического выражения будет ложным, если все утверждения, входящие в него, имеют одинаковую истинность. То есть, оба утверждения либо вместе истинны, либо вместе ложны.

Таблица значений исключающего или

А Б либо А, либо Б
Л Л Л
Л И И
И Л И
И И Л

Импликация и эквивалентность

Импликация представляет собой следствие и грамматически может быть выражена как «из А следует Б». Здесь утверждение А будет называться предпосылкой, а Б — следствием. Импликация может быть ложной, только в одном случае: если предпосылка истинна, а следствие ложно. То есть, ложь не может следовать из истины. Во всех остальных случаях импликация истинна. Варианты, когда оба утверждения имеют одинаковую истинность, вопросов не вызывают. Но почему верное следствие из неверной предпосылки — истина? Дело в том, что из ложной предпосылки может следовать что угодно. Это и отличает импликацию от эквивалентности.

В математике (и других доказательных дисциплинах) импликация используется для указания необходимого условия. Например, утверждение А — «точка О — экстремум непрерывной функции», утверждение Б — «производная непрерывной функции в точке О обращается в ноль». Если О, действительно, точка экстремума непрерывной функции, то производная в этой точке будет, и вправду, равна нулю. Если же О не является точкой экстремума, то производная в этой точке может быть нулевой, а может не быть. То есть Б необходимо для А, но не достаточно.

Таблица истинности для импликации выглядит следующим образом:

А Б из А следует Б
Л Л И
Л И И
И Л Л
И И И

Логическая операция эквивалентность, по сути, является взаимной импликацией. «А эквивалентно Б» означает, что «из А следует Б» и «из Б следует А» одновременно. Эквивалентность верна, когда оба утверждения либо одновременно верные, либо одновременно неверные.

А Б А эквивалентно Б
Л Л И
Л И Л
И Л Л
И И И

В математике эквивалентность используется для определения необходимого и достаточного условия. Например, утверждение А — «Точка О является точкой экстремума непрерывной функции», утверждение Б — «В точке О производная функции обращается в ноль и меняет знак». Эти два утверждения эквивалентны. Б содержит необходимое и достаточное условие для А

Обратите внимание, что в данном примере утверждений Б на самом деле является конъюнкцией двух других: «производная в точке О обращается в ноль» и «производная в точке О меняет знак»

Прочие логические функции

Выше были рассмотрены основные логические операции, которые часто используются. Есть и другие функции, которые используются:

  • Штрих Шеффера или несовместимость представляет собой отрицание конъюнкции А и Б
  • Стрелка Пирса представляет сбой отрицание дизъюнкции.

Операция И — логическое умножение (конъюнкция)

Логическая операция И выполняет функцию пересечения двух высказываний (аргументов), в качестве которых может быть и простое, и сложное логическое выражение. Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.

Применяемые обозначения: А и В, А ? В, A  & B, A and B.

Результат  операции  И  определяется  следующей таблицей истинности:

A B А и B
1
1
1 1 1

Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

Приведем примеры логического умножения.

1. Рассмотрим высказывание «Умение и настойчивость приводит к достижению цели». Достижение цели возможно только при одновременной истинности двух предпосылок — умения И настойчивости.

Логическую операцию И можно сравнить с последовательным соединением лампочек в гирлянде. При наличии хотя бы одной неработающей лампочки электрическая цепь оказывается разомкнутой, то есть гирлянда не работает. Ток протекает только при одном условии — все составляющие цепи должны быть исправны.

Операция «ЕСЛИ-ТО» — логическое следование (импликация)

Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием из этого условия.

Применяемые обозначения:

если А, то В; А влечет В; if A then В; А? В.

Таблица истинности:

A B А ? B
1
1 1
1
1 1 1

Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Приведем примеры операции следования.

1.  Рассмотрим высказывание «Если идет дождь, то на улице сыро». Здесь исходные высказывания «Идет дождь» и «На улице сыро». Если не идет дождь и не сыро на улице, результат операции следования — истина. На улице может быть сыро и без дождя, например, когда прошла поливочная машина или дождь прошел накануне. Результат операции ложен только тогда, когда дождь идет, а на улице не сыро.

2.  Рассмотрим два высказывания: А {х делится на 9}, В {х делится на 3}. Операция А ? В означает следующее: «Если число делится на 9, то оно делится и на 3». Рассмотрим возможные варианты:

?  А — ложно, В — ложно (1-я строка таблицы истинности). Можно найти такие числа, для которых истиной является высказывание «если А — ложно, то и В — ложно». Например, х = 4, 17, 22.

?  А — ложно, В — истинно (2-я строка таблицы истинности). Можно найти такие числа, для которых истиной является высказывание «если А — ложно, то В — истинно». Например, х = б, 12, 21.

?   А — истинно, В — ложно (3-я строка таблицы истинности). Невозможно найти такие числа, которые делились бы на 9, но не делились на 3. Истинная предпосылка не может приводить к ложному результату импликации.

?  А — истинно, В — истинно (4-я строка таблицы истинности). Можно найти такие числа, для которых истиной является высказывание «если А — истинно, то и В — истинно». Например, х = 9, 18, 27.

Способы представления булевой функции

С помощью формул можно получать огромное количество разнообразных функций, причём с помощью разных формул можно получить одну и ту же функцию. Иногда бывает весьма полезно узнать, как построить ту или иную функцию, используя лишь небольшой набор заданных операций или используя как можно меньше произвольных операций. Рассмотрим основные способы задания булевых функций:

  • Совершенная дизъюнктивная нормальная форма (СДНФ)
  • Совершенная конъюнктивная нормальная форма (СКНФ)
  • Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Совершенная дизъюнктивная нормальная форма (ДНФ)

Простая конъюнкция — это конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза. Дизъюнктивная нормальная форма (ДНФ) — это дизъюнкция простых конъюнкций. Совершенная дизъюнктивная нормальная форма (СДНФ) — ДНФ относительно некоторого заданного конечного набора переменных, в каждую конъюнкцию которой входят все переменные данного набора.

Например, ДНФ является функция ¬a bc ∨ ¬a ¬b c ∨ ac, но не является СДНФ, так как в последней конъюнкции отсутствует переменная b.

Совершенная конъюнктивная нормальная форма (КНФ)

Простая дизъюнкция — это дизъюнкция одной или нескольких переменных, или их отрицаний, причём каждая переменная входит в неё не более одного раза. Конъюнктивная нормальная форма (КНФ) — это конъюнкция простых дизъюнкций. Совершенная конъюнктивная нормальная форма (СКНФ) — КНФ относительно некоторого заданного конечного набора переменных, в каждую дизъюнкцию которой входят все переменные данного набора.

Например, КНФ является функция (a ∨ b) ∧ (a ∨ b ∨ c), но не является СДНФ, так как в первой дизъюнкции отсутствует переменная с.

Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Алгебраическая нормальная форма, полином Жегалкина — это форма представления логической функции в виде полинома с коэффициентами вида 0 и 1, в котором в качестве произведения используется операция конъюнкции, а в качестве сложения — исключающее ИЛИ.

Примеры полиномов Жегалкина: 1, a, a⊕b, ab⊕a⊕b⊕1

Алгоритм построения СДНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 1
  3. Выписать простые конъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 0, то она входит в конъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые конъюнкции с помощью дизъюнкции

Алгоритм построения СКНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 0
  3. Выписать простые дизъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 1, то она входит в дизъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые дизъюнкции с помощью конъюнкции

Алгоритм построения полинома Жегалкина булевой функции

Есть несколько методов построения полинома Жегалкина, в данной статье рассмотрим наиболее удобный и простой из всех.

  1. Построить таблицу истинности для функции
  2. Добавить новый столбец к таблице истинности и записать в 1, 3, 5. ячейки значения из тех же строк предыдущего столбца таблицы истинности, а к значениям в строках 2, 4, 6. прибавить по модулю два значения из соответственно 1, 3, 5. строк.
  3. Добавить новый столбец к таблице истинности и переписать в новый столбец значения 1, 2, 5, 6, 9, 10. строк, а к 3, 4, 7, 8, 11, 12. строкам аналогично предыдущему пункту прибавить переписанные значения.
  4. Повторить действия каждый раз увеличивая в два раза количество переносимых и складываемых элементов до тех пор, пока длина не станет равна числу строк таблицы.
  5. Выписать булевы наборы, на которых значение последнего столбца равно единице
  6. Записать вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора записать единицу) и объединить их с помощью операции исключающего ИЛИ.

Виды логических операций

В качестве наименьшей единицы измерения объёма данных принято считать бит. В него заносится одно из двух значений — ложь (0) или правда (1). Каждая ячейка, соответствующая биту, находится лишь в одном из этих состояний. Существуют определённые операции, используемые для действий с ячейками:

  1. AND (И) — применяется для сравнения двух бит. Результатом действия будет единица, но лишь в том случае, если значения двух ячеек одинаковое. При остальных вариантах итог будет иметь устойчивое нулевое состояние.
  2. OR (ИЛИ) — по сути, операция обратная AND. Результат становится нулевым, если содержимое двух сравниваемых бит одинаковое. В остальных случаях он равный единице.
  3. XOR (ИЛИ) — если значения, содержащиеся в двух сравниваемых битах противоположны, при выполнении логического действия результат будет равный единице. Во всех остальных случаях он будет равняться нулю.
  4. NOT (НЕ) — действие, используемое для одного бита. Если первоначально ячейка находилась в нулевом состоянии, то после выполнения над ней операции она станет равной единице и наоборот. Фактические это логическая инверсия.

Эти операции являются основными элементами при составлении таблиц истинности и получения возможного результата. На основании их построена алгебра Буля. Некоторые элементы получаются путём объединения нескольких операций. Так, существует состояние: NAND (И-НЕ) и NOR (ИЛИ-НЕ). Первый элемент является инверсией операции «И», а второй — «ИЛИ». На основании рассмотренных операторов строится работа всех цифровых интегральных схем.

Построение таблиц истинности

Чтобы построить таблицу истинности для какого-либо логического выражения, надо действовать в соответствии с алгоритмом:

  1. Разбить выражение на простые утверждения и обозначить каждое из них как переменную.
  2. Определить логические преобразования.
  3. Выявить порядок действий этих преобразований.
  4. Сосчитать строки в будущей таблице. Их количество равно два в степени N, где N — число переменных, плюс одна строка для шапки таблицы.
  5. Определить число столбцов. Оно равно сумме количества переменных и количества действий. Можно представлять результат каждого действия в виде новой переменной, если так будет понятней.
  6. Шапка заполняется последовательно, сначала все переменные, потом результаты действий в порядке их выполнения.
  7. Заполнение таблицы надо начать с первой переменной. Для неё количество строк делится пополам. Одна половина заполняется нулями, вторая — единицами.
  8. Для каждой следующей переменной нули и единицы чередуются вдвое чаще.
  9. Таким образом заполняются все столбцы с переменными и для последней переменной значение меняется в каждой строке.
  10. Потом последовательно заполняются результаты всех действий.

В итоге последний столбец отобразит значение всего выражения в зависимости от значения переменных.

Отдельно следует сказать о порядке логических действий. Как его определить? Здесь, как и в алгебре, есть правила, задающие последовательность действий. Они выполняются в следующем порядке:

  1. выражения в скобках;
  2. отрицание или инверсия;
  3. конъюнкция;
  4. строгая и обычная дизъюнкция;
  5. импликация;
  6. эквивалентность.

Логические выражения и таблица истинности

Примеры задач с решениями по этой теме Пройти тестирование по теме Контрольная по теме

 Таблица истинности — таблица, показывающая,  какие значения принимает составное высказывание при  всех сочетаниях (наборах)  значений  входящих в него простых высказываний.

Логическое выражение — составные высказывания в виде формулы.

Равносильные логические выражения – логические выражения, у которых последние столбцы таблиц истинности совпадают. Для обозначения равносильности используется знак «=».

Алгоритм построения  таблицы  истинности:

1.подсчитать количество переменных n в логическом выражении;

2. определить число строк в таблице по формуле m=2n, где n — количество переменных;

3. подсчитать количество логических операций в формуле;

4. установить последовательность выполнения логических операций с учетом скобок и приоритетов;

5. определить количество столбцов: число переменных + число операций;

6. выписать наборы входных переменных;

7. провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной в пункте 4 последовательностью.

Заполнение таблицы:

1.разделить колонку значений первой переменной пополам и заполнить верхнюю часть «0», а нижнюю «1»;

2.разделить колонку  значений  второй переменной на четыре части и заполнить каждую четверть чередующимися группами «0» и «1», начиная с группы «0»;

3.продолжать деление колонок значений последующих переменных на 8, 16 и т.д. частей и заполнение их группами «0» или «1» до тех пор, пока группы «0» и «1» не будут состоять из одного символа.

Пример 1. Для формулы  A/\ (B \/ ¬B /\¬C) постройте  таблицу истинности.

 Количество логических переменных 3, следовательно, количество строк — 23 = 8.

Количество логических операций в формуле 5, количество логических переменных 3, следовательно количество столбцов — 3 + 5 = 8.

 

Пример 2. Определите истинность  логического выражения  F(А, В) = (А\/ В)/\(¬А\/¬В) .

1. В выражении две переменные А и В (n=2).

2.  mстрок=2n, m=22=4 строки.

3. В формуле 5 логических операций.

4. Расставляем порядок действий

1) А\/ В;  2) ¬А;  3) ¬В;  4) ¬А\/¬В;  5) (А\/ В)/\(¬А\/¬В).

5. Кстолбцов=n+5=2+5=7 столбцов.

А

В

А\/ В

¬А

¬В

¬А\/¬В

F

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 Вывод: логическое выражение принимает значение истина при наборах F(0,1)=1 и F(1,0)=1.

Пример 3. Построёте таблицу истинности для логического выражения

F = (A\/ B) /\ ¬С

  1. В данной функции три логические переменные – А, В, С
  2. количество строк таблицы = 23 =8
  3. В формуле 3 логические операции.
  4. Расставляем порядок действий

1) А\/ В;  2) ¬С; 3) (AVB) /\ ¬С  .

  1. количество столбцов таблицы = 3 + 3 = 6

А

В

С

A\/B

¬С

(A\/B) /\ ¬С

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Пример 4.  Определите истинность формулы: F = ((С \/В) =>  В) /\ (А /\ В) => В.

Построим таблицу истинности этой формулы.

 

Ответ: формула является тождественно истинной.

Пример 5. Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: X, Y, Z.

Дан фрагмент таблицы истинности выражения F:

X

Y

Z

F

1

1

1

1

Какое выражение соответствует F?

 1) ¬X/\¬Y/\Z                      2) ¬X\/¬Y\/Z                  3) X\/Y\/¬Z              4) X\/Y\/Z

 Решение (вариант 1, через таблицы истинности):

Чтобы решить данную задачу можно построить часть таблицы истинности для каждой из четырех функций, заданных в ответе для заданных наборов входных переменных, и сравнить полученные таблицы с исходной:

X

Y

Z

F

¬X

¬Y

¬Z

¬X/\¬Y/\Z

¬X\/¬Y\/Z

X\/Y\/¬Z

X\/Y\/Z

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 Очевидно, что значения заданной функции F совпадают со значениями выражения X\/Y\/¬Z. Следовательно, правильный ответ – 3.

Ответ: 3

 Решение (Вариант 2):

Чтобы не строить таблицу истинности для каждого выражения, можно просто перепроверить предложенные ответы по заданной таблице истинности. Т.е. в каждую из четырех предложенных функций последовательно подставлять значения переменных X, Y  и Z, из заданной таблицы истинности и вычислять значения логического выражения. Если значения вычисляемого выражения совпадут со значением F во всех трех строчках заданной таблицы, то это и есть искомое выражение.

 Рассмотрим данный конкретный пример:

1)первое заданное выражение  ¬X/\¬Y/\Z = 0 при X=0, Y=0, Z=0, что не соответствует первой строке таблицы;

2)второе заданное выражение ¬X\/¬Y\/Z = 1 при X=0, Y=0, Z=1, что не соответствует  второй строке таблицы;

3)третье выражение   X\/Y\/¬Z    соответствует F при всех предложенных комбинациях X,Y и Z;

4)четвертое выражение X\/Y\/Z = 1 при X=0, Y=0, Z=1, что не соответствует второй строке таблицы.

Ответ: 3

Пример задания

Пусть необходимо построить таблицу для логического выражения F = (A → B) * (A + B). Эта формула состоит из двух логических переменных A и B и нескольких операций. Начинают построение с определения строк. Используя формулу 2n+1 для рассматриваемого примера можно установить, что их число будет: x = 22 + 1 = 5.

Теперь следует определить число столбцов. Для этого используется формула, в которой учитывается количество переменных и операций. Последние можно просто посчитать, сложив количество разных знаков, используемых в записи формулы. Но правильней сначала расставить порядок операций, а затем посчитать. Согласно порядку действия над операциями их нумерацию можно представить в следующей очерёдности:

  1. Импликация в первой скобке.
  2. Инверсия во второй скобке переменной A.
  3. Отрицание во второй скобке неизвестной B.
  4. Сложение во втором члене.
  5. Конъюнкция.

В итоге получится, что столбцов будет: Y = 2 + 5 = 7. Теперь нужно построить таблицу 7Х5. В шапку первого и второго столбца вписывают переменные, а затем операции над ними. Затем в строках, соответствующих A и B нужно записать всё, что с ними может произойти. В итоге останется только правильно посчитать последний столбец.

Для этого нужно использовать законы. Необходимо выполнить логическое умножение значений в скобках. Первой и второй строчке будет соответствовать операция произведения один на один, что в ответе даст единицу. Третьей и четвёртой — ноль на один, что в итоге даст ноль. Последний столбец является главным для рассматриваемой логической функции. По нему можно узнать значение логической функции для любых форм переменных A и B.

Это довольно простая задача, содержащая всего две переменных. Но в реальности, например, в программировании, их может быть намного больше. Решать такие задания методом перебора проблематично. Поэтому при решении сложных примеров функцию вначале пытаются упростить.

Например, заданно выражение (x + y + z) * (x + y). По сути, оно записано в совершенно нормальной конъюнктивной форме. Но для приведения его к этому виду нужно, чтобы во втором выражении стояла z

Для того чтобы её добавить необходимо обратить внимание на то, что внутри скобок стоит логическое сложение. Поэтому дописав к нему ноль, результат не изменится

Добавить ноль через z можно, как ноль умножить на НЕ z. В итоге получится выражение (x + y + z) * (x + y + z + z), для которого, используя алгоритм составить таблицу уже не так и сложно.

Основные логические операции

Логические процессы подразделяются на несколько классов. Рассмотрим их последовательно.

Логическое отрицание (инверсия) —НЕ

Данная операция используется при обозначении отрицания. Она обозначается знаками — NO, NOT, ! В=2 (истина), а после выполнения операции отрицания, В, к примеру, приобретет значение 1 (ложное).

Таблица истинности инверсии:

Результаты операции НЕ следующие:

  • если исходное выражение истинно, то результат его отрицания будет ложным;

  • если исходное выражение ложно, то результат его отрицания будет истинным. 

Логическое сложение (дизъюнкция, объединение) — ИЛИ

Понятие «Логическое ИЛИ» также можно заменить понятием «Дизъюнкция». Данная операция обозначается знаками — ИЛИ, OR, ||, |. 

Но есть небольшое отличие: в «Логическом И» результат отрицания равен единице, если оба обозначения равны единице, а в «Логическом ИЛИ» итог равен единице, если одно из обозначений равно единице.

Таблица истинности операции ИЛИ:

Логическое умножение(конъюнкция) — И

В истории данная операция также обозначается как логическое умножение и конъюнкция. Данная операция обозначается элементами — И, AND, &&, &.

За объект описания возьмём А и В. Оба данных выражения могут иметь или неверное значение, или правдивое значение. Для применения операции логическое умножение, и А, и В должны является истинными (то есть равными единице). 

При всех остальных значениях операция будет ложной.

Таблица истинности операции И приведена ниже:

Логическое следование (импликация) — ЕСЛИ ТО

Данная программа имеет также название «Импликация». Она образуется из двух высказываний, которые соединяет: «если…, то».

Необходимо запомнить, что данная операция ложна только тогда, когда из первого ложного утверждения следует ложный итог. На компьютерном языке данный процесс обозначается формулой: if…then.

Таблица истинности операции ЕСЛИ ТО выглядит так:

Операция эквивалентности (равнозначности) — А ТОГДА И ТОЛЬКО ТОГДА, КОГДА В

Данная операция определяется так: сложное высказывание будет истинно тогда и только тогда, когда и А, и В — истинные.

И наоборот: сложное высказывание будет ложным тогда и только тогда, когда и А, и В — ложные.

Таблица истинности операции эквивалентности:

Табличный способ – этапы, особенности

Таблица истинности – табличное выражение результата логических операций для каждого отдельного набора значений переменных.

Такие таблицы позволяют абстрагироваться от маловажной информации, сосредоточиться только на связях между исходными данными, над происходящими процессами. Таким образом, человек может абстрагироваться от непонятной для него информации, решать неспецифические задачи

Метод таблиц

Чтобы использовать таблицы истинности, необходимо формализовать условие, то есть отойти от деталей задачи, обозначая первоначальную информацию при помощи букв и цифр 0 и 1.

Существует общий алгоритм построения таблиц:

Определить число логических значений/переменных (n) в примере.
Установить вид, число и тип операций

Важно заранее определить очередность действий, выразить это при помощи скобок.
Полученные данные позволяют рассчитать сколько нужно столбцов – это сумма числа переменных и операций.
Нарисовать таблицу, заполнить шапку, записав обозначение переменных и выбранные действия.
Определить, сколько существует наборов логических переменных (т.е. число строчек) по формуле m = 2n+ 1 (шапка).
Заполнить столбцы, вписав наборы значений логических переменных (0 или 1).
Записать результаты логических операций, указанных в шапке для каждой совокупности значений.
Сделать выводы на основании полученных результатов.

Если необходимо перебрать все значения простых выражений, то для задач:

с 2-мя переменными может быть только 4 набора логических переменных;

Если словесно описывать все эти комбинаций, на каждый из примеров понадобится десятки строк текста.

 Обязательно учитывают приоритет операций:

  • Указанные в скобках.
  • Отрицание.
  • Логическая конъюнкция чисел.
  • Дизъюнкция.
  • Строгая дизъюнкция.
  • Импликация.
  • Эквивалентность.

Электросхемы и таблицы истинности

При помощи «0» и «1» можно обозначить, светится ли лампочка, идет ли ток при параллельном или последовательном соединении проводов. Это настолько удобно, что у разных логических функций есть стандартные обозначения при построении электрических схем:

Переменными являются переключатели, а результат (горит лампа/идет ток) будет «1» – истина или «0» – ложь.

Для конъюнкции и инверсии подходит последовательное соединение, но во втором случае переключатель один, для дизъюнкции – параллельное.

Это примеры простейших электросхем. Понимание простейших логических взаимосвязей, умение быстро строить и анализировать электроцепи позволяет строить, паять более сложные, многоуровневые схемы. Для автоматизации применяют различные программы, самый простой вариант – таблицы Excel.