Разрядник- принцип работы, устройство и его виды

Характеристики

Разрядные характеристики РДИП-10 обеспечивают то, что ни один из изоляторов всех трех фаз в данной схеме не перекрывается, поскольку каждый из них защищен разрядником, установленным электрически параллельно ему и расположенным либо непосредственно рядом с изолятором, либо на соседней опоре.

При уровнях индуктированных перенапряжений, близких к импульсному напряжению срабатывания разрядника, возможно перекрытие разрядника лишь на одной опоре, приводящее к однофазному замыканию на землю. Ток замыкания при этом не превышает 10-20 А, и петлевой разрядник с общей длиной перекрытия 80 см гарантированно исключает возникновение силовой дуги.

Основные технические характеристики

Класс напряжения 10 кВ
Длина перекрытия по поверхности 78 см
Внешний искровой промежуток 2-4 см
Импульсное 50 %-ное разрядное напряжение, не более

на положительной полярности

на отрицательной полярности

110 кВ

90 кВ

Напряжение координации с изолятором ШФ10-Г * 300 кВ
Многократно выдерживаемое внутренней изоляцией импульсное напряжение, не менее 50 импульсов

300 кВ

Выдерживаемое напряжение промышленной частоты, не менее

в сухом состоянии

под дождём

42 кВ

28 кВ

Многократно выдерживаемый импульсный ток 8/20 мкс, не менее 20 импульсов

40 кА

Масса 2,3 кг
Срок службы, не менее 30 лет

Установка

Разрядник предназначен для защиты ВЛ 6, 10 кВ от индуктированных грозовых перенапряжений, которые составляют подавляющую долю от общего числа грозовых перенапряжений, способных приводить к перекрытиям изоляции.

Известно, что величина индуктированных перенапряжений не превосходит значения 300 кВ, и это позволяет при правильной организации молниезащиты исключить возможность одновременного перекрытия двух или трех фаз на одной опоре и, соответственно, междуфазных коротких замыканий. Для этого необходимо устанавливать по одному разряднику на опору с чередованием фаз, например, на первой опоре разрядник устанавливается на фазу А, на второй – на фазу В, на третьей – на фазу С и т. д.

При такой системе установки индуктированное на линии грозовое перенапряжение приводит к перекрытию разрядников на разных фазах соседних опор и образованию контура междуфазного замыкания сопровождающего тока напряжения промышленной частоты, в который включены сработавшие разрядники и сопротивления заземления опор, ограничивающие этот ток на уровне нескольких сотен ампер, способствуя его гашению и предотвращению отключения ВЛ.

РДИП1-10-IV-УХЛ1

РАЗРЯДНИК ДЛИННО-ИСКРОВОЙ ПЕТЛЕВОЙ МОДИФИЦИРОВАННЫЙ РДИП1-10-IV-УХЛ1

РДИП1-10 по характеристикам, принципу действия и назначению не отличается от разрядника РДИП-10-IV-УХЛ1, являясь лишь его конструктивной модификацией.

Конструктивное отличие РДИП1 от РДИП сводится к измененным форме изгиба петли, деталям узла крепления и способу обеспечения воздушного зазора между разрядником и проводом. Воздушный разрядный промежуток между электродом РДИП1 и проводом сохраняет установленные параметры независимо от геометрии провода в пролете и даже при проскальзывании провода в обвязке на изоляторе.

Название Значение
Класс напряжения, кВ 6-10
Проводник ВЛЗ (СИП)
Тип перенапряжения Индуктированное
Габариты упаковки, см 71,5/55,0/43,0
Ед.изм. шт
Количество в упаковке, шт. 10

Устройство и принцип действия

Разрядник состоит из двух электродов и дугогасительного устройства.

Электроды

Один из электродов крепится на защищаемой цепи, второй электрод заземляется. Пространство между электродами называется искровым промежутком

. При определенном значении напряжения между двумя электродами искровой промежуток пробивается, снимая тем самым перенапряжение с защищаемого участка цепи. Одно из основных требований, предъявляемых к разряднику — гарантированная электрическая прочность при промышленной частоте (разрядник не должен пробиваться в нормальном режиме работы сети).

Дугогасительное устройство

После пробоя импульсом искровой промежуток достаточно ионизирован, чтобы пробиться фазным напряжением нормального режима, в связи с чем возникает короткое замыкание и, как следствие, срабатывание устройств РЗА, защищающих данный участок. Задача дугогасительного устройства — устранить это замыкание в наиболее короткие сроки до срабатывания устройств защиты.

Постоянное напряжение сети

Когда ограничители перенапряжения подключены к энергосистеме, они находятся под постоянным воздействием рабочего напряжения. В зависимости от характеристик разрядника, существуют разные пределы уровня постоянного напряжения. Это называется максимальное длительное рабочее напряжение (MCOV) разрядника. Необходимо выбирать ограничитель перенапряжения с такими характеристиками, чтобы максимальное длительно напряжение в энергосистеме, где будет установлено устройство, равнялось или было ниже MCOV разрядника. Следует учитывать как конфигурацию электросети (звезда или треугольник), так и тип подключения разрядника (линейное или фазное). В большинстве случаев ограничители перенапряжения имеют соединение «фаза-земля»

Если же устройство имеет линейное подключение, стоит обратить внимание на межфазное напряжение. В дополнение к этому, для определения оптимальных параметров разрядника необходимо принимать в расчет также и конфигурацию заземления системы – глухое заземление или эффективное заземление (резистивное заземление, временное заземление, отсутствие заземления)

Это ключевой фактор при выборе и применении ограничителя перенапряжения. Если конфигурация заземления системы неизвестна, читатель должен предположить, что система не заземлена. В таком случае стоит выбрать разрядник с более высоким постоянным напряжением сети и/или уровнем MCOV. Также необходимо обратить особое внимание он на особые области применения разрядника, как, например, третичная обмотка трансформатора, где один из углов треугольника имеет постоянное заземление. В данном случае нормальное напряжение, постоянно воздействующее на разрядник, будет полностью линейным, даже если ограничитель перенапряжения имеет подключение «фаза-земля».

Примеры некоторых из оценок максимальных длительных рабочих напряжений для полимерных разрядников TRANQUELL Дженерал Электрик отмечены в Таблице 2 ниже.

Полимерные разрядники TRANQUELL
  8/20 мкс Максимальное напряжение разряда — кВ пик
Номинальное напряжение kVirms МКОВ kVirms 0.5 мкс 10 кА макс IR-kV пик Переключение максимума перенапряжения IR-kV пик 1.5 kA 3 kA 5 kA 10 kA 20 kA 40 kA
3 2.55 8.4 6.0 6.4 6.7 7.1 7.6 8.4 9.6
6 5.10 16.7 11.9 12.8 13.5 14.1 15.2 16.8 19.1
9 7.65 25.0 17.8 19.2 20.2 21.1 22.7 25.1 28.3
10 8.40 27.8 19.8 21.4 22.5 23.5 25.3 28.0 31.8
12 10.2 33.3 23.7 25.6 26.9 28.1 30.3 33.5 38.1
15 12.7 41.7 29.7 32.0 33.7 35.2 37.9 42.0 47.6
18 15.3 50.1 35.6 38.4 40.4 42.3 45.5 50.0 57.2
21 17.0 56.3 40.1 43.2 45.5 47.6 51.2 56.7 64.4
24 19.5 63.9 45.5 49.1 51.6 54.0 58.1 64.3 73.0
27 22.0 72.9 51.9 56.0 58.9 61.6 66.3 73.4 83.3
30 24.4 80.4 57.2 61.7 64.9 67.9 73.1 80.9 91.9
36 29.0 95.9 68.3 73.6 77.4 81.0 87.2 96.5 109.6
39 31.5 104.2 74.2 80.0 84.1 88.0 94.7 104.8 119.0
45 36.5 120.9 86.1 92.8 97.6 102.1 109.9 121.7 138.1
48 39.0 128.7 91.6 98.8 103.9 108.7 117.0 129.5 147.1
54 42.0 144.4 102.8 110.9 116.6 122.0 131.3 145.3 165.0
60 48.0 163.5 116.4 125.5 132.0 138.0 148.6 164.5 186.8
66 53.0 179.9 128.0 138.1 145.2 151.8 163.5 181.0 205.5
72 57.0 191.8 136.6 147.3 154.9 162.0 174.4 193.1 219.2
90 70.0 241.8 172.1 185.6 195.2 204.2 219.8 243.3 276.3
96 76.0 257.4 183.2 197.6 207.8 217.4 234.0 259.0 294.1
108 84.0 288.9 205.6 221.8 233.2 244.0 262.6 290.7 330.1
120 98.0 326.9 241.3 251.0 263.9 276.1 297.2 329.0 373.6
132 106.0 362.7 267.7 278.5 292.8 306.3 329.7 365.0 414.4
144 115.0 386.1 285.0 296.5 311.7 326.1 351.0 388.6 441.2

Трубчатые разрядники

Разрез трубчатого разрядника показан на рисунке ниже:

Для разгрузки изоляционного материала разрядника от электрического поля при нормальной работе электроустановки он отделяется от линии воздушным зазором S2. Второй электрод разрядника заземляется. При появлении перенапряжений происходит пробой промежутка S1 и S2 и импульсный ток уходит в землю. После прохода импульсного тока течет сопровождающий ток промышленной частоты. Между электродами 2 и 3 в промежутке S1 дуга загорается в узком канале обоймы 1 из газогенерирующего материала – фибры или винипласта. Внутри трубки происходит повышение давления. Газы могут отводиться через отверстие в кольцевом электроде 3.

При прохождении тока через нуль происходит гашение дуги под воздействием газов, выходящих из разрядника на промежуток S1.

Для улучшения условий гашения электрической дуги в заземленном электроде разрядника 4 имеется буферный объем 5, где энергия накапливается в виде потенциальной энергии сжатого газа. При проходе тока через нуль создается дутье из буферного объема, что способствует гашению электрической дуги.

Механическая прочность трубки определяет величину отключаемого тока промышленной частоты (для упрочненной стеклотканью на эпоксидной смоле винипластовой трубки 20 кА, для фибробакелитовой трубки – 10 кА).

Минимальный ток определяет гасящая способность трубки. Чем меньше диаметр выхлопного канала, чем больше его длина, тем меньше нижний предел отключаемого тока. В случае протекания большого тока в трубке возникает большое давление. В случае недостаточной механической прочности наступает разрушение разрядника. Поэтому решающую роль для трубчатого разрядника играет его механическая прочность. В качестве материала для разрядников применялась фибра до появления винипласта. В бумажно-бакелитовой среде размещалась фибровая трубка. Она увеличивала механическую прочность. Однако на открытом воздухе бакелит работает плохо, что требует тщательной окраски бакелитовой трубки специальным лаком, защищающим трубки от воздействия атмосферных явлений.

Маркировка разрядника расшифровывается следующим образом – в числителе указывается номинальное напряжение, а в знаменателе отключаемые токи. Например, разрядник РТ

расшифровывается как разрядник трубчатый фибровый напряжением 35 кВ, а его отключаемые токи лежат в пределах 800 – 5000 А.

Наглядно защитное действие разрядника демонстрируется на рисунке ниже:

В момент пересечения вольт-секундной характеристики разрядника 2 с кривой 4 наступает пробой промежутка и через него протекает импульсный ток I, который создает падение напряжения на IR3 на сопротивлении заземления R3.

К более совершенным можно отнести разрядники РТВ (разрядник трубчатый винипластовый). Винипласт обладает высокой механической прочностью, имеет высокую газогенерирующую способность и хорошо работает без всяких покрытий на открытом воздухе. Наибольший отключаемый ток для этого разрядника доведен до 20 кА.

Работа трубчатого разрядника сопровождается выбросом газов и сильным звуковым эффектом. У разрядника РТВ-110 зона выброса представлена в виде конуса с высотой 2,2 м и диаметром 3,5. При установке разрядников нужно предусмотреть, чтобы в зону выброса не попали элементы электроустановки, находящиеся под высоким потенциалом.

От вольт-секундной характеристики в значительной степени зависит защитная характеристика промежутка между электродами. В трубчатом разряднике данный промежуток образовывается стержневыми электродами, которые имеют довольно крутую вольт-секундную характеристику из-за довольно большой неоднородности электрического поля. В электрических аппаратах и электрооборудовании электрическое поле стремятся сделать равномерным, так как в этом случае удается более полно использовать особенности изоляционных материалов и уменьшить габариты и массу электрооборудования. Вольт-секундная характеристика получается пологой при равномерном поле, и практически мало зависимой от времени. Поэтому трубчатые разрядники не подходят для защиты подстанционного электрооборудования из-за крутой вольт-секундной характеристики. Обычно с их помощью производят защиту только линейной изоляции. Необходимо рассчитать возможный минимальный и максимальный ток короткого замыкания и на основании этих расчетов произвести выбор соответствующего разрядника. Номинальное напряжение сети должно соответствовать номинальному напряжению разрядника. Размеры внешнего S2 и внутреннего S1 промежутков выбираются из специальных таблиц.

Проведение периодических проверок, измерений и испытаний трубчатых разрядников в эксплуатации

Нормы испытаний трубчатых разрядников.
Профилактические испытания трубчатых разрядников проводят при капитальном (К), текущем ремонтах (Т) и в межремонтный период (М).
К — проводится в сроки, устанавливаемые системой ППР.
Т — проводится в сроки, устанавливаемые системой ППР, но не реже 1 раза в 3 года.
М — проводится в сроки, устанавливаемые системой ППР.
Общем профилактических испытаний, предусмотренный ПЭЭП, включает следующие работы.
1. Проверка состояния поверхности разрядника.
2. Измерение внутреннего диаметра разрядника.
3. Измерение внутреннего искрового промежутка.
4. Измерение внешнего искрового промежутка.
5. Проверка расположения зон выхлопа.

Проверка состояния поверхности разрядника.
Производится при К, Т, М.
Наружная поверхность не должна иметь ожогов электрической дугой, трещин расслоений и царапин глубиной более 0,5 мм на длине более 1/3 расстояния между наконечниками.

Измерение внутреннего диаметра разрядника.
Производится при капитальном и текущем ремонтах.
Измерения выполняют по длине внутреннего искрового промежутка.
При увеличении внутреннего диаметра газогенерирующей трубки более чем на 40% по сравнению с первоначальным необходимо производить перемаркировку разрядника по пределам разрываемых токов. Внутренняя полость газогенерирующей трубки не должна иметь трещин или короблений.

Измерение внутреннего искрового промежутка.
Производится при капитальном и текущем ремонтах.
Искровой промежуток должен быть равным номинальному с допусками ±5 мм для разрядников 110 и 35 кВ и ±3 мм для разрядников 3-10 кВ.

Измерение внешнего искрового промежутка.
Производится при Т, М.
Измеренное значение не должно отличаться от заданного (см. выше).

Установка искровых разрядников

Наилучшим способом реализации защиты от грозовых перенапряжений при использовании натяжных изоляторов является при­менение изолятора SDI90.X, оснащенного комплектом искрового разрядника SDI27.1 или SDI10.2. Функциональность искровых разрядников не зависит от направления передачи электроэнергии, поэтому они могут устанавливаться по любую сторону траверсы. Искровые разрядники разных фаз также могут устанавливаться по разные стороны траверсы. Длина искрового промежутка L в разряднике должна быть установлена, например, в пределах 130-150 мм при напряжении 24 кВ.

Искровой промежуток разрядника формируется при помощи комплектов деталей SDI20.3, содержащих устройство защиты от дуги и дополнительный рог, закрепляемый к траверсе посредством стального держателя. На каждой траверсе подразумевается установка трех комплектов из серии SDI20.3. Искровой разрядник может располагаться с любой стороны от изолятора; эффективность защиты не зависит от направления передачи мощности. Длина искрового промежутка в разряднике должна быть установлена 100 мм для 10 кВ, 130 мм для 24 кВ, 150 мм для 35 кВ.

Оптимальным решением для реализации защиты от перенапряжений в данном случае является использование натяжного изолятора SDI90.X, оснащенного комплектом искрового разрядника SDI27.1, и поддерживающего зажима SO181.5. Такое решение обеспечивает наилучшую защиту провода и исключает возникновение радиопомех. Провод при креплении зачищать не требуется. Применение подвесного зажима SO181 для крепления защищенного провода не рекомендуется из-за отсутствия в нем прокалывающего элемента.

Угловая опора. Вертикальное расположение фаз с натяжными изоляторами и поддерживающими зажимами

При вертикальном расположении фаз на опоре оптимально совместное использо­вание изолятора SDI90.X, оснащенного комплектом искрового разрядника SDI27.1, и поддерживающего зажима SO181.5. Болтовые крепления фаз всегда должны быть соединены позади опоры с применением вертикальной пластины, например PEK68 (см. изделие SH154) или медного проводника с минимальным сечением 50 мм2. Это предотвращает короткое замыкание через опору. В ином случае должны использоваться решения, применяемые для угловой опоры с горизонтальной траверсой.

В данном случае оптимальным решением для реализации защиты от перенапряжений является использование анкерного зажима SO235 или SO236 и натяжного изолятора SDI90.X, оснащенного комплектом SDI27.1. Также возможно применение комплекта SDI10.2 и зажима SO85. Если присутствует ответвление, то оно должно присоединяться посредством прокалывающего зажима SL25.2 и защитного кожуха к нему SP16 без применения других защитных средств. Провод при креплении зачищать не требуется.

Магистральная линия с неизолированными проводами / отходящая линия с защищенными проводами

Наилучший и самый простой способ реализации защиты от перенапряжений на ответвительной опоре — установка искрового разрядника SDI27.1 с анкерным зажимом SO235 или SO236, при этом снятие изоляции с провода не требуется. Возможно также применение SDI10.2 и SO85. При использовании искрового разрядника на натяжных изоляторах отходящей линии соединительные провода могут быть как неизолированными, так и защищенными

Магистральная линия с защищенными проводами / отходящая линия с защищенными или с неизолированными проводами

Магистральная линия обязательно должна быть оснащена искровыми разрядниками. Точки присоединения фаз отходящей линии выбираются по месту. Соединительные провода могут быть как защищенными, так и неизолированными.

Проблемы технической реализации

Основной проблемой при построении самовосстанавливающегося искрового разрядника является необходимость гашения дуги. Дело в том, что процесс дугового разряда является самоподдерживающимся. После того, как импульс прошел, плазменный канал продолжает существовать какое-то время, при этом защищаемая линия замкнута на землю. Если канал не погасить, сработает защита линии от короткого замыкания, что в общем случае нельзя допустить. А, если речь идет о телекоммуникационных применениях, то прерывается связь. В добавок ко всему, от нагрева разрядник просто разрушается. Для гашения дуги используются разнообразные средства, по конструкции которых и различаются типы искровых разрядников.

Другая проблема — защита симметричной линии, что особенно актуально для использования в телекоммуникационной отрасли. Оба провода защищены путем соединения их разрядниками с «землей». Из-за разницы параметров разрядников может возникнуть ситуация, когда один разрядник сработает, а другой нет, что может только усугубить ущерб от импульсных перенапряжений. Поэтому для защиты симметричных линий применяются трехэлектродные разрядники (не путать с управляемыми разрядниками, которые также имеют три электрода). Они представляют собой фактически два разрядника в виде одного устройства и с общем выводом «земли», выполненные в едином производственном цикле. Благодаря этому их технические характеристики полностью идентичны.

Трубчатый разрядник

Трубчатый разрядник представляет собой трубку из прочного материала. Сам материал – это различные полимеры. Самый распространённый из них – это полихлорвинил. Полихлорвинил способен вынести  температуру, пригодную для данного типа разрядников.

В трубку помещены два электрода (рис 1.). Один присоединяется к защищаемому элементу, а другой заземляется. Принцип работы трубчатого разрядника довольно прост.

При напряжении пробоя образуется искра, которая ионизирует воздух. Воздух сильно нагревается, при этом идет массовое выделение газов.

Интенсивная газовая генерация гасит дугу фазного напряжения. Такое дугогасительное устройство называется продольным дутьём. Для выхода газов наружу, в  разряднике имеется отверстие.

Газовый разрядник отличается от воздушного только тем, что его корпус наполняют инертным газом (аргоном или неоном). В отличие от воздушного разрядника, в газовом разряднике дугу, образованную фазным напряжением, гасят инертные газы.

В современной электронике трубчатые разрядники распространены повсеместно. Они просты по устройству и надежны.  Пробивное напряжение воздушных разрядников невысокое, поэтому такие разрядники не применяются в более высоковольтной аппаратуре.

Более высокое пробивное напряжение  у газовых разрядников. Они гораздо эффективнее, так как газы не вступают в реакции, тем самым продлевают жизнь электродам.

Рис 3. Трубчатый разрядник

Разрядник

Воздушный разрядник закрытого или открытого типа (трубчатый разрядник)

Воздушный разрядник представляет собой дугогасительную трубку из полимеров, способных подвергаться термической деструкции с выделением значительного количества газов и без значительного обугливания — полихлорвинила или оргстекла (первоначально, в начале XX века, это была фибра), с разных концов которой закреплены электроды. Один электрод заземляется, а второй располагается на определенном расстоянии от него (расстояние определяет напряжение срабатывания, или пробоя, разрядника) и имеет прямое электрическое подключение к защищаемому проводнику линии. В результате пробоя в трубке возникает интенсивная газогенерация (плазма), и через выхлопное отверстие образуется продольное дутье, достаточное для гашения дуги. В воздушном разряднике открытого типа выброс плазменных газов осуществляется в атмосферу. Напряжение пробоя воздушных разрядников — более 1 кВ.

Общее устройство и принцип работы

Высокочастотное оборудование защищается не только молниеотводами, но и с помощью высоковольтных разрядников. Каждый из них состоит из двух основных частей – электродов и устройства для гашения дуги.

Один из электродов устанавливается на защищаемую цепь, а к другому подводится заземление. Между ними образуется пространство, известное как искровой промежуток. Когда напряжение достигает определенного значения, наступает пробой искрового промежутка между двумя электродами. За счет этого с защищаемого участка цепи снимается перенапряжение. Основным техническим требованием, предъявляемым к разряднику, является определенный уровень гарантированной электрической прочности в условиях промышленной частоты. То есть, при нормальном режиме работы сети разрядник не должен пробиваться.
После пробоя в действие вступает дугогасительное устройство. Под действием импульса повышается ионизация искрового промежутка, в результате чего пробивается фазное напряжение, действующее в нормальном режиме. Оно приводит к короткому замыканию и срабатыванию защитных устройств на этом участке. Основной задачей дугогасительного устройства как раз и является скорейшее устранение замыкания, до срабатывания средств защиты.

Широкое распространение получили конструкции газовых разрядников. В их состав входит коаксиальный элемент с незначительным разрядным промежутком, и патрон с выводом на землю. В промежутке между ними выполняется установка газоразрядного элемента в форме таблетки, заключенного в стеклянную или керамическую оболочку и оборудованного электродами с каждой стороны. Внутреннее пространство оболочки заполнено газом – аргоном или неоном.

В случае перенапряжения происходит срабатывание защиты: под действием высокой температуры в разряднике наступает резкое падение сопротивления. После этого образуется дуговой разряд с напряжением около 10 вольт. Каждый такой разрядник оборудуется собственным заземлением, в противном случае он будет бесполезен.

Во всех газовых разрядниках центральная жила коаксиального кабеля и первый электрод соединяются между собой. Второй электрод соединяется с заземленным корпусом разрядника. Когда через устройство проходит высокий импульс с большим напряжением, происходит пробой разрядника и центральная жила кабеля в течение короткого времени шунтируется на землю. Наблюдается существенное падение значения тока, до состояния гашения дуги, после чего наступает размыкание, то есть прибор находится в непроводящем режиме.

Газоразрядная трубка считается одноразовой деталью разрядника, требующая замены после каждого срабатывания.