Как рассчитать освещенность помещения

Содержание

Как рассчитывается норма КЕО

Естественный свет – величина непостоянная, потому и нормируется он не по освещенности, а по ее коэффициенту (КЕО). Он рассчитывается по формуле:

Е = (Ев/Ен) х 100, %, где:

  • Ев – естественная освещенность точки, расположенной внутри помещения;
  • Ен – наружная освещенность (горизонтальная) при небосводе, открытом полностью.

Очередность шагов

Первым делом выбирается система освещения. Оно может быть боковым, верхним или комбинированным. Выбор зависит от назначения производственного помещения с обязательным учетом особенностей технологического процесса.

Величина Ен корректируется в зависимости от района расположения производственного объекта.

КЕО снижается из-за запыленности поверхностей, пропускающих свет. Для учета степени загрязненности остекления выбирается коэффициент запаса Кз.

Световая характеристика проемов определяется в соответствии с:

  • соотношением длины и глубины помещения, глубины и высоты (от уровня рабочей поверхности до верхней границы окна) – при боковом освещении;
  • соотношением длины и ширины помещения, его высоты и ширины и типа фонаря – при верхнем освещении.

Целью расчета естественного освещения является определение площади оконных проемов.

Если рабочее место расположено менее чем в двенадцати метрах от окна, достаточно одностороннего освещения. При увеличении расстояния свыше 12 метров необходимо обеспечить рабочую точку двухсторонним боковым освещением.

Неточности и погрешности при расчёте светодиодного освещения

Часто замену обыкновенных лампочек на светодиодные производят во время планового ремонта. После, в процессе эксплуатации, оказывается, что света недостаточно.

Основная причина таких казусов – отсутствие учета коэффициента отражения поверхностей.

Переклейка более тёмных обоев, использование линолеума либо ламината тёмных оттенков, матовый подвесной потолок способны ощутимо уменьшить освещённость в помещении. В данном случае мы говорим об общей освещённости. Интенсивность света на письменном столе, над которым смонтирован светодиодный светильник, может быть достаточной. А вот попытка чтения любимой книги, лёжа на диване, будет вызывать дискомфорт, если стены будут мало отражать свет от потолочных светильников.

Для определения коэффициента отражения принято учитывать такие коэффициенты:

  • 70% — белый цвет поверхности;
  • 50% — светлый;
  • 30% — серый;
  • 10% — темный;
  • 0% — черный;

Существует множество поправочных таблиц для определения освещённости поверхности при различных коэффициентах отражения. Ради лёгкости расчёта можно использовать упрощённую формулу.

Общий коэффициент отражения = (КО потолка + КО стен + КО пола) / 3

Так мы получаем усреднённые, которые позволят заложить поправочный коэффициент в наши расчёты.

Пример:

В комнате белый потолок (КО 70%), персиковые обои (КО 50%) и светлый ламинат (КО 50%).

Средний коэффициент отражения = (0,7+0,5+0,5)/3*1,2 = 0,7

Если в комнате установлены светодиодные лампы с номинальным световым потоком 1400 люмен, при расчете светильников на помещение берем 1400*0,7 = 1000 люмен.

Подбор осветительных приборов

На производстве используются различные светильники, если нужно равномерное освещение применяют линейные светильники с лампами дневного света, для общего освещения используют потолочные светильники с лампами типа ДНаТ или ДРЛ, их устанавливают на потолке или на стенах, возможна установка прожекторов, если они не будут слепить персонал. Осветительное оборудование также должно соответствовать климатическим условиям. Конструктивно должна быть предусмотрена защита от стекол в случае взрыва лампочки или порчи плафона, например, металлическая сетка.

Еще один коэффициент запаса вводится при расчетах, которые учитывают степень загрязнения плафонов. В пыльных и жарких помещениях плафон становится грязным и хуже пропускает свет. Для того чтобы избежать значительной потери света нужно проводить плановую чистку светильников от нескольких раз в год, до нескольких раз в месяц (на металлургических производствах, например).

По типу используемых ламп выделяют:

  1. Лампы накаливания. В большинстве стран запрещены из-за их высокого потребления электроэнергии. Светоотдача порядка 10–15 Лм/Вт, светят до 1000 часов. Индекс цветопередачи более 90.
  2. ДРЛ. Используются в прожекторах, в наружном и внутреннем освещении, в открытых потолочных светильниках, для работы нужна пусковая аппаратура. Выдают световой поток более 30 Лм/Вт, светят до 12000 часов, Индекс цветопередачи около 50.
  3. ДНаТ. Чаще всего устанавливают в светильники на фонарных столбах, световой поток порядка 60 Лм/Вт, срок службы – 10000 часов. Индекс цветопередачи меньше 39.
  4. Светодиоды 80–120 Лм/Вт, срок службы до 100000 часов, индекс цветопередачи больше 80.

В зависимости от типа светильника, окраски его стенок, наличия отражателя и рассеивателя конечный световой поток может значительно отличаться.

Пояснение:

Индекс цветопередачи характеризует способность человека различать цвета поверхностей под источником света. У солнечного света индекс цветопередачи равен 100, в документации обозначается, как CRI или Ra. Он зависит от равномерности спектра, излучаемого источником света. При этом изделия от нечестных производителей могут обладать индексом близким к 100, но при этом цвета под его светом плохо читаются, т. е. спектр излучения «рванный». Это связано с составом люминофоров, используемых при производстве источников. Индекс цветопередачи измеряется по передаче 8 цветов. Производители научились формировать пики спектра на нужных длинах волн, поэтому результаты измерения определяют такие значения. Эта информация касается в первую очередь светодиодов и люминесцентных ламп. В светотехнике есть и другие индексы, например, R9 – индекс передачи оттенка цвета человеческой кожи, CQS – методика определения качества света и другие.

Далее, нужно распределить полученное в результате расчетов и выбора осветительного оборудования количество светильников по площади либо равномерно, либо в областях с большим количеством рабочего оборудования – больше светильников, в проходах – меньше. Далее, выполняют чертеж расположения и схему цепей освещения.

Более сложный и точный расчет освещенности

В профессиональных расчетах используют более сложный способ расчетов, который применяется для ламп всех видов. Общие принципы вычисления в обоих способах совпадают, но для большей точности учитывают дополнительные коэффициенты, такие как:

  • k — коэффициент запаса, который учитывает запыленность светильников и ухудшение их возможности пропускать свет, снижение уровня светового потока от лампы с течение времени, ухудшение состояния отражающей способности стен и потолка. Поскольку светодиодные светильники обладают длительным периодом службы без ухудшения качества, то для них коэффициент запаса составляет 1.1.
  • z — показатель соотношения среднего освещения к минимальному Eср/Emin, то есть неравномерность уровня освещения. У светодиодных ламп благодаря ровному свечению этот показатель равен 1.
  • Φ — световой поток светодиодных ламп, Лм, который узнается на упаковке или из сопроводительной документации к лампам освещения.
  • η — коэффициент использования светового потока, то есть КПД источника освещения. В высокоэффективных светодиодных лампах он практически равен 1.
  • E — норма освещенности в Лк, из таблиц или непосредственно из СНиП.

Также в сложном расчете более точно вычисляют корректирующую высоту потолка. Для ее расчета определяют:

  • h — общую высоту помещения
  • h1 — длину или высоту подвеса у потолочного светильника
  • h2 — высота от пола до основной рабочей поверхности (стол, кровать)

Такой сложный расчет производится исходя из того, что в большинстве случаев источник освещения располагается ниже потолка, а наибольший уровень освещения необходим не на уровне пола, а на высоте рабочей поверхности.

Формула расчета имеет следующий вид:

hp = (h – (h1 + h2)), где hp — расчетная высота помещения, нуждающаяся в освещении

Данный показатель наравне с длиной, шириной и общей площадью участвует в расчете индекса помещения, то есть геометрических характеристик помещения.

Формула индекса (i) помещения рассчитывается следующим образом:

i = S / (hp × (a + b)), где a и b — длина и ширина, а S площадь.

В итоге общая формула для расчета освещенности помещения светодиодными лампами и определения необходимого количества ламп выглядит следующим образом:

N = (E × S × k × z × 100)/(n × Ф × η)

Такие сложные расчеты обычно производят в ходе проектирования помещения и разработки его технических характеристик. В быту используют методы попроще.

Важные поправки

Важным фактором, непосредственно влияющим на интенсивность подсветки в жилой зоне, является высота потолков. Здесь действует простая зависимость – чем выше (читай дальше) источник света расположен от рабочей плоскости, тем меньшее количество лучей на неё попадает.

Можно, конечно, устанавливать подвесные модели светильников, чтобы их свет попадал непосредственно на пользовательскую зону. Такие модели снабжены длинными проводами-подвесами, высоту которых можно регулировать под параметры комнаты. Но всё равно часть светового потока будет впустую рассеиваться в высоких сводах потолков.

Он, помимо этого, учитывает и неизбежное постепенное выгорание ресурса ламп. В большей степени это относится к люминесцентным моделям (так называемым «экономкам»). Они наиболее подвержены потускнению в период эксплуатации. Понятно, что выбирать модели лампочек нужно исходя из яркости их свечения. Усреднённый расчёт можно проводить на основе данных этой таблицы:

Лампы и их светоотдача

Учитывая более высокую производительность светодиодных лампочек можно брать либо меньшее их количество, либо просто использовать менее мощные модели. Светодиоды ещё хороши тем, что служат намного дольше всех аналогов вместе взятых. При этом они показывают наибольшую светоотдачу — при наименьшем уровне потребления. На данный момент они – лучшие, что для дома, что для офиса.

Почему светотехнический расчет так важен?

Значительную часть информации человек получает через органы зрения, следовательно, хороший и правильный свет необходим всегда. Если освещенность рабочего места или иного пространства недостаточная, то зрительные возможности человека ухудшаются. Даже большая мощность светодиодной лампы при ее неправильном использовании не даст желаемого эффекта. Этот факт негативно влияет на нервную систему, приводя к усталости, оборачивается сниженной мощностью всего производственного процесса и даже может привести к несчастным случаям на предприятии.

Уровень освещенности определяется при помощи специальных приборов, имеющих название фотометры или люксметры. Данные приборы показывают фактические значения освещения. Далее полученные данные должны быть сопоставлены с регламентными показателями, например, светодиодного освещения. Для того чтобы эти значения были идеальными и требуется предварительное проектирование, как отдельных элементов помещений, так и системы в целом. Неправильное свечение приводит к развитию близорукости, появлению головных болей, ухудшению памяти, не говоря уже о простом дискомфорте.

Возможно ли сделать светотехнический расчет самостоятельно?

Да, самостоятельно выполнить расчет освещения вполне по силам практически для любого человека. Однако есть нюансы. Чем он сложнее, тем больше специализированных навыков, знаний и времени потребуется.

А. Простая задача

Требуется сделать расчет для себя, когда объект освещения «единичен» и соблюдение стандартов и СНиП не играет существенной роли, а именно в таких, например, случаях:

  • Оценить уровень освещенности отдельной комнаты с одним источником света (например: жилая комната с люстрой) или решить, лампы какой мощности и в каком количестве потребуются для освещения коридора со стандартной высотой потолков.
  • Выяснить тип уличного фонаря, который подойдет для освещения придомовой территории на даче, входа в здание, подъездной дороги, территории у ворот и т.д.

В качестве решения можно

  • использовать экспертное мнение, для чего можно переговорить со знакомым электриком или воспользоваться множеством онлайн-форм расчета освещенности в интернете, полистать интернет форумы, погуглить или переговорить с продавцом светильников в соответствующем магазине, вспомнить собственный опыт организации / использования освещения в школе, в спортзале, на работе, во дворе, дома и т.д.
  • использовать данные метода удельной мощности или стандартные расчетные таблицы, графики и номограммы.

Б. Задача организации освещения крупного объекта

Складывается вокруг задачи подбора освещения для нескольких помещений или для большой территории. Качество решения и затраченное на него время зависит от вашего опыта, инженерно-технических навыков, наличия требуемой информации «под рукой».

Решение может быть аналогичным решению простой задачи, только времени может потребоваться больше, так как базовых объектов расчета не один, а несколько. Также можно передать задачу выполнения расчета производителю или продавцу, тем более что последние могут выполнить подобную работу бесплатно.

В. Комплексная задача оценки характеристик осветительной установки

Когда требуется обязательное соблюдение стандартов и СНиПов, рассчитать освещение средних и крупных объектов, производств и взрывоопасных объектов, нескольких улиц и т.д.

Решение

Выполнить расчет освещенности самостоятельно по-прежнему возможно, но потребуется большая подкованность инженерно-техническими, строительными и светотехническими знаниями, потребуется наличие информации из регламентирующих документов, чертежи объекта и некоторые математические способности для ручного расчета или владение навыками использования специализированного программного обеспечения и соответствующие данные от производителей осветительных приборов для компьютерного моделирования.

И вот здесь существенными становятся: 1) фактор времени 2) количество принимаемых «допущений».

Передать данные по задаче и объекту для бесплатного расчета освещенности производителю или поставщику оборудования.

Г. Планирование архитектурно-художественного освещения

Когда, например, требуется организовать освещение фасада объекта, парка, моста, монумента и т.д. Вам понадобится дизайн-проект системы с точками установки осветительных приборов и их спецификация с описанием режимов работы.

Решение:

1. Для самостоятельной подготовки расчета:

1.1. Для ручного расчета. Так как обычно для расчета установокархитектурного, витринного и рекламного освещения основным расчетным нормируемым параметром является средняя яркость поверхностей освещаемого объекта, достаточно несколько табличных данных по каждой модели светильника или, в крайнем случае, кривые силы света, которые потребуется пересчитать в отдельные значения.

1.2. Для компьютерного моделирования потребуется модель здания или визуализация концепции освещения от архитектора и соответствующие файлы данных по светильникам от производителя.

С чего начать расчет искусственного освещения?

Немного теории (обязательно к прочтению тем, кто сталкивается с терминами впервые)

Для того чтобы измерять и сравнивать освещенность, используется специальная единица измерения – Люкс. Физически один Люкс представляет собой освещенность поверхность радиусом 1 метр точечным источником света силой 1 кд.

Для сравнения:

  • 1кд – сила света свечи.
  • 100 кд – лампы накаливания.
  • 0,005 кд – светодиода.

Также, 1лк – это освещенность поверхности площадью 1м.кв. при световом потоке 1лм.

Сравним Люмены (лм) самых популярных ламп:

  • Лампа накаливания 100 Вт = 1340.
  • Галогенная 230 Вт = 625.
  • Люминесцентная 36 Вт = до 3350.
  • Светодиодная 40−80 Вт = 6000.

И снова вернемся к Люксам.

Дневная освещенность ярким летним днем равняется 10-25 тыс. лк. Во время полнолуния: 0,27 лк. Комфортная для глаз и продуктивная работа в кабинете состоится при 320-500 лк.

Способы расчёта

Их можно выделить два:

  1. По электрической мощности (в Ваттах).
  2. По световой (в Люменах).

Для каждого варианта предусмотрены свои нормы, формулы и единицы измерения. Оба имеют свои достоинства и недостатки. Рассмотрим их более детально.

Считаем в Ваттах

Этот способ рассчитать освещённость помещения самый простой, привычный, но не самый точный. Для его применения необходимы следующие данные:

  • площадь комнаты;
  • требуемая мощность на квадратный метр.

Площадь находим по простой школьной формуле S=a*b. Далее, берём данные о необходимом количестве Ватт на 1 м2 — в среднем это 20 Вт — и множим на площадь. Математически это будет выглядеть так: P=S*p, где P — общая мощность, p — номинальная для 1 м2. Теперь можно высчитать количество лампочек в помещении. Просто делим общую мощность на этот же показатель для одной лампы. То есть, если вы хотите осветить помещение, которое требует в общем 300 Вт с помощью лампочек в 75 Вт, то: 300/75=4 — именно столько источников света вам понадобится.

Рациональное использование источников освещённости позволит улучшить атмосферу в помещении

Следует отметить, что норма 20 Вт — очень приблизительна. И чтобы повысить точность, желательно использовать отдельные показатели по каждому типу помещения:

  • гостиная — 10–35 Вт;
  • кухня — 12–40 Вт;
  • ванная комната — 10–30 Вт;
  • спальня — 10–20 Вт.

Все данные о мощностях мы умышленно привели для обычных ламп накаливания, как самых распространённых в наших краях. Производители более дорогих и в то же время экономичных видов зачастую указывают на упаковке какой по мощности лампе накаливания соответствует этот экземпляр.

Считаем в Люменах

Этот способ, с одной стороны, более точный, с другой — менее привычный. Хотя, если разобраться в единицах измерения, то ничего сложного в нём нет. Сложность заключается в том, что большинство из нас ассоциирует всё связанное с освещением с Ваттами. Но на самом деле эта единица измерения показывает лишь сколько ваша лампа потребляет электрической энергии. А сколько она при этом даёт света, её световой поток, измеряется в Люменах (Лм). В свою очередь, освещённость помещения измеряется уже в Люксах (Лк). 1 Лк равен 1 Лм на 1 м2. Объясняем проще. Если с помощью светового потока в 1 Лм осветить поверхность площадью в 1 м2 — такая освещённость будет равна 1 Лк.

Дальше действуем по тому же алгоритму. Берём общую площадь, множим её на необходимую освещённость для 1 квадратного метра и получаем мощность светового потока, которая нужна для освещения всего помещения. Формула почти такая же, как и раньше: P=S*E. Где S по-прежнему площадь, P — общая мощность (теперь в Лм), а E — освещённость 1 м2 в Лк.

Помните об эффективности каждого источника освещения

Чтобы воплотить эту формулу в жизнь понадобятся нормы по освещённости того или иного типа помещения. По разным нормативным документам они составляют:

  • гостиная — 100–200 Лк;
  • кухня 150–300 Лк;
  • ванная комната — 50–200 Лк;
  • спальня — 100–200 Лк.

Осталось произвести расчёт количества светильников. Для этого общую мощность (P) делим на световой поток от одного источника (F) — n=P/F. Здесь тоже потребуются определённые цифры. А именно световая мощность разных видов ламп. Почти всегда эти сведения можно найти на упаковке. Но на всякий случай основные из них приведём и здесь:

Тип лампы Потребляемая мощность (Вт) Мощность светового потока (Лм)
Лампа накаливания 15

25

40

60

75

100

90

230

430

730

960

1380

Галогенная лампа 12 В 20

35

50

75

340

670

1040

1280

Галогенная лампа 220 В 100

150

200

300

400

500

1650

2600

3200

5000

6700

9500

Светодиодная лампа 2–3

4–5

8–10

10–12

12–15

18–20

25–30

250

400

700

900

1200

1800

2500

Люминесцентная лампа 4

6

8

13

15

16

18

36

58

120

240

450

950

950

1250

1350

3350

5200

Подставив данные из таблицы в формулу над ней, вы сможете рассчитать количество источников света при использовании разных типов ламп.

Как мы и говорили, если внимательно отнестись к единицам измерения и не путать Люмены и Люксы — сам расчёт ничего сложного собой не представляет. При достаточном уровне ответственности и внимания произвести его сможет каждый. Но если эта информация вас немного озадачила — можем предложить произвести подсчёт онлайн. Для этого используйте специальный калькулятор освещённости помещения.

Сравнительная характеристика лампы накаливания и светодиодной

Разница «в возрасте» этих типов ламп составляет почти сотню лет. Тем не менее, «старушка» с вольфрамовой нитью в колбе до сих пор остается самой востребованной на рынке.

Светодиодные лампы Navigator Filament

Давайте проведем небольшой сравнительный анализ основных технических характеристик двух типов ламп – накаливания и светодиодной. Ведь не только мощностью отличаются равные по световому потоку изделия.

Светоотдача

Светоотдача лампы определяется как отношение светового потока к мощности. Измеряется этот параметр в Лм/Вт. Светоотдача лампы накаливания колеблется в пределах 8-10 Лм/Вт. Ее светодиодный сородич имеет диапазон 90-110 Лм/Вт. Следовательно, эффективность последнего явно выше.

Цветовая температура

При проектировании освещения дома или офиса специалисты рекомендуют руководствоваться следующей таблицей:

Площадь помещения, кв. м

Требуемая мощность лампы, Вт

Накаливания

Светодиодная

Менее 6 150 18
10 250 28
12 300 33
20 500 56
30 700 80

Теплоотдача

Не менее важной характеристикой, подлежащей сравнению, является теплоотдача от изделия. Лампы накаливания могут разогреваться до 250 градусов. Лампы накаливания могут разогреваться до 250 градусов

Лампы накаливания могут разогреваться до 250 градусов.

Правда, в основном этот параметр держится в пределах 170 градусов.

Разогретая стеклянная колба является потенциальным источником пожара, поэтому при монтаже осветительной сети в деревянном доме использовать традиционную лампочку не рекомендуют.

В этом плане светодиодная ламп находится в более выигрышном положении: она может нагреться не выше 50 градусов. Следовательно, никаких ограничений в ее применении не существует.

В этой статье речь идет об общих случаях. Для помещений категории повышенной взрыво-пожароопасности выпускаются соответствующая продукция, имеющая высокую степень защищенности.

Срок службы

Светодиодные лампы характеризуются отменной живучестью. Производители утверждают, что прослужить их изделие может более 50 тысяч часов. Лампы накаливания живут намного меньше – всего 1000 часов. Поэтому гораздо выгоднее один раз купить дорогую лампочку, которая прослужит несколько лет, чем каждые 3 месяца менять дешевую.

Типы светодиодных ламп

Однако долговечность светодиода не отражает одного прискорбного факта: со временем интенсивность его свечения снижается. Примерно через 4000 часов работы свет от него заметно потускнеет.

Деградация светодиода тем выше, чем ниже его качество. Много нареканий в этом плане возникает у потребителей к китайской продукции.

КПД

Коэффициент полезного действия ламп освещения говорит о том, какой процент потребленной электроэнергии превращается в свет, а какой – в тепловую энергию. КПД светодиодов составляют примерно 90%, лампа накаливания может похвастаться лишь семью-девятью процентами.

Thomson Filament — светодиодные лампы нового поколения

Цена

В интернете бурно спорят противники и сторонники светодиодов. Предмет их спора – стоимость. Ведь стоят светодиодные лампы более чем в 10 раз выше обычных. В пользу первых говорит малая мощность, а, следовательно, низкое энергопотребление.

Для наглядности сведем показатели экономичности ламп разного типа в таблицу:

Наименование показателя Лампа накаливания Люминесцентная  Светодиодная 
Мощность, Вт 60 12 5
Стоимость изделия, руб. 30 150 300
Энергопотребление за год, кВт*ч 175 35 14
Стоимость потребленной энергии*, руб./год 526 105 44

Таблица составлена на основе следующих исходных данных: в среднем лампочка горит около 8 часов в сутки или 8 х 365 = 2920 часов; стоимость 1 кВт*ч принята за 3 рубля.

Из таблицы видно, что даже без учета долговечности ламп светодиодная по сравнению с лампой накаливания занимает явно выигрышное положение.

Прочие характеристики

  • силе тока;
  • механической прочности;
  • цветовой температуре и некоторым другим показателям.

Давайте сравним две лампы:

  • светодиодную мощностью 9 Вт;
  • накаливания на 60 Вт.

Результаты сравнения сведем в таблицу:

Наименование параметра Светодиодная, 9 Вт Накаливания, 60 Вт
Сила тока, А 0,072 0,27
Эффективность светоотдачи, Лм/Вт 53,4 10,3
Световой поток, Лм 454,2 612
Цветовая температура, К 5500-7000 2800
Рабочая температура, С 70 180
Чувствительность к низким температурам отсутствует Присутствует у некоторых ламп
Чувствительность к влажности отсутствует Присутствует у некоторых
Механическая прочность Высокая – можно трясти Низкая – при сотрясении может оборваться нить или лопнуть стекло
Тепловое излучение, БТЕ/ч 3,4 85

Все вышеприведенные таблицы позволяют составить общее представление о преимуществах и недостатках светодиодов и лампочек накаливания.