От чего зависит сопротивление?
При соприкосновении двух проводников, общая площадь и численность площадок зависит как от уровня силы нажатия, так и от прочности самого материала. То есть переходное контактное сопротивление зависит от силы нажатия: чем сила больше, тем оно будет меньше. Только давление следует увеличивать до определенной цифры, так как при больших механических нагрузках переходное сопротивление практически не изменяется. Да и такое сильное давление может привести к деформации, в результате которой контакты могут разрушиться.
Также переходное сопротивление контактов существенно зависит и от температуры. Когда электрическое напряжение проходит по проводникам и их поверхностям, контакты нагреваются и температура повышается, как следствие переходное сопротивление увеличивается. Только это увеличение происходит медленнее, чем повышение удельного сопротивления материала конструкции, так как, нагреваясь, материал теряет свою твердость.
Чем сильнее нагревается устройство, тем интенсивнее идет процесс окисления, которое в свою очередь также влияет на увеличение переходного сопротивления. Так, например, медная проволока активно окисляется при температуре от 70 °С. При обычной комнатной температуре (порядка 20 °С) медь окисляется незначительно и образовывающая окислительная пленка легко разрушается при сжатии.
На картинке указывается зависимость величины от нажатия (А) и температуры (Б):
Алюминий окисляется при комнатной температуре гораздо быстрее и окислительная пленка, которая образовывается, устойчивее и имеет высокое противодействие. Исходя из этого, можно сделать вывод, что нормального соприкосновения со стабильными значениями, в ходе использования устройства, добиться тяжело. Поэтому использование проводников из алюминия в электрике опасно.
Для того чтобы получить устойчивые и долговечные соединительные контакты необходимо качественно зачистить и обработать саму поверхность кабеля. Также создать достаточное давление. Если все сделано правильно (вне зависимости от того каким методом было осуществлено соединение), то измеритель укажет стабильное значение.
Особенности работы контактов в сильноточных цепях
При прохождении электрического тока через контакт на последнем выделяется мощность, равная: P = I2Rпер, которая обусловливает тепловой режим работы контактов в областях стягивания. В установившемся состоянии тепло, выделяемое в областях стягивания, компенсируется теплом, отдаваемым этими областями телу контактов. Разность между температурой на эффективной контактной поверхности и температурой тела контакта называется температурой локального перегрева. Она равна:
где Т — температура тела контакта, К; L = 2,4×10–8 В2/К2 — коэффициент Вейдемана-Лоренца; U(θ1) — падение напряжения в области стягивания, В.
Вследствие малой массы металла, находящегося в областях стягивания, температура локального перегрева нарастает почти мгновенно после включения электрического тока. Время установления температуры локального нагрева обычно составляет 1–50×10–4 с.
Указанное свойство контактов используется для получения контактной сварки. В электрических разъемах с этим явлением приходится бороться, то есть при расчете токовой нагрузки контактов и режимов их эксплуатации необходимо обязательно учитывать влияние переходных процессов и импульсных токовых перегрузок. При этом температура перегрева области стягивания ни в коем случае не должна превышать допустимую, которая соответствует или температуре плавления материала покрытия контактов, или температуре, при которой резко повышается химическая активность материала.
На этот момент необходимо обратить внимание при эксплуатации электрических соединителей. Ни в коем случае нельзя допускать превышения токовых нагрузок относительно ТУ без согласования отклонений с разработчиком
Нагрев области стягивания электрического контакта вызывает изменение переходного сопротивления. Так как температура перегрева в области стягивания распределена неравномерно, то зависимость переходного сопротивления от температуры локального перегрева отличается от обычной температурной зависимости сопротивления и имеет вид:
Тепло, отдаваемое областью стягивания электрическому контакту, вызывает нагрев последнего. Кроме того, при прохождении тока через тело электрических контактов на них выделяется определенная мощность, вызывающая их дополнительный нагрев.
Температура перегрева электрических контактов в установившемся режиме равна:
где I — ток, Rпер — переходное сопротивление контакта, Ом; λ — теплопроводность материала контакта, Вт/см·К; k* — коэффициент теплопередачи с поверхности в 1 см, Вт/см·К; ρ — удельное сопротивление материала контакта, Ом·см; Дк — диаметр контакта, см; х — расстояние между исследуемой точкой и местом стыка контактных электродов, см.
В точках, расположенных в непосредственной близости от места стыка электрических контактов (то есть при x = 0), температура контактов максимальна.
Из приведенных выражений видно, что если температура локального перегрева не зависит от геометрических размеров электрических контактов, то у температуры общего перегрева электрических контактов эта зависимость проявляется довольно-таки существенно. Поэтому уменьшение нагрева контактов можно обеспечить не только за счет уменьшения переходного сопротивления, но и за счет увеличения размеров электрических контактов.
Причины возникновения явления
Общее сопротивление
Контактное соединение коммутирует между собой участки электроцепи. Там, где происходит соединение, получается токопроводящее взаимное прикосновение, через которое ток из одного участка цепи переходит в другой. Обычное наложение поверхностей не выполняет качественного соединения. Это связано с тем, что реальные поверхности – это неровности, имеющие выступы и углубления. При достаточном увеличении изображения можно это наблюдать даже на отшлифованных плоскостях.
Пятно контакта под микроскопом
Внимание! На практике получается, что площадь реального прикосновения гораздо меньше всей площади контакта. Ещё одной причиной возникновения такого сопротивления являются пленки окисления металла, присутствующие на поверхностях. Они препятствуют движению электричества и стягивают линии тока к точкам касания
Избавиться от этого сопротивления полностью невозможно. Его величина всегда больше, чем удельные сопротивления металлов, из которых выполнены проводники
Они препятствуют движению электричества и стягивают линии тока к точкам касания. Избавиться от этого сопротивления полностью невозможно. Его величина всегда больше, чем удельные сопротивления металлов, из которых выполнены проводники
Ещё одной причиной возникновения такого сопротивления являются пленки окисления металла, присутствующие на поверхностях. Они препятствуют движению электричества и стягивают линии тока к точкам касания. Избавиться от этого сопротивления полностью невозможно. Его величина всегда больше, чем удельные сопротивления металлов, из которых выполнены проводники.
Микроструктура электрического контакта
Почему медь и алюминий напрямую лучше не соединять
Есть материалы, которые считаются электрохимическими несовместимыми — именно такова пара «медь-алюминий». Решив по-быстрому скрутить два провода из этих металлов, можно получить плачевный результат. Хотя на первый взгляд всё должно быть с точностью да наоборот — ведь электрические свойства меди и алюминия позволяют считать их лучшими из проводников, наряду с золотом и серебром. Так почему бы не соединить их?
Есть один нюанс — быстрое и весьма существенное окисление алюминиевых проводов. Медь окисляется намного меньше, пленка окиси на поверхности медного провода существенного влияния на проводимость не оказывает. Однако с алюминием все не так — окисная пленка алюминиевого провода имеет высокое переходное контактное сопротивление.
Соединение меди и алюминия образует гальваническую пару, происходит взаимное отторжение контактных поверхностей с выделением тепла и обгоранием изоляции.
Но бывают ситуации, когда соединить медный и алюминиевый провод очень нужно. Есть несколько относительно безопасных вариантов:
- использование клеммников типа «Wago»
- если на улице — возьмем ответвительные зажимы для СИП или сжимы «орешки»
- когда под рукой нет никаких специальных приспособлений, выручит обычный болт с гайкой и шайбой (ее мы проложим между медью и алюминием, исключив прямой их контакт).
Факторы, влияющие на величину переходного сопротивления
Удельное сопротивление
Прежде, чем говорить о факторах, нужно знать, что собой представляют контакты. Они различаются по виду контактируемой поверхности:
- точечные – соединение происходит в точке;
- линейные – соприкасаются по линии;
- плоскостные – контакт по плоскости.
Примеры точечных соединений – «сфера – сфера»; «вершина конуса – плоскость», «сфера – плоскость» и др. К линейным относятся соприкосновения: «тор – плоскость», «цилиндр – плоскость», «цилиндр – цилиндр» и т.п.
Площадь прикосновения контактов можно подсчитать по формуле:
Sпр = F/σ,
где:
- F – сила сжатия контактов;
- σ – временное сопротивление материала контактов сжатию.
Существуют разные способы соединения:
- механические (скрутки, болтовые зажимы, опрессовка);
- сварка;
- пайка.
Величина переходного сопротивления определяется по формуле:
Rп = knx/(0,102*Fk)n,
где:
- knx – коэффициент, обуславливаемый материалом, формой контакта, состоянием поверхности;
- Fk – сила, с которой сжимаются контакты;
- n – показатель степени, показывающий число точек соприкосновения.
Показатель степени для разных видов контактов:
- для точечного – n = 0,5;
- для линейного – n = 0,5-0,7;
- для плоскостного (поверхностного) – n = 0,7-1.
Существуют принятые по гост ГОСТ 24606.3-82 нормы переходного сопротивления контактов.
Факторы, влияющие на Rп
Внимание! С окислением поверхностей металлов в местах соединений можно бороться при помощи протирания контактов спиртосодержащими растворами. Допустимо смазывать болтовые соединения солидолом, это поможет снижать доступ кислорода и замедлять процесс окисления. Регулярная протяжка контактов и скруток, недопустимость соединений меди и алюминия, полировка губок контакторов – всё это меры борьбы с переходным сопротивлением
Регулярная протяжка контактов и скруток, недопустимость соединений меди и алюминия, полировка губок контакторов – всё это меры борьбы с переходным сопротивлением.
К сведению. Плохое прижатие контактируемых поверхностей вызывает не только повышение сопротивления, но и увеличение степени нагрева проводников.
Результат нагрева места соединения
Контактное сопротивление
Контактное сопротивление при сварке оплавлением определяется сопротивлением жидких перемычек металла между торцами и сопротивлением, вызванным искривлением линий тока на участках основания перемычек; раздельное измерение этих сопротивлений затруднено. Контактное сопротивление вследствие малой индуктивности и емкости обычно считается чисто активным.
Контактное сопротивление по мере оплавления увеличивается незначительно, так как сопротивление перемычек несколько уменьшается, а сопротивление соседнего с торцами металла растет, хотя последнее мало влияет на нагрев.
Датчик контактного сопротивления. |
Контактное сопротивление между поверхностью двух твердых тел зависит также от материала этих тел и качества обработки соприкасающихся поверхностей.
Потенциомет — — 2. Тензометрический рический датчик. проволочный датчик.| Датчик контактного сопротивления. |
Контактное сопротивление между поверхностями двух твердых тел зависит от величины давления одного тела на другое. С увеличением давления контактное сопротивление уменьшается, и наоборот. Это явление и используется в датчиках контактного сопротивления.
Потенциомет — — 2. Тензометрический рический датчик. проволочный датчик.| Датчик контактного сопротивления. |
Контактное сопротивление между поверхностями твердых тел зависит также от материала этих тел и также от качества обработки соприкасающихся поверхностей.
Контактные пластины ствию массивных элементов, пружин и т. д. герконы являются. |
Контактное сопротивление в герконах лежит в пределах 0 03 — г — 0 2 Ом и отличается стабильностью.
Схема процесса точечной сварки. |
Контактное сопротивление вызвано резким уменьшением сечения проводника в зоне контакта и наличием на соприкасающихся поверхностях пленок оксидов, имеющих низкую электропроводимость.
Контактное сопротивление в значительной степени зависит от температуры. Так как основное сопротивление сосредоточено в контакте, то здесь же и происходит выделение джоулева тепла. Следовательно, области контактных пятен перегреты на величину Т относительно остальной массы контактирующих тел.
Контактное сопротивление, которое представляется поверхностным явлением, в действительности связано с перераспределением линий теплового тока на соприкасающихся поверхностях твердых тел.
Оптимальные значения поверхности орсб — Различная геометрия и способы креплении оребрснпых труб.| Распределение температуры в ребре ( к определению эффективности ребра. |
Зачем измерять переходное сопротивление (ПС)
Гост 17703-72 аппараты электрические коммутационные. основные понятия. термины и определения (с изменением n 1)
Электрические установки (ЭУ), а также корпуса электродвигателей, генераторов, трансформаторов и других преобразователей необходимо заземлять. Присоединение заземляющего устройства к оборудованию и ЭУ выполняется болтовым соединением, которое так же имеет ПС.
Для надёжности срабатывания защитного отключения при коротком замыкании переменного тока на корпус ПС периодически должно проверяться.
Результаты тестирования ПС дают возможность понять, какова вероятность поражения человека током, есть ли опасность возгорания оборудования при повышении температуры на плохих контактах. Высокое ПС увеличивает время срабатывания защитного оборудования.
Большое переходное сопротивление
Большое переходное сопротивление образуется вследствие плохого контакта, в частности в местах соединения проводов между собой или с клеммами рубильников.
Схема включения регулировочного реостата. а — неправильно. б — пра. |
Большое переходное сопротивление в цепи возбуждения, в результате чего ток в обмотке возбуждения не может достигнуть нужной величины при выведенном сопротивлении регулировочного реостата.
Большое переходное сопротивление между проводами обмотки ЛАТР и угольной щеткой ограничивают ток короткозамкнутого витка.
Принципиальная схема устройства трансформатора С подвижной короткозамкну-той катушкой ( а и схема соединения его обмоток ( б. |
Большое переходное сопротивление между проводниками обмотки ЛАТР и угольной щеткой ограничивает ток короткозамкнуто-го витка. Такие автотрансформаторы широко используются в лабораториях.
Большое переходное сопротивление контактов и изменение параметров сопротивления катушек обнаруживается при поверке приборов. Причинами увеличения переходного сопротивления могут быть загрязнение, окисление, износ поверхностей, плохая притирка и слабое под-жатие контактных частей переключающих устройств. Параметры катушек изменяются из-за межвитковых замыканий при пробое или нарушении изоляции.
Ввиду большого переходного сопротивления стыков значительно повышается общее сопротивление рельсовой цепи. Увеличение падения напряжения в рельсах ведет к увеличению потенциала по отношению к земле, что создает благоприятные условия для ответвления токоз в землю. Поэтому для уменьшения сопротивления в местах расположения рельсовых стыков устанавливают дополнительные электропроводящие соединения, так называемые стыковые еоедннения.
При большом переходном сопротивлении сопротивление на зажимах одного из реле при замыкании между двумя фазами может оказаться меньшим, чем при замыкании между тремя фазами, но остается большим, чем при металлическом к.
Если вследствие большого переходного сопротивления в месте повреждения получить ток достаточной величины не удается, то необходимо прожечь место повреждения подачей повышенного напряжения от сварочного или силового трансформатора.
В обычном состоянии проводимость когерера мала вследствие большого переходного сопротивления между отдельными частицами опилок. Но при включении расположенной вблизи индукционной катушки, создающей электромагнитное поле, проводимость когерера резко возрастает. Это объясняется наведением в каждой частице электродвижущей силы, под действием которой между частицами возникают электрические разряды, приводящие как бы к спеканию опилок.
Наибольшая эффективность применения изолирующих фланцев достигается при большом переходном сопротивлении на защищаемом трубопроводе.
Контрольная лампа Проверка корпуса агрегата на. |
Контрольная лампа позволяет обнаружить замыкание на корпус при большом переходном сопротивлении, но ее показания значительно менее точны, чем омметра.
Эта пленка предохраняет алюминий от дальнейшей коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов и сильно затрудняет пайку алюминия обычными способами. Для пайки алюминия применяют специальные пасты — припои или используют ультразвуковые паяльники.
Экспериментальная характеристика
Здесь необходимо различать оценку контактного сопротивления в двухэлектродных системах (например, диодах) и трехэлектродных системах (например, транзисторах).
В течение двух электродных систем удельное сопротивление контакта экспериментально определяется как наклон кривой IV при V = 0 :
- р c знак равно { ∂ V ∂ J } V знак равно {\ displaystyle r_ {c} = \ left \ {{\ frac {\ partial V} {\ partial J}} \ right \} _ {V = 0}}
где J — плотность тока или ток на площадь. Поэтому единицы удельного сопротивления контактов обычно выражаются в омах на квадратный метр или . Когда ток является линейной функцией напряжения, говорят, что устройство имеет омические контакты .
Ω ⋅ см 2 {\ displaystyle \ Omega \ cdot {\ text {cm}} ^ {2}}
Сопротивление контактов можно грубо оценить, сравнив результаты измерения с четырьмя выводами с результатами простого измерения с двумя выводами, выполненного с помощью омметра. В эксперименте с двумя выводами измерительный ток вызывает падение потенциала как на измерительных выводах, так и на контактах, так что сопротивление этих элементов неотделимо от сопротивления реального устройства, с которым они включены последовательно. При измерении с четырехточечным датчиком одна пара проводов используется для подачи измерительного тока, а вторая пара проводов, параллельная первой, используется для измерения падения потенциала на устройстве. В случае с четырьмя датчиками нет падения потенциала на проводах измерения напряжения, поэтому падение контактного сопротивления не учитывается. Разница между сопротивлением, полученным при использовании двух- и четырехпроводного методов, является достаточно точным измерением контактного сопротивления при условии, что сопротивление выводов намного меньше. Удельное контактное сопротивление можно получить, умножив на площадь контакта. Также следует отметить, что контактное сопротивление может изменяться в зависимости от температуры.
В принципе, индуктивные и емкостные методы могут использоваться для измерения внутреннего импеданса без усложнения контактного сопротивления. На практике для определения сопротивления чаще используются методы постоянного тока .
Трехэлектродные системы, такие как транзисторы, требуют более сложных методов приближения контактного сопротивления. Наиболее распространенный подход — модель линии передачи (TLM). Здесь полное сопротивление устройства отображается как функция длины канала:
р малыш {\ displaystyle R _ {\ text {tot}}}
- р малыш знак равно р c + р ch знак равно р c + L W C μ ( V GS — V ds ) {\ displaystyle R _ {\ text {tot}} = R _ {\ text {c}} + R _ {\ text {ch}} = R _ {\ text {c}} + {\ frac {L} {WC \ mu \ left (V _ {\ text {gs}} — V _ {\ text {ds}} \ right)}}}
где и — сопротивление контакта и канала, соответственно, — длина / ширина канала, — емкость изолятора затвора (на единицу площади), — подвижность носителя, и — напряжения затвор-исток и сток-исток. Следовательно, линейная экстраполяция полного сопротивления на нулевую длину канала дает контактное сопротивление. Наклон линейной функции связан с крутизной канала и может использоваться для оценки подвижности носителей «без контактного сопротивления». Используемые здесь приближения (линейное падение потенциала в области канала, постоянное контактное сопротивление и т. Д.) Иногда приводят к зависимому от канала контактному сопротивлению.
р c {\ displaystyle R _ {\ text {c}}} р ch {\ displaystyle R _ {\ text {ch}}} L W {\ displaystyle L / W} C {\ displaystyle C} μ {\ displaystyle \ mu} V GS {\ displaystyle V _ {\ text {gs}}} V ds {\ displaystyle V _ {\ text {ds}}}
Помимо TLM было предложено стробируемое четырехзондовое измерение и модифицированный метод времени пролета (TOF). Прямые методы, позволяющие непосредственно измерить падение потенциала на инжекционном электроде, — это зондовая силовая микроскопия Кельвина (KFM) и индуцированная электрическим полем генерация второй гармоники.
В полупроводниковой промышленности структуры с поперечно-мостовым резистором Кельвина (CBKR) являются наиболее часто используемыми тестовыми структурами для определения характеристик контактов металл-полупроводник в планарных устройствах технологии СБИС. Во время процесса измерения подайте ток (I) между контактами 1 и 2 и измерьте разность потенциалов между контактами 3 и 4. Тогда контактное сопротивление Rk можно рассчитать как .
р k знак равно V 34 я {\ displaystyle Rk = V34 / I}
Методика измерения
Гост 21534-76 нефть. методы определения содержания хлористых солей (с изменениями n 1, 2, 3, с поправкой)
Существует регламент измерений Rп для коммутационных устройств: автоматических выключателей, разъединителей, сборных и соединительных шин и другой аппаратуры.
Методы измерений следующие:
- метод непосредственного отсчёта;
- способ вольтметра-амперметра;
- измерение статической нестабильности Rп.
При первом способе тестирования применяют приборы, позволяющие выполнять непосредственный отсчёт с учётом погрешности (±10%). При этом методе измеряют сопротивление контактного соединения.
Важно! Тестируемые поверхности контакт-детали не зачищают и не обрабатывают перед измерением. Контакт-деталь сочленяют (замыкают) и присоединяют к выводам приборов. Размыкание контактов и передвижение измерительных проводов недопустимы
Размыкание контактов и передвижение измерительных проводов недопустимы.
При помощи метода вольтметра-амперметра определяют величину падения напряжения (при установленном значении тока) на тестируемом переходе.
Схема измерительной установки
Все погрешности измерений приборов, входящих в схему, должны быть в пределах ±3%. Значение R1 подбирают на два порядка больше, чем предполагаемое измеряемое сопротивление.
Расчёт результатов измерений выполняют по формуле:
Rп = UPV2/IPA,
где:
- UPV2 – результат, полученный на вольтметре PV2, В;
- IPA – ток, измеряемый амперметром PA, А.
Статическую нестабильность Rп определяют, находя величину среднеквадратичного отклонения Rп по результатам многочисленных замеров.
Внимание! Переходное сопротивление замеряют одним из методов, рассмотренных выше. Контакт-деталь размыкают и заново смыкают перед каждым тестированием, снимая электрическую нагрузку. Необходимый результат получают, используя формулы на рис
ниже
Необходимый результат получают, используя формулы на рис. ниже.
Формулы для расчёта результата методом статической нестабильности
Погрешность результатов, полученных при этом методе, лежит в пределах ±10% (с вероятностью 0,95).
Перечень приборов, применяемых для измерений
Измерения Rп переходов проводят и микрометром ММR-610. В результате работы тестируют сопротивления постоянному току контактов автоматов и других соединений. Проводят два вида измерений:
- однонаправленным током;
- двунаправленным током.
В первом случае не отображается величина активного сопротивления R, зато этот метод убыстряет процесс измерений там, где нет внутренних напряжений и сил электростатики. Во втором случае прибор устраняет погрешности (ошибки), возникающие от присутствия в тестируемой конструкции таких сил и напряжений.
Микроомметр MMR – 610
Полученные в результате измерений (проверки) данные записываются в протокол, согласно ПУЭ-7 п.1.8.5. Протокол хранится совместно с паспортами на оборудование.
Образец протокола проверки
Документирование результатов измерений
По итогам проведенных работ подготавливается отдельный документ, в котором фиксируются все необходимые данные.
В бытовых однофазных цепях вполне достаточно будет провести три замера. В последних строчках заполняемого протокола обязательно должна присутствовать фраза о соответствии полученных результатов требованиям ПУЭ.
Кроме того, в них вносятся следующие данные:
- Дата и объем проведенных обследований.
- Сведения о составе рабочей бригады (из обслуживающего персонала).
- Используемые при проверке измерительные приборы.
- Схема их подключения, окружающая температура, а также условия проведения работ.
По завершении протоколирования измерений журнал с соответствующими записями убирается в надежное место, где он хранится до следующих испытаний. Сохраненные таким образом акты замеров в любой момент могут потребоваться для того, чтобы в аварийных ситуациях служить доказательством исправности поврежденного изделия.
Готовый протокол обязательно заверяется подписью производителя работ и проверяющего, назначенного из состава оперативного персонала. Для оформления актов замеров допускается использовать обычный блокнот, но более законным и надежным способом считается заполнение специального бланка (его образец приводится ниже).
Образец протокола измерения сопротивления изоляции
Заранее подготовленная форма протокола содержит пункты, в которых указываются:
- Порядок проведения измерительных операций.
- Применяемые при этом средства измерения.
- Основные нормативы по контролируемому параметру.
Кроме того, форма актов измерения электропроводок содержит готовые таблицы, подготовленные к заполнению. В таком виде документ составляется на компьютере всего лишь один раз, после чего он распечатывается на принтере в нескольких экземплярах. Такой подход позволяет сэкономит время на подготовку документации и придает актам замеров законченный, официальный вид.
Переходное сопротивление — контактное соединение
Переходное сопротивление контактного соединения ( контакта) зависит от температуры нагрева контактных деталей и степени его окисления. Повышение переходного сопротивления с повышением температуры контакта объясняется увеличением удельного электрического сопротивления материала контакта.
Переходное сопротивление контактных соединений следует измерять взрывозащищенными приборами в соответствии с требованиями ПУЭ.
Зависимость переходного сопротивления медных контактов от температуры. |
Переходное сопротивление контактного соединения в силовой степени зависит от окисления контактной поверхности, которое может привести к увеличению переходного сопротивления в десятки и сотни раз.
Переходное сопротивление контактного соединения при температуре 70 не должно превышать более чем на 20 % сопротивления целого участка шины той же длины. Стабильность соединения достигается установкой под гайку каждого болта пружинящих шайб, которые применяются для медных и стальных шин при резких изменениях температуры или при наличии вибрации, а для алюминиевых шин — во всех случаях.
Переходное сопротивление контактного соединения не должно заметно превышать сопротивления цельного участка шины ( или провода) такой же длины.
Измерение переходных сопротивлений контактных соединений производится микроомметрами или контактомерами, т.е. специальными приборами для измерения малых сопротивлений. Эти приборы имеют специальные контактные наконечники щупов, которые прижимаются к токопроводящим элементам с обеих сторон проверяемого контактного соединения. Со стороны проверяемого сопротивления присоединяются потенциальные наконечники, с внешней стороны — токовые наконечники щупов. Обозначения потенциальных ( П) и токовых ( Т) наконечников нанесены на рукоятки щупов. Оценка качества контактного соединения производится сопоставлением значения сопротивления участка с контактным соединением со значением сопротивления токоведущего элемента на участке, длина которого равна участку с проверяемым контактным соединением.
Большая стабильность и малое переходное сопротивление контактного соединения, осуществленного посредством оси, подтверждаются длительным опытом эксплуатации.
Соответственно изменению действительной площади соприкосновения контактов изменяется переходное сопротивление контактного соединения.
Объективным и прямым методом контроля качества контактного соединения является измерение величины переходного сопротивления контактного соединения или падения напряжения на нем и сравнение полученных данных с нормативными. Наряду с этим контактное соединение осматривают, используя в необходимых случаях лупы, а также измеряют штриховыми инструментами.
Значения коэффициента. |
Из ( 8 — 20) следует, что при неизменной общей площади соприкасающихся поверхностей переходное сопротивление контактного соединения или контакта тем меньше, чем больше контактное давление, так как от него зависит их действительная площадь соприкосновения деталей.
Необходимо также измерять омическое сопротивление обмоток встроенных ( втулочных) трансформаторов тока на всех отпайках, обмоток реле, переходных сопротивлений контактных соединений, недоступных для осмотра, и отдельных контактных соединений, вызывающих сомнение в их качестве
Особое внимание надо уделять штепсельным и скользящим контактным соединениям, например контактам, с помощью которых вторичные элементы тележки ячейки КРУ соединяются со вторичными элементами, расположенными в неподвижных отсеках.
К расчету проводника, проходящего через фарфоровый изолятор. |
Количество тепла, выделяющееся в 1 сек в контактном соединении или в контакте, равно I2RK, где / — величина тока, а Кк — переходное сопротивление контактного соединения или контакта. Одновременно с процессом нагрева идет процесс охлаждения путем отдачи тепла в окружающее пространство и прилегающим менее нагретым металлическим частям. Температура контактного соединения или контакта установится после того, как количество тепла, выделяющееся в нем, будет равно количеству отдаваемого тепла.
Причины возникновения явления
Соединительные контакты объединяют в электрической цепи два или несколько проводника. На месте соединения образуется токопроводящее соприкосновение, в результате которого ток протекает из одной области цепи в другую.
Если контакты наложить друг на друга, не обеспечится хорошее соединение. Это объясняется тем, что поверхность соединительных элементов неровная и прикосновение не осуществляется по всей их поверхности, а только в некоторых точках. Даже если тщательно отшлифовать поверхность, на ней все равно останутся незначительные впадины и бугорки.
Некоторые книги по электрическим аппаратам предоставляют фото, где под микроскопом видна площадь соприкосновения и она намного меньше общей контактной площади.
Из-за того что контакты имеют небольшую площадь, это дает существенное переходное сопротивление для прохождения электрического тока. Переходное контактное сопротивление – это такая величина, которая возникает в момент перехода тока из одной поверхности на другую.
Для того чтобы соединить контакты используют различные способы надавливания и скрепления проводников. Нажатие – это усилие, с помощью которого поверхности взаимодействуют между собой. Способы крепления бывают:
- Механическое соединение. Применяют различные болты и клеммники.
- Соприкосновение происходит за счет упругого надавливания пружин.
- Спаивание, сваривание и опрессовка.