Принцип работы и виды индуктивных датчиков, способы подключения

Конкретный производители

Ниже — мое субъективное мнение по датчикам, с которыми приходилось иметь дело.

«ТЕКО». Для тех, кто выбирает отечественного производителя. Эта челябинская компания существует с советских времен и в настоящее время выпускает большое разнообразие датчиков. К сожалению, по моему опыту, на их долю приходится большое количество электрических отказов. Также у них слабая механическая прочность. Надеюсь, в настоящее время фирма улучшила качество продукции. Несомненное преимущество этой компании — цена, которая может быть в 2–3 раза ниже импортных аналогов (исключение Китай). Пример применения индуктивного датчика «Теко» — рис. 4.

Рис. 4 — Пример применения индуктивного датчика «TEKO»

В данном случае активатор, который проезжает мимо датчика, сместился и поломал оригинальный датчик. Выход — был установлен датчик «Теко» с большой зоной срабатывания.

AUTONICS. Оптимальный выбор по соотношению цена/качество. Эта корейская фирма выпускает большое количество датчиков с неплохим качеством. Благодаря скромным вложениям в раскрутку бренда, цены остаются весьма приемлемыми.

На рис. 5 показан пример модернизации спаивающей головки упаковочной линии.

Рис. 5 — Пример модернизации спаивающей головки упаковочной линии

В верхней части — датчик Autonics. Ранее установили электрический концевой выключатель, как на нижней части фото. Чтобы исключить проблемы с контактами, было решено установить индуктивный датчик, с чем Autonics прекрасно справился и сбои прекратились. Завершением стала прокладка дополнительного провода питания и изготовление крепежной пластины.

OMRON. Это старый раскрученный бренд, поэтому цена на эти датчики довольно высока. Однако и качество на уровне.

На рис. 6 — датчики показывают положение механизма редуктора.

Рис. 6 — Датчик показывает положение механического редуктора.

В большинстве случаев установка датчиков раскрученных брендов нецелесообразна, поэтому они устанавливаются в оборудовании высокой ценовой категории.

ALLEN BRADLEY. Этот американский бренд, как Rolls-Royce в мире моторов. Цена весьма высока, а вот качество в конкретно взятом случае подкачало: датчик, установленный на крышке бункера сыпучего вещества, перестал работать (рис. 7).

Рис. 7 — Дитчик Allen Bradley

Оказалось, проблема в контактах разъема. Их подогнули и почистили. В данном случае при грамотной установке датчик «Теко» прекрасно бы справился. Кстати, разница в цене этих датчиков — примерно в 10 раз!

Следует сказать, что в настоящее время более 90% от общего числа индуктивных датчиков имеют замену на датчики других производителей. Редко бывают случаи, когда нужен какой-то определенный тип. Как правило, это связано с габаритами и особенностями монтажа. В пределах одного предприятия целесообразно остановить выбор на одном производителе.

Данная статья – вторая часть статьи про разновидности и принципы работы датчиков. Кто не читал – рекомендую, там очень много тонкостей разложено по полочкам.

Технология изготовления биполярных транзисторов.

Технология изготовления транзисторов ни чем не отличается от технологии изготовления диодов. Еще в начальный период развития транзисторной техники биполярные транзисторы делали только из германия методом вплавления примесей, и такие транзисторы называют сплавными.

Берется кристалл германия и в него вплавляются кусочки индия.Атомы индия диффузируют (проникают) в тело кристалла германия, образуя в нем две области p-типа – коллектор и эмиттер. Между этими областями остается очень тонкая (несколько микрон) прослойка полупроводника n-типа, которую именуют базой. А чтобы защитить кристалл от влияния света и механического воздействия его помещают в металлостеклянный, металлокерамический или пластмассовый корпус.

На картинке ниже показано схематическое устройство и конструкция сплавного транзистора, собранного на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу диска – ее наружный проволочный вывод.

Внутренние выводы коллектора и эмиттера приварены к проводникам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Металлический колпак защищает прибор от влияния света и механических повреждений. Так устроены наиболее распространенные маломощные низкочастотные германиевые транзисторы из серии МП37МП42.

В обозначении буква «М» говорит, что корпус транзистора холодносварной, буква «П» — это первая буква слова «плоскостной», а цифры означают порядковый заводской номер транзистора. Как правило, после заводского номера ставят буквы А, Б, В, Г и т.д., указывающие на разновидность транзистора в данной серии, например, МП42Б.

С появлением новых технологий научились обрабатывать кристаллы кремния, и уже на его основе были созданы кремниевые транзисторы, получившие наиболее широкое применение в радиотехнике и на сегодняшний день практически полностью вытеснившие германиевые приборы.

Кремниевые транзисторы могут работать при более высоких температурах (до 125ºС), имеют меньшие обратные токи коллектора и эмиттера, а также более высокие пробивные напряжения.

Основным методом изготовления современных транзисторов является планарная технология, а транзисторы, выполненные по этой технологии, называют планарными. У таких транзисторов p-n переходы эмиттер-база и коллектор-база находятся в одной плоскости. Суть метода заключается в диффузии (вплавлении) в пластину исходного кремния примеси, которая может находиться в газообразной, жидкой или твердой фазе.

Как правило, коллектором транзистора, изготовленного по такой технологии, служит пластина исходного кремния, на поверхность которой вплавляют близко друг от друга два шарика примесных элементов. В процессе нагрева до строго определенной температуры происходит диффузия примесных элементов в пластину кремния.

При этом один шарик образует в пластине тонкую базовую область, а другой эмиттерную. В результате в пластине исходного кремния образуются два p-n перехода, образующие транзистор структуры p-n-p. По такой технологии изготавливают наиболее распространенные кремниевые транзисторы.

Также для изготовления транзисторных структур широко используются комбинированные методы: сплавление и диффузия или сочетание различных вариантов диффузии (двусторонняя, двойная односторонняя). Возможный пример такого транзистора: базовая область может быть диффузионная, а коллектор и эмиттер – сплавные.

Использование той или иной технологии при создании полупроводниковых приборов диктуется различными соображениями, связанными с техническими и экономическими показателями, а также их надежностью.

Транзисторные пары в схемах управления электродвигателями

Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.

H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.

Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.

Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.

Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.

Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.

Почему необходимы датчики тока

Датчиками называют блоки, задача которых измерить некоторый параметр, а потом, сравнив его с эталонным для данной технической системы значением, подать соответствующий сигнал на исполнительный элемент схемы. Поскольку большинство систем используют электродвигатели, то наиболее распространёнными типами являются датчики тока и напряжения (общий вид последнего представлен на следующем рисунке).

Широкое внедрение таких устройств обусловлено развитием сенсорных методов управления, когда исходный сигнал — электрический или оптический — преобразуется в необходимые параметры управления.

По сравнению в другими управляющими технологиями (например, контакторного контроля) датчики обеспечивают следующие преимущества:

  1. Компактность.
  2. Безопасность в применении.
  3. Высокую точность.
  4. Экологичность.

Малые размеры и вес часто позволяют изготавливать многофункциональные датчики, например, такие, которые могут контролировать несколько параметров цепи. Таковыми являются современные датчики тока и напряжения.

Замена датчиков

Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

(adsbygoogle = window.adsbygoogle || []).push({});

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации — механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы — изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN замена. Слева — исходная схема, справа — переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор — это ключевой элемент, который можно представить обычными контактами реле (примеры — ниже, в обозначениях).

Итак, схема слева. Предположим, что тип датчика — НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные «контакты» разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к какому-либо входу. Сопротивление этого входа и является основной нагрузкой.

Если внутренней нагрузки в датчике нет, и коллектор «висит в воздухе», то это называют «схема с открытым коллектором». Эта схема работает ТОЛЬКО с подключенной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать «прям щас».

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 — 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен — на входе контроллера дискретный «0″, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

Да, не совсем то, что мы хотели. В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов — тахометр, или количество заготовок.

Как добиться полного функционала? Способ 1 — механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 — перепрограммировать вход контроллера чтобы дискретный «0″ был активным состоянием контроллера, а «1″ — пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Биполярный транзистор

Полупроводниковое устройство состоит из трех разных по проводимости слоев, к каждому из которых подсоединены проводящие контакты.

По степени электропроводности коллекторный, базовый и эмиттерный слой отличаются мало, но при производстве подвергаются разному уровню легирования:

  • Первый легируется слабо, что дает возможность повысить коллекторный вольтаж.
  • В эмиттерный добавляют много примесей при изготовлении. Объем обратного пробойного напряжения не становится критичным, т. к. приборы функционируют с прямосмещенным переходом. Усиленное легирование дает повышенную инжекцию вторичных зарядоносителей в базовый слой.

Как работает

Зарядные носители передвигаются к коллектору сквозь тонкий базовый слой. Средняя прослойка отделена от верхнего и нижнего p-n переходами.

Особенности функционирования:

  • Ток проходит сквозь транзистор, если зарядные носители инжектируются посредством p-n перехода в базовую прослойку из эмиттерной.
  • В результате снижается потенциальная преграда при подаче прямого смещения.
  • В базовой прослойке инжектируемые заряды — не основные носители, поэтому ускоряются и поступают в другие p-n переходы к коллекторному пласту от базовой прослойки.
  • В базе заряды распространяются под действием диффузии или электрического поля.

Схема включения

Для установки в схему у транзистора есть три вывода. При подключении один контакт определяют, как общий.

Различают схемы подсоединения:

  • С совместным эмиттером. Часто используемая схема усиливает ток и напряжение (отмечается наибольшее повышение мощности). Входной импульс поступает на базовый слой со стороны эмиттера, снимается — с коллектора и инвертируется.
  • С совместным коллектором. Повышается только электроток, коэффициент усиления вольтажа равен 1, сопротивление на входе высокое, а на выходе маленькое. Подключение поддерживает большой промежуток усиливаемых частот.

Полевые транзисторы с управляющим р-n-переходом

В полевых транзисторах с управляющим р-n-переходом управление током транзистора достигается путем изменения сечения канала за счет изменения области, занимаемой этим переходом. Управляющий р-n-переход образуется между каналом и затвором, которые выполняются из полупроводников противоположных типов проводимости. Так, если канал образован полупроводником η-типа, то затвор – полупроводником p-типа. Напряжение между затвором и истоком всегда подается обратной полярности, т.е. запирающей р-n-персход. Напомним, что при подаче напряжения обратной полярности область, занимаемая р-n-переходом, расширяется. При этом расширяется и область, обедненная носителями заряда, а значит, сужается область канала, через которую может течь ток. Причем, чем больше значение запирающего напряжения, тем шире область, занимаемая р-n-переходом, и тем меньше сечение и проводимость канала.

Так же, как и для биполярных транзисторов, для описания работы полевых транзисторов используют выходные характеристики. Выходная характеристика нолевого транзистора – это зависимость тока стока Iс от напряжения между стоком и истоком при фиксированном напряжении между затвором и истоком. В отличие от биполярного, работа нолевого транзистора может также описываться непосредственной зависимостью выходного параметра – тока стока от входного – управляющего напряжения между затвором и истоком. В зависимости от температуры, эти характеристики несколько изменяются. Напряжение UЗИ, при котором канал полностью перекрывается (IС = 0), называется напряжением отсечки Uотc. Управляющее действие затвора характеризуют крутизной, которая может быть определена по выходным характеристикам (см. рис. 1.15, г):

S = ΔIсΔUЗИ, при UСИ = const.

Будет интересно Как устроены многоцветные светодиоды

Так как управляющий p-n-переход всегда заперт, у полевых транзисторов практически отсутствует входной ток. Благодаря этому они имеют очень высокое входное сопротивление и практически не потребляют мощности от источника управляющего сигнала. Это свойство относится не только к транзисторам с управляющим р-n-переходом, но и ко всем полевым транзисторам, что выгодно отличает их от биполярных.

Индуктивные датчики. Виды. Устройство. Параметры и применение

Индуктивные датчики – преобразователи параметров. Их работа заключается в изменении индуктивности путем изменения магнитного сопротивления датчика.

Большую популярность индуктивные датчики получили на производстве для измерения перемещений в интервале от 1 микрометра до 20 мм. Индуктивный датчик можно применять для замера уровней жидкости, газообразных веществ, давлений, различных сил. В этих случаях диагностируемый параметр преобразуется чувствительными компонентами в перемещение, далее эта величина поступает на индуктивный преобразователь.

Для замера давления применяются чувствительные элементы. Они играют роль датчиков приближения, предназначенные для выявления разных объектов бесконтактным методом.

Виды и устройство

Индуктивные датчики разделяются по схеме построения на 2 вида:

  1. Одинарные датчики.
  2. Дифференциальные датчики.

Первый вид модели имеет одну ветвь измерения, в отличие от дифференциального датчика, у которого две измерительные ветви.

В дифференциальной модели при изменении диагностируемого параметра изменяются индуктивности 2-х катушек. При этом изменение осуществляется на одинаковое значение с противоположным знаком.

Индуктивность катушки вычисляется по формуле: L = WΦ/I

Где W– количество витков; Ф – магнитный поток; I – сила тока, протекающего по катушке. Сила тока взаимосвязана с магнитодвижущей силой следующим отношением: I = Hl/W

Из этой формулы получаем: L = W²/Rm
Где R m = H*L/Ф – магнитное сопротивление.

Работа одинарного датчика заключается в свойстве дросселя, изменять индуктивность при увеличении или уменьшении воздушного промежутка.

Конструкция датчика включает в себя ярмо (1), витки обмотки (2), якорь (3), который фиксируется пружинами. По сопротивлению поступает переменный ток на обмотку. Сила тока в нагрузочной цепи вычисляется:

L – индуктивность датчика, rd – активное дроссельное сопротивление. Оно является постоянной величиной, поэтому изменение силы тока I может осуществляться только путем изменения составляющей индуктивности XL=IRн, зависящей от размера воздушного промежутка δ.

Каждой величине зазора соответствует некоторое значение тока, определяющего падение напряжения на резисторе Rн: Uвых=I*Rн – является сигналом выхода датчика. Можно определить следующую зависимость U вых = f (δ), при одном условии, что зазор очень незначительный и потоки рассеивания можно не учитывать, как и магнитное сопротивление металла Rмжв сравнении с магнитным сопротивлением зазора воздуха Rмв.

Окончательно получается выражение:
На практике активное сопротивление цепи несравнимо ниже индуктивного. Поэтому формула принимает вид:
Из недостатков одинарных можно отметить:
  • При эксплуатации датчика на якорь воздействует сила притяжения к сердечнику. Эта сила не уравновешена никакими методами, поэтому она снижает точность функционирования датчика, и вносит некоторый процент погрешности.
  • Сила нагрузочного тока зависит от амплитуды напряжения и ее частоты.
  • Чтобы измерить перемещение в двух направлениях, нужно установить первоначальное значение зазора, что доставляет определенные неудобства.

Дифференциальные индуктивные датчики объединяют в себе два нереверсивных датчика и изготавливаются в виде некоторой системы, которая состоит из 2-х магнитопроводов, имеющих два отдельных источника напряжения. Для этого чаще всего применяется разделительный трансформатор (5).

Дифференциальные датчики классифицируются по форме сердечника:
  • Индуктивные датчики с Ш-образной формой магнитопровода, выполненного в виде листов электротехнической стали. При частоте более 1 килогерца для сердечника используют пермаллой.
  • Цилиндрические индуктивные датчики с круглым магнитопроводом.

Форму датчика выбирают в зависимости от конструкции и ее сочетания с механизмом. Использование магнитопровода Ш-образной формы является удобным для сборки катушки и снижения габаритных размеров индуктивного датчика.

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой

Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор

Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Устройство и принцип работы транзистора

Транзистором называется полупроводниковый прибор, предназначенный для усиления и генерирования электрических колебаний. Транзисторы являются ключами (кнопками) в сетях с постоянным током. Биполярные транзисторы могут управлять электрической цепью до 50 В, полевые транзисторы могут управлять приборами до 100 В (при напряжении на затворе 5 В). В сетях с переменным током использую реле.


Фото. Устройство полевого и биполярного транзистора

При отсутствии напряжения на базе или затворе транзистора, эмиттерный и коллекторный переход находятся в равновесия, токи через них не проходят и равны нулю. Таким образом, подавая на базу биполярного транзистора напряжение в 5 В, мы можем включать электрические цепи до 50 Вольт. Сегодня этот полупроводниковый элемент встречается почти в любом устройстве (в телефоне, компьютере и т.д.).

Транзисторы являются основой для построения микросхем логики, памяти и микропроцессоров компьютеров. Транзистор — это электронный элемент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током высокого напряжения. Использование транзистора — это наиболее простой способ подключения к Ардуино мотора постоянного тока.

Принцип работы PNP транзистора

Переход эмиттер-база соединен в прямом смещении, благодаря чему эмиттер выталкивает дырки в базу. Дырки и составляют ток эмиттера. Когда носители перемещаются в полупроводниковый материал или основу N-типа, они объединяются с электронами. База транзистора тонкая и слаболегированная. Следовательно, только несколько дырок в сочетании с электронами движутся в направлении слоя пространственного заряда коллектора. Отсюда получается ток базы.

Область основания коллектора соединена в обратном смещении. Дырки, которые накапливаются вокруг области истощения p-n перехода при воздействии отрицательной полярности, собираются или притягиваются коллектором. Таким образом создается ток коллектора. Полный ток эмиттера протекает через ток коллектора IC.

Проводимость кристаллической решетки с примесями

Свободных электронов в чистом полупроводнике мало, и это объясняет низкую проводимость материала.

Однако, при повышении температуры электроны на валентном уровне получают большую энергию, и могут быстрее покидать свои орбиты. Поэтому материал становится более проводимым при повышении температуры.

Донорская примесь и n-тип

Если добавить в кристаллическую решетку кремния атом, у которого 5 валентных электронов, то из-за него в кристалле появятся свободные электроны.

Например, есть атом мышьяка (As) и атомы кремния (Si).
4 валентных электрона мышьяка образуют валентную связь с другими атомами кремния. А вот один электрон будет находится в зоне проводимости. То есть, он станет свободным электроном.

А вот атом мышьяка, который непреднамеренно отдал свой электрон, станет положительным ионом. И несмотря на это, кристаллическая решетка остается стабильной.

Примеси добавляют при помощи легирования. Оно может быть, как металлургическим (повышением температуры, изготовление сплавов), так химическим (ионное и диффузное).

Если подать ток по такому материалу, то свободные электроны из примеси притягиваются положительным потенциалом. А с отрицательного потенциала приходят «новые» электроны, взамен старым, которые ушли к положительному потенциалу.

Акцепторная примесь и p-тип

А что будет, если в полупроводник добавить атом с тремя валентными электронам, например бор (B)?
Тогда три валентных электрона атома бора создадут связь с другими атомами кремния. Однако теперь в кристалле с такой примесью будет не хватать одного электрона.

Это отсутствие электрона называется дыркой. По сути, это положительный потенциал, но для простоты понимания его принято называть дыркой.

Это не ион и не элементарная частица. Это дефицит электрона у атомов. И тот атом, у которого будет не хватать электрона на своей орбите, будет притягивать к себе и свободные электроны, которые оказались в кристалле, и электроны от соседних атомов.

Такая примесь в кристалле также повышает его проводимость. И эта примесь называется акцепторной. То есть, примесные атомы создают дефицит электронов в кристаллической решетке.

Поэтому, такой полупроводник с акцепторной примесью называются p-типом. Его основные носители заряда – дырки. А неосновные – электроны.

Если пустить ток по такому материалу, то к отрицательному потенциалу будет притягиваться дырка к новому поступающему электрону из источника тока. А вот к положительному потенциалу будут уходить электроны, которые находились в кристалле.

Ток неосновных зарядов

Как уже было сказано выше, у p-типа основные носители заряда — это дырки, а у n-типа — это электроны. Неосновные носители соответственно, наоборот. И неосновные носители зарядов тоже участвуют при прохождении тока.

Конечно, неосновных носителей зарядов намного меньше, чем основных, но не стоит их полностью игнорировать, особенно когда речь идет о p-n переходе.

Р-канальный JFET-транзистор с изолированным PN-переходом

Но есть также и P-канальный полевой транзистор с управляющим P-N переходом. Как вы уже догадались из названия, его канал сделан и полупроводника P-типа. Его внутреннее строение выглядит вот так:

На схемах обозначается так:

Обратите внимания на стрелочку по сравнению с N-канальным транзистором.

Принцип его действия точно такой же, просто основными носителями заряда будут являться уже дырки. Следовательно, все напряжения в схеме  меняем на противоположные:

Также не забываем, что вывод, откуда начинают движение основные носители (как вы помните в P полупроводнике это дырки), называется ИСТОКОМ.