Требования к релейной защите
Селективность
Система обязана локализовать неполадку до критического повреждения оборудования. Это качество характеризуется избирательностью системы или селективностью. Чем большее число различного типа датчиков, чем предусмотрительнее инженерный состав их расставил, тем больше вероятности, что лишь малая часть цепи окажется выведена из работы.
Особенно важным качеством это становится для защиты электростанций и подстанций. В указанном месте происходит ветвление цепи. И каждое направление содержит массу потребителей. Если отключить всех, ситуация примет характер аварии: потеря прибыли поставщика и абонентов. Торговые точки, магазины, кабинеты оказания услуг населения лишатся в этот день клиентов.
Чувствительность
На мощных линиях авария порой проходит незаметно. Ущерб составит значительную сумму. Пострадают и потребители. Следовательно, хорошая релейная защита призвана обеспечивать необходимую чувствительность, чтобы вовремя пресечь неприятные последствия.
Быстродействие
Чем быстрее действуют цепи реле, тем быстрее устраняется опасность. В масштабах системы это приобретает огромное значение. Станки не остановятся, транспорт продолжит движение. Для каждой системы быстродействие выбирается, исходя из наличествующих условий. К примеру, главенствующим фактором оказывается послеаварийная величина напряжения. Чем меньше остаток, тем быстрее полагается отключать абонентов.
С этой точки зрения максимально опасным считается короткое замыкание по двум или по всем трём фазам, если нейтраль глухо заземлена. В упомянутых случаях напряжение снижается максимально, а ток через кабель достигает ощутимых размеров. Реле, соответственно, призваны ответить на нештатную ситуацию скорейшим срабатыванием.
Вторым параметром считается общий вольтаж цепи:
- От 6 до 10 кВ – время отключения 1,5…3 сек.
- От 110 до 220 кВ – время отключения 1,15…0,3 сек.
- От 300 до 500 кВ – время отключения 0,1…0,12 сек.
Что касается бытовой техники, она обычно через реле не защищается, вместо этого применяются автоматы и предохранители. Скорость срабатывания достаточно высока. Особенно у дифференциальных автоматов. Критерием достаточности скорости отключения цепи служит остаточное напряжение. Оно находится, разумеется, не натурным экспериментом, а расчётами.
Согласно ПУЭ требуется определить остаточное напряжение (после аварии в виде короткого замыкания) на выходах шин всех питающих линий: трансформаторы, генераторы, подстанции. Если цифра выходит менее 60% от номинала, полагается немедленно отключить цепь. Время отключения складывается из перечня элементов:
- Скорость срабатывания выключателя (типичные значения находятся в справочниках).
- Быстродействие цепи релейной защиты.
Соответственно, по имеющимся требованиям, перечисленным выше, и известной скорости срабатывания выключателя определяют быстродействие цепи релейной защиты. В дальнейшем параметр требуется предоставить, правильным образом подбирая оборудование. Защита, срабатывающая менее чем за 0,2 сек, считается быстродействующей. Но современные системы показывают минимум на порядок лучшие параметры, мгновенно вырубая питание.
Органы и виды релейной защиты
Как известно, релейная защита предназначена для скорейшего автоматического отключения неисправных или повреждённых элементов электрической системы и своевременной сигнализации об отклонениях от нормального режима работы, но не требующих немедленного отключения.
Все функции релейной защиты исполняются следующими органами:
- Реле контроля и защиты.
Пусковые органы ведут постоянный мониторинг состояния и режима работы защищаемого участка электрической сети и срабатывают при возникновении коротких замыканий и ненормальных режимах работы. В электрических схемах реализуются в виде токовых реле, реле напряжения, мощности и др. - Задачей измерительных органов является выявление места, характера повреждений и принятие своевременного решения о необходимости действия защиты. В электрических схемах реализуются в виде токовых реле, реле напряжения, мощности и др.
- Логическая часть представляет собой схему, которая запускается в работу пусковыми органами, производит анализ действий измерительных органов и, на основе полученных данных выполняет предусмотренные протоколом действия. В электрических схемах реализуются в виде таймеров, логических элементов, промежуточных и указательных реле.
Для предупреждения превышения величины тока на защищаемом участке электрической сети используется токовая защита. Это один из вариантов релейной защиты, которая срабатывает при превышении величины тока на защищаемом участке сети, по отношению к току срабатывания или уставке. Принято различать максимальную токовую защиту и токовую отсечку.
Максимальная токовая защита (МТЗ) выполняется таким образом, что бы величина тока её срабатывания превышала максимальный рабочий ток не менее чем 1,2 – 2 раза ( с учётом коэффициентов надёжности, возврата и самозапуска реле ). Это позволит исключить возможность ложного срабатывания релейной защиты в условиях нормальной работы сети.
Величина уставки по времени срабатывания релейной защиты отличается от предыдущей и последующей на величину ступени селективности ∆t 0,2 – 1 секунд. Такая настройка позволяет первой сработать релейной защите, которая наиболее близко расположена к месту КЗ, а в случае отказа первой, сработает предыдущая, но через промежуток времени равный порогу селективности.
Важной характеристикой МТЗ принято считать её коэффициент чувствительности. Его определяют как отношение величины тока междуфазного КЗ к величине фактического тока срабатывания защиты
ПУЭ определяет эту величину не менее 1,5.
Токовая отсечка ( ТО ) – это вариант быстродействующей релейной защиты, срабатывающей без задержек времени, работа которой направлена на отключение наиболее тяжёлых вариантов КЗ. Коэффициент надёжности применяемых реле определяет величину кратности тока срабатывания в 1,1 и 1,2 по отношению к величине расчётного тока трёхфазного КЗ. Следовательно, зона уверенного действия токовой отсечки покрывает только 20 % всей защищаемой линии.
Такая ограниченность зоны действия является существенным недостатком работы ТО. Такое положение дел привело к тому, что ТО применяется только совместно с МТЗ в качестве второй ступени.
Работа защиты минимального напряжения ( ЗМН ) основана на контроле величины напряжения между фазами. При выходе из строя хотя бы одной фазы равенство напряжений между фазами нарушается – срабатывает механизм отключения и как следствие отключается напряжение питания.
Газовая защита устанавливается с целью защиты маслонаполненных трансформаторов от внутренних повреждений. При возникновении КЗ внутри трансформатора закипает масло и начинается усиленное выделение газов, что ведёт к повышению давления, что в конечном итоге может привести к выходу трансформатора из строя.
Газы направляются через реле, и под их давлением поворачивается чувствительный элемент, что ведёт к замыканию контактов. Далее вступает в работу типовая схема на отключение трансформатора.
Дифференциальную защиту принято считать основной автоматизацией релейной защиты трансформаторов и автотрансформаторов. Она характеризуется абсолютной селективностью и быстродействием.
Принцип действия релейной защиты такого типа основан на сравнении величин токов, например, на разных концах защищаемого участка. Как только на защищаемом участке возникнет ток КЗ, сразу сформируется разностный ток и сработает система отключения. Недостатком служит необходимость отключения сразу после срабатывания.
Таким образом, виды и органы релейной защиты позволяют определить место возникновения КЗ и других нештатных состояний электрической сети, своевременно локализовать повреждённый участок и исключить его из работы.
Схема
Разновидностей, комбинаций, мест релейной защиты на сетях и в ЭУ чрезвычайно много. Есть также стандартизированные варианты, своеобразные шаблоны — принципиальные схемы. Но независимо от сложности любой чертеж можно понять, только научившись его читать. Этот навык необходим для работы с РЗиА.
По важности и сложности «принципиалки» комплектов РЗиА вторые в проекте всей системы электрооборудования. Во всех случаях — при разработке или для проверки готовых схем потребуются хотя бы минимальные навыки в электротехнике
Даже специалистам порой сложно разобраться в схеме РЗ на элементарном вводе трансформаторов 10 кВ, не говоря уже в целом для подстанции 110/10 кВ.
Рассмотрим прием, упрощающий понимание чертежей. Нижеописанный метод стандартный и распространенный, он не наносит ущерб качеству анализа.
Разбивка схемы на части
Целая схема чрезвычайно сложная для восприятия, поэтому ее условно разделяют на обособленные участки и анализируют каждый отдельно.
Рассмотрим РЗиА с терминалами на микропроцессорах, разделим чертеж на 10 позиций:
- поясняющая;
- цепи: измерений (тока, напряжений);
- механизма выключателя;
- задействованного тока (оперативного), в том числе питание терминала;
- сигнализации;
- выходные, в том числе ТС и резерва;
- АСУ;
- вспомогательные (обогрев, свет, розетки и пр.);
список элементов, может быть отдельно;
параметрирование, изложенное в таблицах и логических схемах. Также могут выделяться отдельно.
Не каждый комплект РЗ содержит все 10 позиций, но отсутствие какой-либо должно быть обосновано, если же это невозможно сделать, то в наличии ошибка в схеме.
Указанный метод — это своеобразный чек лист, система анализа. Полученные результаты можно зафиксировать списком с галочками напротив пунктов и передать исполнителю перед конструированием.
Пример проверки: обосновывается отсутствие цепи привода в ТН 10 кВ (позиция 2 в разделе «цепи» списка) тем, что ячейка последнего без выключателя, и это логично. Если же ответа на поставленный вопрос, например, почему по вводу 10 кВ в РЗ отсутствуют данные параметрирования, нет, то в наличие ошибка, особенно для терминалов с гибкой логикой.
Типовые ошибки схем:
- в токовых цепях — неправильная полярность при подсоединении ТТ к терминалу;
- цепи привода — взвод (готовность к активации). Может быть неправильное смыкание, разомкнутость. Надо проверять сопоставляя с алгоритмом терминала;
- цепи оперативных токов — ключи контроля, режима управления (МУ/ДУ);
- цепи дуговой защиты, конструкции с генерированием особенно подвержены таким сложным ошибкам.
Пример разбивки схемы и прочтения
Для объяснения мы взяли популярный пример из интернета, к нему также в сети есть видеоматериалы. Схему покажем по частям (соединяются в горизонтальной плоскости), так как она достаточно большая.
Чертеж для РЗ с электромеханическими реле, выключателем ВВТЕЛ Тавридаэлектрик (без терминала, это не цифровая конструкция на микропроцессорах) линии 10 кВ на подстанции 110/10 кВ:
Вторая часть схемы:
Третья часть схемы:
Схема доступная в сети, для ее открытия потребуются специальные программы для чертежей. Далее, выделим и покажем части.
Поясняющая схема:
Измерительные цепи (электромеханика, МТЗ, МТО, цепи питания от переменного опертока привода выключателя, счетчики преобразователи):
Цепи привода (блок питания и управления, цепи электромагнитов):
Цепи оперативного тока (автомат, исполнительные реле, блок питания):
Дуговая защита относится к цепям опертока:
Цепи аварийной и предупредительной сигнализации световой, центральной (ниже):
Выходные цепи (в данном случае это то, что входит в телесигнализацию):
Вспомогательные цепи:
Перечень элементов:
В данном примере нет таблиц логики, данных параметрирования, цепей АСУ, параллельной защиты автоматики, так как эта релейная защита без терминала, не на микропроцессорах.
Резервная защита присоединения
Опять же давайте сначала посмотрим определение (ПЭУ п.3.2.15) – “Для действия при отказах защит или выключателей смежных элементов следует предусматривать резервную защиту, предназначенную для обеспечения дальнего резервного действия.
Если основная защита элемента обладает абсолютной селективностью (например, высокочастотная защита, продольная и поперечная дифференциальные защиты), то на данном элементе должна быть установлена резервная защита, выполняющая функции не только дальнего, но и ближнего резервирования, т. е. действующая при отказе основной защиты данного элемента или выведении ее из работы…”
Таким образом резервная защита присутствует также всегда и для любого присоединения (см. Миф 3).
Просто запомните одну простую вещь – на любом участке энергосистемы, на любом классе напряжения, есть как минимум 2 защиты – основная и резервная. Всегда!
Чаще всего резервной защитой присоединения является основная защита вышестоящего присоединения. Получается последовательная цепочка защит в которой все ступени “наползают” друг на друга.
Однако, если основная защита присоединения выполняется в виде дифференциальной или дифференциально-фазной защиты, то нужна еще одна защита, чтобы выполнить резервирование нижестоящего участка. Эта защита должна быть ступенчатой потому, что только ступенчатые могут выполнять дальнее резервирование. Об этом мы говорили в нашей прошлой статье.
Итак, давайте подведем итоги:
- На любом присоединении есть как минимум одна основная защита
- На любом присоединении есть как минимум одна резервная защита
- Основной может быть защита, выполненная на любом принципе (МТЗ, ДЗ ДЗТ, ДФЗ и т.д.)
- Резервной может быть только ступенчатая защита (МТЗ или ДЗ)
- На присоединении может быть несколько основных и резервных защит
Думаю, теперь у вас не будет затруднений с определением какой именно, основной или резервной, является та или иная защита
Четкость и понятность определений в релейной защите очень важна и мы будем периодически уделять внимание основным терминам
Описание
Электрик – это специалист, работа которого связана с электрическими приборами и оборудованием. Данные мастера имеют свою классификацию.
Можно выделить простых электриков, которые занимаются бытовым электрическим оборудованием, и электромонтеров. Данные специалисты работают с высокими мощностями на ТЭС, ГЭС и т.д. Ежедневно они сталкиваются со всем спектром опасностей, которые таит в себе высокое напряжение.
В работе электромонтера есть масса процессов. Для их выполнения есть правила допуска. Начинающий специалист никогда не будет иметь дело с высоким уровнем опасности (напряжение более 1000 В). Для квалификации выделяют 5 классов доступа:
- Первый. Это любой сотрудник организации, который не имеет специфического образования, но при этом он знает об опасностях, оказании первой помощи и о способах избежать поражения. Такого работника не допускают к работе с электрическим оборудованием, особенно с высоковольтным.
- Второй. Это специалист с образованием в сфере электрики. Он знает основы устройства высоковольтного оборудования, все опасности работы с ним и методы оказания первой помощи. Данный специалист должен иметь специальную подготовку и работать с электричеством от 1-2 месяцев. Допускается к объектам с невысоким уровнем опасности.
- Третий. Данный специалист знает об электричестве достаточно много информации: правила работы с высоковольтным оборудованием, опасности поражения, правила техники безопасности, правила допуска до работ с оснащением под напряжением до 1000 В.Обязательно наличие специальной подготовки и опыт работы от 2 до 10 месяцев.
- Четвертый. Это специалист высокого уровня. Он должен знать не только общие положения, но и особенности устройства оборудования, какие составляющие должны отключаться для проведения ремонтных или профилактических работ и как найти их в реальности. Электрик 4 уровня знает все о подконтрольной ему территории, до мельчайшей микросхемы. Он умеет распределить обязанности между сотрудниками и научить их особенностям своей работы. Также электрик не только знает правила оказания первой помощи, но и умеет воплотить их на практике. Опыт работы должен быть от 2 до 12 месяцев минимум.
- Пятый. Более углубленное знание всех схем и нюансов своего участка. Знание не только техники безопасности, но и понимание причин всех ее положений. Умение обучить персонал и оказать первую помощь в случае поражения электрическим током. Опыт работы составляет от 3 до 42 месяцев минимум.
Профессия электрика предполагает высокий уровень концентрации и ответственности не только за свою жизнь, но и за здоровье подчиненных.
Еще виды РЗА
Её техника используется для контроля работоспособности всех технологических систем, для охлаждения которых используются масла, в частности, трансформаторы. Поломка в них вызывает высокую температуру с выделением в атмосферу газов из состава масел. При этом охлаждающие средства теряют стандартный химический состав и снижают диэлектрические свойства.
На такие технологические сбои мгновенно реагирует механическая релейная защита. Она учитывает и изменения в химии газов, и продукты распада масел.
Можно отметить, что РЗА работает на подобных принципах и при появлении таких повышающих факторов:
- термо;
- давления той или иной среды или предпосылок от механики.
И это еще не все основные классификации релейных защит – поскольку данный формат статьи не позволяет нам более широко раскрыть РЗА.
ОСНОВНЫЕ ВИДЫ УСТРОЙСТВ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ
Типы УРЗА можно классифицировать по параметрам режима работы сети, на которые они реагируют.
Наибольшее распространение получили токовые защиты, поскольку именно повышенное значение тока является критерием такого частого вида нарушения режима работы как короткое замыкание. В основе токовой релейной защиты находится реле тока.
Традиционно используемыми являются реле электромеханического типа, состоящие из токовой катушки и подвижной электромагнитной системы, замыкающей контакты. На смену этим приборам пришли полупроводниковые устройства, а с развитием цифровых технологий и микропроцессорные системы релейной защиты.
Независимо от элементной базы, логика работы защит остаётся в принципе той же. Конечно, микропроцессорные системы способны реализовать более сложный и разветвлённый алгоритм действий.
В простейшем случае, на реле выставляется требуемая уставка – значение тока, при котором реле должно сработать. Первичными преобразователями тока являются измерительные трансформаторы или датчики тока.
Защиты по напряжению.
Среди самых распространённых представителей этого класса групповая секционная защита минимального напряжения.
Логика работы этой автоматики увязана с технологическим процессом, электропривод оборудования которого питается от одной секции подстанции. Автоматика минимального напряжения имеет двухступенчатое исполнение. Типовая последовательность работы выглядит следующим образом.
Секция, к которой подключены электродвигатели приводов механизмов технологического процесса (например, это могут быть механизмы котла тепловой электростанции), имеет два питания – от рабочего и резервного трансформаторов.
При отключении рабочего трансформатора срабатывает автоматика включения резерва (АВР). Через небольшой промежуток времени к секции подключается резервный трансформатор.
За время бестоковой паузы нагруженные механизмы успевают затормозиться. После подключения резервного трансформатора начинается самозапуск электродвигателей механизмов.
Повышенный ток, обусловленный групповым запуском двигателей, вызывает посадку напряжения на секции. При снижении напряжения до уставки первой ступени автоматики, происходит отключение наименее значимых для технологического процесса механизмов.
Делается это для того, чтобы облегчить запуск более важного оборудования и удержать станционный котёл (или другой агрегат) в работе. Если это не помогает и напряжение, продолжая снижаться, достигает уставки второй ступени, отключается вторая группа оборудования
В этой ситуации в работе остаются только механизмы, обеспечивающие безаварийный останов всего технологического процесса (котла)
Если это не помогает и напряжение, продолжая снижаться, достигает уставки второй ступени, отключается вторая группа оборудования. В этой ситуации в работе остаются только механизмы, обеспечивающие безаварийный останов всего технологического процесса (котла).
2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Статьи ›› Основные требования к устройствам релейной защиты и управления,предназначенным к применению в современных энергосистемах России
Обеспечение надежной и устойчивой работы Единой национальной электрической сети (ЕНЭС) в определяющей мере связано с функционированием релейной защиты и линейной автоматики (РЗА), предназначенной осуществлять быструю и селективную автоматическую ликвидацию повреждений и анормальных режимов в электрической части энергосистемы. Произошедший за последние годы скачок в развитии средств РЗА определяет необходимость ориентации на широкое внедрение на объектах ЕНЭС систем РЗА на базе интеллектуальных микропроцессорных (МП) устройств. Новые качества и возможности МП устройств, в свою очередь, определяют необходимость внесения корректировок в идеологию построения систем РЗА энергообъектов и соответственно в практику эксплуатации этих систем.
ОБЩИЕ ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ ЗАЩИТНЫХ РЕЛЕЙНЫХ УСТРОЙСТВ
Защитные устройства на базе реле разнообразны и могут быть построены по отличающимся принципиальным схемам, реализованным на различной элементной базе.
Общим для всех устройств релейной защиты является наличие одних и тех же функциональных блоков:
- измерительных органов;
- логики;
исполнительных устройств; - сигнализации.
Измерительный орган реле получает в непрерывном режиме информацию о состоянии контролируемого объекта, которым может быть отдельная установка, элемент или участок электрической сети. Существует несколько подходов к классификации структурных блоков релейных защит.
Измерительные релейные органы иногда называют пусковыми, но это не меняет сути. Контроль состояния объекта заключается в получении и обработке технических параметров электроснабжения – тока, напряжения, частоты, величины и направления мощности, сопротивления.
В зависимости от значения этих параметров, на выходе релейного органа измерения формируется дискретный логический сигнал («да», «нет»), который поступает в блок логики.
Логический орган, получив дискретную команду релейного блока измерения, в соответствии с заданной программой или логической схемой формирует необходимую команду исполнительному блоку или механизму.
Блок сигнализации обеспечивает работу сигнальных устройств, которые отображают факт срабатывания релейного защитного комплекта или отдельного его органа.
Для успешного выполнения своего предназначения, УРЗА должны обладать определёнными качествами. Выделяют четыре основных требования, которые предъявляются к аппаратуре РЗ. Рассмотрим их по отдельности.
Селективность.
Это свойство защитных систем заключается в выявлении повреждённого участка электрической сети и выполнении отключений в необходимом и достаточном объёме с целью его отделения. Если в результате работы защитной автоматики произошло излишнее отключение оборудования системы электроснабжения, такое срабатывание автоматики называется неселективным.
Различают системы защитной автоматики с абсолютной и относительной селективностью. К первому типу относятся устройства, реагирующие только на нарушения режима строго в пределах защищаемого участка.
Примером такой защитной системы может служить дифференциальный токовый защитный комплект, срабатывающая только при повреждениях между точками сети, в которых контролируется разность токов.
Относительной селективностью обладают системы максимального тока, которые, как правило, реагируют на нарушения режима на участках, смежных с непосредственно защищаемой ими зоной. Обычно во избежание неселективного срабатывания, такие системы автоматики имеют искусственную выдержку времени, превосходящую время срабатывания защитных комплектов на смежных участках.
Примечание. Искусственной называют выдержку времени, создаваемую специальными органами задержки срабатывания (реле времени).
Быстродействие.
Отключение повреждённого участка или элемента сети должно быть осуществлено как можно быстрее, что обеспечивает устойчивость работы остальной части системы и минимизирует время перерыва питания потребителей.
Главным показателем быстродействия служит время срабатывания защищающего устройства, которое отсчитывается от момента возникновения аварийного режима до момента подачи защитой сигнала на отключение выключателя.
Иногда время срабатывания системы автоматики трактуют как время между возникновением повреждения и отключением повреждённого участка, то есть, включают в него время работы выключателя.
Это не совсем верно, так как выключатель не является частью УРЗА и по его параметрам нельзя оценивать эффективность релейной защиты сетей и систем электроснабжения.
То есть, учитывать время отключения выключателя необходимо, но следует помнить, что это не характеристика РЗ. Для справки можно заметить, что время отключения выключателя значительно больше времени срабатывания собственно реле автоматики (без учёта искусственной задержки).
Чувствительность.
Данное качество характеризует способность системы автоматики к гарантированному срабатыванию во всей зоне её действия при всех видах нарушений режима, на которые данная автоматика рассчитана. Чувствительность системы автоматики является точным численным показателем, значение которого проверяется в расчётных режимах с минимальными значениями параметров её срабатывания.
Надёжность.
Универсальная характеристика всех технических устройств, заключающаяся в способности РЗ функционировать длительно и безотказно. В соответствии со своим основным предназначением.