Мощность в цепи переменного электрического тока
Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.
Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.
В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.
Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.
Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.
При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.
Понятие активной мощности
Активная «полезная» мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).
Рассчитывается по формуле: P = U⋅I⋅cosφ,
где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.
Понятие реактивной мощности
Реактивная «вредная» мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.
Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.
Обозначается эта величина латинской буквой Q.
Рассчитывается по формуле:
где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.
Емкостные и индуктивные нагрузки
Главным отличием реактивной (емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.
Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.
Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.
Коэффициент мощности cosφ
Коэффициент мощности cosφ (читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.
Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.
Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.
Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.
Как посчитать число и мощность трансформаторов.
Определяют удельную плотность нагрузки трансформаторов по расчетной полной мощности Sр и площади объекта F, а именно σ = Sр/F
Устанавливают пороговые значения номинальной мощности трансформаторов Sнт по удельной плотности нагрузки с учетом того, что:
- при σ ˂ 0.2 кВА/м² целесообразны трансформаторы мощностью до 1000 кВА;
- при σ ˂ 0.2-0.3 кВА/м² целесообразны трансформаторы мощностью 1600 кВА;
- при σ > 0.3 кВА/м² целесообразны трансформаторы мощностью 1600 кВА или 2500 кВА.
Таблица. Рекомендуемая номинальная мощность трансформатора при различной удельной плотности нагрузки.
Удельная плотность нагрузки σ | кВА | 0,05 | 0,08-0,14 | 0,15-0,2 | 0,21-0,3 | 0,3-0,35 |
Номинальная мощность Sнт | кВА | 400 | 630 | 1000 | 1600 | 2500 |
Находят число трансформаторов (с округлением в сторону большего целого значения) Nт = Рмакс/(Кз*Sнт), где Кз – коэффициент загрузки трансформатора, который принимают равным:
- Кз = 0.65-0.7 при преобладании нагрузок I категории для двухтрансформаторной подстанции;
- Кз = 0.7-0.8 при преобладании нагрузок II категории для однотрансформаторных ТП и взаимном резервировании на стороне низшего напряжения;
- Кз = 0.9-0.95 при нагрузках II категории и наличии складского резерва, а также при преобладании нагрузок III категории.
Особенности подключения питания к частному дому
Многие считают, что трехфазная сеть в доме повышает потребляемую мощность. На самом деле лимит устанавливается электроснабжающей организацией и определяется факторами:
- возможностями поставщика;
- количеством потребителей;
- состоянием линии и оборудования.
Для предупреждения скачков напряжения и перекоса фаз их следует нагружать равномерно. Расчет трехфазной системы получается примерным, поскольку невозможно точно определить, какие приборы в данный момент будут подключены. Наличие импульсных приборов в настоящее время приводит к повышенному энергопотреблению при их пуске.
Распределительный электрощит при трехфазном подключении берется больших размеров, чем при однофазном питании. Возможны варианты с установкой небольшого вводного щитка, а остальных — из пластика на каждую фазу и на надворные постройки.
Подключение к магистрали реализуется по подземному способу и по воздушной линии. Предпочтение отдают последней благодаря небольшому объему работ, низкой стоимости подключения и удобству ремонта.
Сейчас воздушное подключение удобно делать с помощью самонесущего изолированного провода (СИП). Минимальное сечение алюминиевой жилы составляет 16 мм2, чего с большим запасом хватит для частного дома.
СИП крепится на опорах и стене дома с помощью анкерных кронштейнов с зажимами. Соединение с главной воздушной линией и кабелем ввода в электрощит дома производится ответвительными прокалывающими зажимами. Кабель берется с негорючей изоляцией (ВВГнг) и проводится через металлическую трубу, вставленную в стену.
Советуем изучить — Искусственные механические характеристики асинхронного двигателя
Активная, реактивная и полная мощности в формулах
Чтобы рассчитать или измерить мощность: полную, активную и реактивную, служат основные формулы:
- активная мощность = полная * cosϕ;
- реактивная = напряжение * ток * sinϕ.
Для упрощения можно начать с примера на основе цепи постоянного тока, где действительна известная формула:
Pa = U * I.
Это активная (рабочая, полная) мощность. Единицы измерения – ватт (Вт), киловатт (кВт), другие производные. При подключении сопротивления (R) ее можно вычислить следующим образом:
- Pa = I2 * R;
- Pa = U2 / R.
Простота исчезает при рассмотрении сигналов синусоидальной формы. Именно такими параметрами отличаются стандартные сети питания (220/380V). Активная мощность в этом случае зависит от фазового сдвига между векторами тока и напряжения.
Соответствующие зависимости выражают следующим образом:
Pa = U * I * cosϕ.
Эта формула подходит для расчета обычной сети 220V, которой пользуется большинство рядовых потребителей. Мощные насосы и станки подключают к трехфазным источникам питания 380 V. Для этого варианта нужна коррекция:
Pa = √3 * U * I * cosϕ = 1,732 * U * I * cosϕ.
Реактивная мощность (Pq) не только потребляется нагрузкой, но и возвращается обратно в источник питания. Ее значение определяют следующим образом:
Pq = U * I * sinϕ.
Для вычисления полной мощности формула содержит перечисленные выше компоненты:
Ps = √( Pa2 + Pq2).
Что такое реактивная мощность
Эту мощность можно назвать бесполезной, так как она обозначает переход энергии между источником питания и нагрузкой. Недоступный для практического применения энергетический потенциал в данном случае только увеличивает потери.
Треугольник мощностей
На картинке ниже рядом с электрической схемой приведены графические изображения мощностей. Соответствующими векторами обозначены мощности:
- S – полная;
- Q – реактивная;
- P – активная.
Коррекция cos ϕ
Для компенсации угла сдвига фаз используют дополнительные электрические компоненты. При индуктивном характере нагрузки подключают параллельно конденсатор. Емкость рассчитывают по формуле:
C=I/(w*U), где w – угловая частота.
Как и где измеряют cos ϕ
Потери определяют по изменению силы тока, напряжения и мощности в цепях с мощными реактивными нагрузками:
cosϕ = P/ (I * U).
Можно найти в магазине либо арендовать специализированный прибор – «фазометр». Специализированные сервисы предлагают расчет электрических параметров онлайн.
Колебательный процесс в цепях переменного тока сопровождается изменением магнитного (электрического) поля для индуктивной и емкостной нагрузки, соответственно.
Расчёты
Для вычисления полной мощности используют формулу в комплексной форме. Например, для генератора расчет имеет вид:
А для потребителя:
Но применим знания на практике и разберемся как рассчитать потребляемую мощность. Как известно мы, обычные потребители, оплачиваем только за потребление активной составляющей электроэнергии:
P=S*cosФ
Здесь мы видим, новую величину cosФ. Это коэффициент мощности, где Ф – это угол между активной и полной составляющей из треугольника. Тогда:
cosФ=P/S
В свою очередь реактивная мощность рассчитывается по формуле:
Q = U*I*sinФ
Для закрепления информации, ознакомьтесь с видео лекцией:
https://youtube.com/watch?v=MdbG1f-SIC4
Всё вышесказанное справедливо и для трёхфазной цепи, отличаться будут только формулы.
Пусковой ток
При расчете необходимо учитывать и пусковые токи устройства. Например, сопротивление нити накаливания в лампочке в момент включения в 10 раз меньше, чем в рабочем режиме. Следовательно, пусковой ток этой лампочки в 10 раз больше. Через некоторое время она начнет потреблять ту мощность, которая записана в данных этой лампочки. Поэтому, при включении она перегорает за счет больших пусковых токов.
В радиоэлектронной аппаратуре пока не зарядится конденсатор в блоке питания, также образуется пусковой ток.
В нагревательных приборах пусковой ток образуется, пока спираль не нагреется до дежурной температуры.
«Механическая работа. Механическая мощность»
Код ОГЭ 1.16. Механическая работа. Формула для вычисления работы силы. Механическая мощность.
Работа силы – физическая величина, характеризующая результат действия силы.
Механическая работа А постоянной силы равна произведению модуля вектора силы на модуль вектора перемещения и на косинус угла а между вектором силы и вектором перемещения: А = Fs cos а.
Единица измерения работы в СИ – джоуль: = Дж = Н • м. Механическая работа равна 1 Дж, если под действием силы в 1 Н тело перемещается на 1 м в направлении действия этой силы.
Анализ формулы для расчёта работы показывает, что механическая работа не совершается если:
- сила действует, а тело не перемещается;
- тело перемещается, а сила равна нулю;
- угол между векторами силы и перемещения равен 90° (cos a = 0).
Внимание! При движении тела по окружности под действием постоянной силы, направленной к центру окружности, работа равна нулю, так как в любой момент времени вектор силы перпендикулярен вектору мгновенной скорости. Работа – скалярная величина, она может быть как положительной, так и отрицательной. Работа – скалярная величина, она может быть как положительной, так и отрицательной
Работа – скалярная величина, она может быть как положительной, так и отрицательной.
- Если угол между векторами силы и перемещения 0° ≤ а < 90°, то работа положительна.
- Если угол между векторами силы и перемещения 90° < a ≤ 180°, то работа отрицательна.
Работа обладает свойством аддитивности: если на тело действует несколько сил, то полная работа (работа всех сил) равна алгебраической сумме работ, совершаемых отдельными силами, что соответствует работе равнодействующей силы.
Примеры расчёта работы отдельных сил:
Работа силы тяжести: не зависит от формы траектории и определяется только начальным и конечным положением тела: A = mg(h1 – h2)
По замкнутой траектории работа силы тяжести равна нулю.Внимание! При движении вниз работа силы тяжести положительна, при движении вверх работа силы тяжести отрицательна
Работа силы трения скольжения: всегда отрицательна и зависит от формы траектории. Если сила трения не изменяется по модулю, то её работа А = –Fтр l , где l – путь, пройденный телом (длина траектории). Очевидно, что чем больший путь проходит тело, тем большую по модулю работу совершает сила трения. Работа силы трения по замкнутой траектории не равна нулю!
Мощность N – физическая величина, характеризующая быстроту (скорость) совершения работы и равная отношению работы к промежутку времени, за который эта работа совершена: .
Мощность показывает, какая работа совершается за 1 с. Единица измерения мощности в СИ – ватт: = Дж/с = Вт. Мощность равна одному ватту, если за 1 с совершается работа 1 Дж.
Может пригодиться! 1 л. с
(лошадиная сила) ~ 735 Вт.Внимание! Для случая равномерного движения (равнодействующая сила равна нулю) при расчете мощности отдельных сил, действующих на тело, получим
Для равноускоренного движения (F = const) где ʋср– средняя скорость движения за расчётный промежуток времени.
Конспект урока «Механическая работа. Механическая мощность».
Следующая тема: «Кинетическая и потенциальная энергия» (код ОГЭ 1.17)
Значение коэффициента при учете потерь
Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии – а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.
Возникновение реактивная мощность
Допустим, цепь содержит источник питания постоянного тока и идеальную индуктивность. Включение цепи порождает переходный процесс. Напряжение стремится достичь номинального значения, росту активно мешает собственное потокосцепление индуктивности. Каждый виток провода согнут круговой траекторией. Образуемое магнитное поле будет пересекать соседствующий сегмент. Если витки расположены один за другим, характер взаимодействия усилится. Рассмотренное называется собственным потокосцеплением.
Характер процесса таков: наводимая ЭДС препятствует изменениям поля. Ток пытается стремительно вырасти, потокосцепление тянет обратно. Вместо ступеньки видим сглаженный выступ. Энергия магнитного поля потрачена, чтобы воспрепятствовать процессу создавшему. Случай возникновения реактивной мощности. Фазой отличается от полезной, вредит. Идеально: направление вектора перпендикулярно активной составляющей. Подразумевается, сопротивление провода нулевое (фантастический расклад).
При выключении цепи процесс повторится обратным порядком. Ток стремится мгновенно упасть до нуля, в магнитном поле запасена энергия. Пропади индуктивность, переход пройдет внезапно, потокосцепление придает процессу иную окраску:
- Уменьшение тока вызывает снижение напряженности магнитного поля.
- Произведенный эффект наводит противо-ЭДС витков.
- В результате после отключения источника питания ток продолжает существовать, понемногу затухая.
Графики напряжения, тока, мощности
Реактивная мощность некое звено инерции, постоянно запаздывающее, мешающее. Первый вопрос: зачем тогда нужны индуктивности? О, у них хватает полезных качеств. Польза заставляет мириться с реактивной мощностью. Распространенным положительным эффектом назовем работу электрических двигателей. Передача энергии идет через магнитный поток. Меж витками одной катушки, как было показано выше. Взаимодействию подвержены постоянный магнит, дроссель, все, способное захватить вектором индукции.
Случаи нельзя назвать в смысле описательном всеобъемлющими. Иногда применяется поток сцепления в виде, показанном для примера. Принцип используют пускорегулирующие аппараты газоразрядных ламп. Дроссель снабжен несметным количеством витков: отключение напряжения вызывает не плавное снижение тока, но выброс большой амплитуды противоположной полярности. Индуктивность велика: отклик поистине потрясающий. Превышает исходные 230 вольт на порядок. Достаточно, чтобы возникла искра, лампочка зажглась.
Что предлагают под видом экономии электроэнергии
В сети предлагают купить устройства экономии электроэнергии. Компенсаторы реактивной мощности
Важно не перегнуть палку. Допустим, компенсатор будет уместно смотреться рядом с включенным компрессором холодильника, коллекторным двигателем пылесоса, обременять квартиру мерами при работающих лампочках накала – предприятие сомнительное
До установки потрудитесь узнать сдвиг фаз меж напряжением и током, согласно информации, правильно рассчитайте объем блока конденсаторов. Иначе попытки сэкономить таким образом потерпят неудачу, разве случайно удастся навести палец в небо, попасть в точку.
Вторым аспектом компенсации реактивной мощности является учет. Делается для крупных предприятий, где стоят мощные двигатели, создающие большие углы сдвига фаз. Внедряют специальные счетчики учета реактивной мощности, оплачиваемой согласно тарифу. Для расчетов коэффициента оплаты применяется оценка тепловых потерь проводов, ухудшение режима эксплуатации кабельной сети, некоторые другие факторы.
Реактивная мощность
Реактивная мощность является основным условием поддержания стабильности напряжения энергосистемы. Предполагается, что достаточный запас реактивной мощности позволит поддерживать целостность энергосистемы в послеаварийных режимах при случайных отказах источников реактивной мощности. Будучи хорошо отлаженной вспомогательной службой, средства обеспечения реактивной мощностью и регулирования напряжения играют жизненно важную роль в функционировании энергетической системы. Масштабные аварийные ситуации обычно возникают в тяжело нагруженных системах, которые не обладают достаточным запасом реактивной мощности. Тяжело нагруженные системы обычно характеризуются высоким потреблением реактивной мощности и потерями реактивной мощности в линии электропередач. При аварийной ситуации активная составляющая мощности существенно не изменяется, тогда, как поток реактивной мощности может измениться весьма значительно.
Это происходит из-за того, что падение напряжения на шине из-за отказа элемента сети приводит к уменьшению потока реактивной мощности от емкости линии и конденсаторов конденсаторной установки. Следовательно, необходимо иметь весьма значительный запас реактивной мощности, чтобы обеспечить потребности в реактивной энергии в послеаварийном режиме. Реактивная мощность, которая может быть поставлена энергосистемой, зависит от конфигурации сети, режима работы и расположения источников реактивной мощности. Реактивная мощность является ключом к решению проблем с сетевым напряжением при работе энергосистемы и должна учитываться при оценке надежности системы.
В методах оценки качества предельных значений реактивной мощности источников принимаются фиксированные максимальные и минимальные значения
Сетевые искажения в аварийной ситуации обычно уменьшают посредством снижения нагрузки с активным характером мощности, уделяя при этом реактивной мощности меньшее внимание. Напряжения в послеаварийном режиме, генерация реактивной мощности и потокораспределения мощности оценивались с использованием анализа чувствительности
Посредством кусочно-линейного оценивания было установлено влияние предельных характеристик оборудования на результаты оценки. Параллельный конденсатор оказывает влияние на надежность распределительной сети. Влияние ограничений напряжения и реактивной мощности на надежность системы было исследовано с помощью метода расчета потокораспределения мощности на модели сети постоянного тока. Рассчитывалась ожидаемая величина снижения электрической энергии из-за недостаточной генерации реактивной мощности и предполагаемое значение отклонений напряжения.
Однако в существующих методиках расчета надежности редко принимается во внимание ряд вопросов. Во-первых, большинство существующих методик пренебрегают возможными отказами источников реактивной мощности, такими как синхронные компенсаторы и статические компенсаторы реактивной мощности
Во-вторых, сетевые искажения из-за дефицита активной мощности не отделены от искажений, возникающих из-за недостаточного количества реактивной мощности при снижении нагрузки в послеаварийном режиме. В-третьих, отсутствуют показатели и соответствующие методы решения вопросов надежности, связанных с недостаточным количеством реактивной мощности. И, наконец, не рассматривается взаимосвязь между активной и реактивной мощностью генератора, определяемой по P–Q диаграммам генератора. Таким образом, существующих показателей надежности недостаточно для проектировщиков и диспетчеров энергосистем для осуществления рационального планирования и эффективного управления.
Предлагаемая методика оценки показателей надежности учитывает дефицит как активной, так и реактивной мощности из-за отказов источников активной и реактивной мощности, таких как генераторы, синхронные компенсаторы и статические компенсаторы. В данной методике рассмотрены дефицит реактивной мощности и связанные с ним отклонения напряжения, возникающие из-за сбоев в источниках реактивной мощности.
Предложены новые показатели надежности, позволяющие учесть влияние дефицита реактивной мощности на надежность системы. Показатели надежности, связанные с дефицитом реактивной мощности отделены от показателей, связанных с дефицитом активной мощности. Предложен «метод подпитки реактивной мощностью» для определения дефицита реактивной мощности и места его возникновения. С использованием P–Q диаграмм мощности выполнено исследование предельного значения реактивной мощности генератора, определяемого по его выходной активной мощности.
Практическое применение и коррекция
Если к розетке с синусоидальным напряжением 50 Гц и 230 В подсоединить нагрузку с опережением или отставанием тока от напряжения на какую-то угловую величину, то на активной внутренней катушке будет создаваться увеличенная мощность. Это значит, что при работе в таких условиях выделяется много тепла, и электростанция отводит его в увеличенном количестве, по сравнению с применением активной нагрузки.
Коэффициенты полезного действия и мощности отличаются друг от друга. Мощностной показатель не влияет на потребление приемника, подключенного к сети, но изменяет энергетические потери в подводных проводах и местах выработки энергии или ее преобразования. В доме электросчетчик не реагирует на проявление мощности, так как оплачивается только та энергия, за счет которой работают приборы.
КПД влияет на потребляемую активную нагрузку. Например, энергосберегающая лампа потребляет в полтора раза больше электричества, чем аналогичный прибор накаливания. Это говорит о высоком коэффициенте полезного действия у первой лампы. Но показатель нагрузки может быть низким и высоким в обоих вариантах.
Коррекция заключается в приведении потребления прибора с низким мощностным коэффициентом к стандартным показателям при питании от силовой цепи переменного тока. Технически это осуществляется применением действенной схемы на входном устройстве, которая помогает равномерно использовать фазную мощность и исключает перегрузку нулевого провода. При этом снижаются всплески потребительского тока на верхушке синусоиды питающего вольтажа.
Реактивная нагрузка корректируется при включении в магистраль элемента с обратным действием. Например, в двигателе переменного тока для компенсации действия ставится конденсатор параллельно питающей линии. Применяется система активного или пассивного корректора при изменении используемого тока во время колебательного периода подпитывающего напряжения для преобразования коэффициента. Простым примером является последовательное подключение дросселя. При этом конечные приборы потребляют ток непропорционально гармоничным искажениям. Катушка сглаживает волновые импульсы.
Реактивная мощность в доме
Вопреки рассказам менеджеров по продажам многие специалисты не верят в такие приборы компенсации в бытовых условиях, квартире, даче, гараже. И их выводы не безосновательны. Это связано в первую очередь с тем, что энергокомпании не ведут учет реактивной мощности, потребляемой бытовыми потребителями. То есть вам не нужно платить за реактивную мощность.
Также в быту очень редко используют очень мощные устройства, которые потребляют большие токи, чтоб с помощью компенсатора значительно снизить ток. Довольно большим недостатком является также довольно большая периодичность изменения нагрузки (включение отключение), а также в паспортах бытовых аппаратов не указывается cosφ, что делает очень затруднительным расчет реактивной составляющей.
Давайте рассмотрим маленький пример: пусть в холодильнике будет установлен электродвигатель с такими параметрами – Uн =220 В,Iн =2,5 А, cosφ =0,9. Рассчитаем его полную мощность S=UI=220*2,5 =550 ВА, теперь активную мощность Р = UI cosφ = 220*2,5*0,9 = 495 Вт. Теперь можем определить реактивную мощность
, которая примерно в два раза меньше активной для этого двигателя.
Теоретически мы можем сконструировать компенсирующее устройство и обратить 240 ВАр в ноль. Да, можем, но что произойдет если холодильник выключится? Правильно, эти 240 ВАр будут уже генерироваться самим компенсатором и отдаваться в сеть. Во избежание этой ситуации необходимо отключить компенсатор от сети. Вручную такие действия производить каждый раз бесперспективно, а создание автоматической системы включения и отключения этого прибора значительно его удорожит, а экономии от него не будет никакой.
Реактивная мощность в электрической сети:
Понятие электрической мощности описывается скоростью, с которой генерируется, передается либо потребляется электроэнергия за определенный период. С ее ростом увеличивается и работа, совершаемая электроустановкой.
Полная мощность (S) в цепях переменного тока имеет активную (P) и реактивную (Q) составляющую. При первой (полезной) током совершается эффективная работа, вторая (паразитная) – ничего не выполняет, но разогревает провода и излучается в окружающее пространство.
Формула взаимосвязи мощностей может быть представлена в виде треугольника мощностей:
S2 = P2 + Q2
Где S измеряется в Вольт-амперах (ВА), P – в Ваттах (Вт), а Q – в Вольт амперах реактивных (Вар).
Для работы и синхронизации генераторных установок, вырабатывающих и передающих ток в линию, используются реактивные нагрузки (катушки либо конденсаторы). Но они сдвигают фазу тока на опережение либо отставание от напряжения. То же делают реактивные нагрузки на предприятиях-потребителях электричества. Этот угол между фазами принимают, как косинус фи (cos φ = P/S) и измеряют при помощи фазометра. В результате возникает реактивная составляющая мощности, способствующая появлению электромагнитных полей, поддерживающих функциональность оборудования. Она же способствует и перегрузкам электроподстанций, увеличению сечений передающих линий, снижению сетевого напряжения, так как все сети нагружаются полной мощностью без учета, что ее реактивная составляющая не выполняет полезной работы.
Реактивная мощность может и должна компенсироваться, за счет чего повышается эффективность работы сетей и улучшается качество транспортируемой энергии.