Характерные отличия полевого от биполярного транзистора
– Биполярный транзистор имеет полупроводниковые переходы с однонаправленной полярностью, как у диода, и при подключении к цепи нагрузки требует строгого соблюдения полярности (соответствия) электродов. Канал полевого транзистора проводит ток в обоих направлениях и иногда относится к классу униполярных приборов.
– Проводимость переходов биполярного транзистора зависит от тока насыщения базы и требует затрат некоторой энергии. Проводимость канала полевого транзистора управляется напряжением затвора, по которому ток практически не протекает. Поэтому, полевые транзисторы в отличие от биполярных считаются наиболее экономичным классом устройств в отношении потребления электроэнергии при работе.
Здравствуйте, дорогие читатели. В данной статье рассмотрим отличие полевого транзистора от биполярного, узнаем в каких сферах применяются и те, и другие транзисторы.
Среди полупроводниковых приборов существуют две большие группы, в состав которых входят полевые и биполярные транзисторы. Они широко используются в электронике и радиотехнике в качестве генераторов, усилителей и преобразователей электрических сигналов. Чтобы понять, в чем основное различие этих устройств, необходимо рассмотреть их более подробно.
Отличие полевого транзистора от биполярного
Проводящая область конструкции состоит из трёх «спаянных» полупроводниковых частей, с чередованием по типу проводимости. Полупроводник с донорной (электронной) проводимостью обозначается как n-тип, с акцепторной (дырочной) – p-тип. Таким образом, мы можем наблюдать только два варианта чередования – p-n-p, либо n-p-n. По этому признаку различают биполярные транзисторы с n-p-n и p-n-p структурой.
Характеристики полевого МОП транзистора
Для того, чтобы узнать характеристики транзистора, нам надо открыть на него даташит и рассмотреть небольшую табличку на первой странице даташита. Будем рассматривать транзистор, который мы использовали в своих опытах: IRFZ44N.
Напряжение VGS – это напряжение между Затвором и Истоком. Смотрим на даташит и видим, что максимальное напряжение, которое можно подать на Затвор это +-20 Вольт. Более 20 Вольт в обе стороны пробьет тончайший слой диэлектрика, и транзистор придет в негодное состояние.
Максимальная сила тока ID , которая может течь через канал Сток-Исток.
Как мы видим, транзистор в легкую может протащить через себя 49 Ампер!!!
Но это при температуре кристалла 25 градусов по Цельсию. А так номинальная сила тока 35 Ампер при температуре кристалла 100 градусов, что чаще всего и происходит на практике.
RDS(on) – сопротивление полностью открытого канала Стока-Истока. В режиме насыщения, сопротивление канала транзистора достигает ну очень малого значения. Как вы видите, у нашего подопечного сопротивление канала достигает 17,5 мОм (при условии, что напряжение на Затворе = 10 Вольт, а ток Стока = 25 Ампер).
Максимальная рассеиваемая мощность PD – это мощность, которую транзистор может рассеять на себе, превращая эту мощность в тепло. В нашем случае это 94 Ватта. Но здесь также должны быть соблюдены различные условия – это температура окружающей среды, а также есть ли у транзистора радиатор.
Также различные зависимости одних параметров от других можно увидеть в даташите на последних страницах.
Например, ниже на графике приводится зависимость тока Стока от напряжения Стока-Истока при каких-то фиксированных значениях напряжения на Затворе при температуре кристалла (подложки) 25 градусов Цельсия (комнатная температура). Верхняя линия графика приводится для напряжения 15 Вольт на Затворе. Другие линии в порядке очереди по табличке вверху слева:
Также есть интересная зависимость сопротивления канала полностью открытого транзистора от температуры кристалла:
Если посмотреть на график, то можно увидеть, что при температуре кристалла в 140 градусов по Цельсию у нас сопротивление канала увеличивается вдвое. А при отрицательных температурах наоборот уменьшается.
Какие транзисторы лучше полевые или биполярные?
И так, мы узнали, что главное отличие этих двух видов транзисторов в управление. Давайте рассмотрим прочие преимущества полевых транзисторов по сравнению с биполярными:
Накопление и рассасывание неосновных носителей заряда отсутствует в полевых транзисторах, от того и быстродействие у них очень высокое (что отмечается разработчиками силовой техники). И поскольку за усиление в полевых транзисторах отвечают переносимые основные носители заряда, то верхняя граница эффективного усиления у полевых транзисторов выше чем у биполярных.
Отличие полевого транзистора от биполярного
Здесь же отметим высокую температурную стабильность, малый уровень помех (в силу отсутствия инжекции неосновных носителей заряда, как то происходит в биполярных), экономичность в плане потребления энергии.
Как устроен биполярный транзистор
Все транзисторы делятся на два основных типа – биполярные и полевые. Биполярные транзисторы – самые распространённые. Они состоят из трёхслойных полупроводников, каждый слой которых соединяется с внешним выводом через металло-полупроводниковый контакт. Средний слой обычно используется в качестве базы. Эмиттер и коллектор – это два крайних слоя, соединённые с соответствующими выводами.
Устройство биполярного транзистора
На схеме эмиттер изображается выводом со стрелкой, которая показывает направление движения тока.
Управление биполярным транзистором осуществляется путём подачи на базу определённого напряжения – положительного (для NPN) и отрицательного (для PNP). Изменяя значение этого напряжения, можно в большей или меньшей степени открывать «кран».
Биполярные NPN-транзисторы пользуются большей популярностью, поскольку в них основная роль отводится электронам, а не дыркам (положительным условным частицам). Электроны имеют в несколько раз большую подвижность, чем дырки, поэтому обратные транзисторы работают лучше и быстрее.
Проводимость транзисторов
Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:
- P-N-P.
- N-P-N.
К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.
Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.
Характеристики транзистора, включенного по схеме об
Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя.
Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях.
Заключение Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством.
Активный режим транзистора — это нормальный режим работы транзистора.
При этом параметры транзистора тут вообще никакой роли не играют. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.
Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.
Работу усилителя хорошо видно на временных диаграммах. Рисунок 2.
Как работает транзистор? Режим ТТЛ логика / Усиление. Анимационный обучающий 2d ролик. / Урок 1
Драйвер полевого транзистора
Если всё же требуется подключать нагрузку к n-канальному транзистору
между стоком и землёй, то решение есть. Можно использовать готовую
микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор
сверху.
Выпускаются и драйверы сразу верхнего и нижнего плеч (например,
IR2151) для построения двухтактной схемы, но для простого включения
нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять
«висеть в воздухе», а требуется обязательно подтягивать к земле.
Рассмотрим схему драйвера верхнего плеча на примере IR2117.
Схема не сильно сложная, а использование драйвера позволяет наиболее
эффективно использовать транзистор.
Управление индуктивной нагрузкой
При управлении индуктивной нагрузкой, такой как электродвигатель, или
при наличии помех в сети напряжение может стать достаточно большим,
чтобы симистор самопроизвольно открылся. Для борьбы с этим явлением в
схему необходимо добавить снаббер — это сглаживающий конденсатор и
резистор параллельно симистору.
Снаббер не сильно улучшает ситуацию с выбросами, но с ним лучше, чем
без него.
Керамический конденсатор дожен быть рассчитан на напряжение,
большее пикового в сети питания. Ещё раз вспомним, что для 220 В — это
310 В. Лучше брать с запасом.
Типичные значения: $C_1 = 0{,}01\,мкФ$, $R_4 = 33\,Ом$.
Есть также модели симисторов, которым не требуется снаббер. Например,
BTA06-600C.
Виды полевых транзисторов
Полевой транзистор с n-р переходами подразделяется на несколько классов в зависимости:
- От типа каналов проводников: n или р. Каналы воздействую на знаки, полярности, сигналы управления. Они должны быть противоположны по знакам n-участку.
- От структуры приборов: диффузных, сплавных по р -n — переходам, с затворами Шоттки, тонкопленочными.
- От общего числа контактов: могут быть трех или четырех контактными. Для четырех контактных приборов, подложки также являются затворами.
- От используемых материалов: германия, кремния, арсенид галлия.
В свою очередь разделение классов происходит в зависимости от принципа работы транзистора:
- устройства под управлениями р-n переходов;
- устройства с изолированными затворами или с барьерами Шоттки.
Функции транзисторов
Транзисторы выполняют следующие функции:
- Позволяют усиливать электрические сигналы. Транзисторы усиливают любые электрические сигналы, как высокие так и низкие частоты.
- Могут работать как ключ, включать и выключать поступление электрического тока. Благодаря этому простому включению и выключению работают все современные процессоры. Транзисторы – это основа всей современной цифровой техники.
- Генерируют электрические сигналы за счет положительной обратной связи. На их основе можно сделать генераторы звука и сигналов.
- Могут согласовывать сопротивления электрических цепях за счет различных схем включения и работают как ограничители тока. В блоках питания транзисторы могут ограничивать ток короткого замыкания, а также работать как предохранитель.
Чем транзисторы уступают лампам
Несмотря на неоспоримые преимущества транзисторов перед лампами, ламповые триоды по прежнему имеют ряд преимуществ., среди которых:
- Устойчивость к высоким электромагнитным наводкам и помехам. Это не значит, что полупроводниковая техника может выйти из строя от любых помех. Но если случится сильнейшая магнитная буря от Солнца (или мощный ЭМИ удар от ядерных бомб), то все p-n переходы в полупроводниковой технике могут выйти из строя из-за высоких токов наводки. Вакуумная техниках намного устойчивее к таким помехам.
- Ламповая техника намного лучше и стабильнее работает на высоких частотах. И это уже особенности конструкции. Так как в транзисторах есть p-n переходы, то у них тоже есть своя емкость. А паразитная емкость на высоких частотах негативно влияет на усиление сигнала. Появляются нелинейные искажения. А в вакуумной технике есть такие лампы, у которых по несколько экранирующих сеток, которые позволяют снизить эффект паразитных емкостей. Пример радиолампы — это клистрон.
Нельзя прямо сказать, что транзисторы полностью искоренили лампы. У каждой детали есть свои преимущества и недостатки в разных областях. Конечно, в цифровой технике транзисторам нет ровни среди ламп. Однако на сверхвысоких частотах транзисторы по-прежнему уступают лампам.
Post Views:
389
Управление мощностью с помощью транзистора
Итак, я буду делать схему регулятора мощности свечения лампочки накаливания с помощью советского транзистора КТ815Б. Она будет выглядеть следующим образом:
На схеме мы видим лампу накаливания, транзистор и два резистора. Один из них переменный. Итак, главное правило транзистора: меняя силу тока в цепи базы, мы тем самым меняем силу тока в цепи коллектора, а следовательно, мощность свечения самой лампы.
Как в нашей схеме будет все это выглядеть? Здесь я показал две ветви. Одну синим цветом, другую красным.
Как вы видите, в синей ветке цепи последовательно друг за другом идут +12В—-R1—-R2—-база—-эмиттер—-минус питания. А как вы помните, если резисторы либо различные потребители (нагрузки) цепи идут друг за другом последовательно, то через все эти нагрузки, потребители и резисторы протекает одна и та же сила тока. Правило делителя напряжения. То есть в данный момент для удобства объяснения, я назвал эту силу тока, как ток базы Iб . Все то же самое можно сказать и о красной ветви. Ток пойдет по такому пути: +12В—-лампочка—-коллектор—-эмиттер—-минус питания. В ней будет протекать ток коллектора Iк.
Итак, для чего мы сейчас разобрали эти ветви цепи? Дело в том, что через базу и эмиттер протекает базовый ток Iб , который протекает также и через переменный резистор R1 и резистор R2. Через коллектор-эмиттер протекает ток коллектора Iк , который также течет и через лампочку накаливания.
Ну и теперь самое интересное: коллекторный ток зависит от того, какая сила тока в данный момент течет через базу-эмиттер. То есть прибавив базовый ток, мы тем самым прибавляем и коллекторный ток. А раз коллекторный ток у нас стал больше, значит и через лампочку сила тока стала больше, и лампочка загорелась еще ярче. Управляя слабым током базы, мы можем управлять большим током коллектора. Это и есть принцип работы биполярного транзистора.
Как нам теперь регулировать силу тока через базу-эмиттер? Вспоминаем закон Ома: I=U/R. Следовательно, прибавляя или убавляя значение сопротивления в цепи базы, мы тем самым можем менять силу тока базы! Ну а она уже будет регулировать силу тока в цепи коллектора. Получается, меняя значение переменного резистора, мы тем самым меняем свечение лампочки 😉
И еще один небольшой нюанс.
Как вы заметили в схеме есть резистор R2. Для чего он нужен? Дело все в том, что может случится пробой перехода база-эмиттер. Или, простым языком, он выгорит. Если бы его не было, то при изменении сопротивления на переменном резисторе R1 до нуля Ом, мы бы махом выжгли базы-эмиттера. Поэтому, чтобы такого не было, мы должны подобрать резистор, который бы при сопротивлении на R1 в ноль Ом, ограничивал бы силу тока на базу, чтобы ее не выжечь.
Получается, мы должны подобрать такую силу тока на базу, чтобы лампочка светилась на полную яркость, но при этом переход база-эмиттер был бы целым. Если сказать языком электроники – мы должны подобрать такой резистор, который бы вогнал транзистор в границу насыщения, но не более того.
Такой резистор я подбирал с помощью магазина сопротивления. Его также можно подобрать с помощью переменного резистора. Резистор в базе часто называют токоограничительным.
И тока!
Подобная ситуация есть и у всенародно любимых интегральных стабилизаторов L78XX и L79XX. Здесь к базовому обозначению добавляются две цифры, указывающие на выходное напряжение стабилизаторов: L7805 — выходное напряжение 5В, L7912 — выходное напряжение -12В.
Но в середине номера могут присутствовать буквы, которые обозначают максимальный выходной ток стабилизатора. Возможны три варианта маркировки, как представлено в таблице:
Символ | Максимальный ток |
L | 0.1 A (100mA) |
M | 0.5A (500mA) |
S | 2A |
Так стабилизатор с маркировкой «78L15» будет выдавать на выходе напряжение 15В и максимальный ток 100мА.
Проявляйте внимательность при чтении каталогов производителей и соблюдайте осторожность при заказе радиоэлектронных элементов!
Статья подготовлена по материалам журнала «Практическая электроника каждый день»
Вольный перевод: Главный редактор «РадиоГазеты»
Транзистор — один из самых распространённых элементов радиоаппаратуры. Есть полевые и биполярные транзисторы. У полевых транзисторов управление происходит с помощью электрического поля. Они имеют три вывода: исток, затвор и сток (иногда корпус). У биполярного транзистора соответственно: эмиттер, база и коллектор, (иногда тоже есть корпусной вывод).
Основная классификация транзисторов
Основная классификация транзисторов ведется по материалу, мощности, проводимости, частоты…
По мощности транзисторы делят на транзисторы малой, средней и большой мощности, а по частоте — низкочастотные, высокочастотные и сверхвысокочастотные.
По исходному полупроводниковому материалу — германиевые и кремниевые.
биполярных и полевых транзисторов
UКБО— максимально допустимое напряжение коллектор — база;
UКБО И— максимально допустимое импульсное напряжение коллектор — база;
UКЭО— максимально допустимое напряжение коллектор — эмиттер;
UКЭО И — максимально допустимое импульсное напряжение коллектор -эмиттер;
UКЭН — напряжение насыщения коллектор — эмиттер;
UСИmax — максимально допустимое напряжение сток — исток;
UСИО— напряжение сток — исток при оборванном затворе;
UЗИmax — максимально допустимое напряжение затвор — исток;
UЗИ ОТС — Напряжение отсечки транзистора, при котором ток стока достигает заданного низкого значения (для полевых транзисторов с р-n переходом, и с изолированным затвором);
UЗИ ПОР — Пороговое напряжение транзистора между затвором и стоком, при котором ток стока достигает заданного низкого значения (для полевых транзисторов с изолированным затвором и п-каналом);
IKmax — максимально допустимый постоянный ток коллектора;
IKmax и — максимально допустимый импульсный ток коллектора;
ICmax — максимально допустимый постоянный ток стока;
IC нач — начальный ток стока;
IC ост — остаточный ток стока;
IКБО — обратный ток коллектора;
РКmax — максимально допустимая постоянная рассеиваемая мощность коллектора без теплоотвода;
РКmax т — максимально допустимая постоянная рассеиваемая мощность коллектора с теплоотводом;
РСИmax— максимально допустимая постоянная рассеиваемая мощность сток — исток;
H21Э— статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером;
RСИ ОТК — сопротивление сток — исток в открытом состоянии;
S — крутизна характеристики;
fГР. — граничная частота коэффициента передачи тока в схеме с общим эмиттером;
КШ — коэффициент шума биполярного (полевого) транзистора;
Маркировка частоты
Некоторые интегральные схемы имеют суффикс, который указывает на тактовую частоту устройства. Эта система используется совместно с памятью и некоторыми другими компьютерными чипами, такими как микроконтроллеры и микропроцессоры. В большинстве случаев дополнительные цифры на самом деле являются расширением основной части маркировки, а не суффиксом, так как в маркировке суффикс будет присутствовать и, как говорилось выше, скорее всего будет обозначать тип корпуса.
Некоторые микроконтроллеры PIC, например, имеют в обозначении что-то вроде « -20», добавленное к базовому типу номера. Дополнительная маркировка указывает максимальную тактовую частоту (в мегагерцах) для чипа. Вы можете вполне безопасно использовать элемент с более высокой тактовой частотой, чем тот, который указан в списке компонентов. Однако, более быстрые версии, как правило, значительно дороже, чем медленные.
Полевые транзисторы с управляющим p-n переходом
Схематически полевой транзистор с управляющим p-n переходом можно представить в виде пластины, к торцам которой подключены электроды, исток и сток. На рис. показана структура и схема включения полевого транзистора с каналом n-типа:
В транзисторе с n-каналом основными носителями заряда в канале являются электроны, которые движутся вдоль канала от истока с низким потенциалом к стоку с более высоким потенциалом, образуя ток стока Ic. Между затвором и истоком приложено напряжение, запирающее p-n переход, образованный n-областью канала и p-областью затвора.
При подаче запирающего напряжения на p-n-переход Uзи на границах канала возникает равномерный слой, обедненный носителями заряда и обладающий высоким удельным сопротивлением. Это приводит к уменьшению проводящей ширины канала.
Изменяя величину этого напряжения, можно изменить сечение канала и, следовательно, изменять величину электрического сопротивления канала. Для полевого n-канального транзистора потенциал стока положителен по отношению к потенциалу истока. При заземленном затворе от стока к истоку протекает ток. Поэтому для прекращения тока на затвор нужно подать обратное напряжение в несколько вольт.
Значение напряжения Uзи, при котором ток через канал становится практически равен нулю, называется напряжением отсечки Uзап
Таким образом, полевой транзистор с затвором в виде p-n-перехода представляет собой сопротивление, величина которого регулируется внешним напряжением.
Полевой транзистор характеризуется следующей ВАХ:
Здесь зависимости тока стока Iс от напряжения при постоянном напряжении на затворе Uзи определяют выходные, или стоковые, характеристики полевого транзистора. На начальном участке характеристик Uси + |Uзи| < Uзап ток стока Iс возрастает с увеличением Uси. При повышении напряжения сток — исток до Uси = Uзап — |Uзи| происходит перекрытие канала и дальнейший рост тока Iс прекращается (участок насыщения). Отрицательное напряжение Uзи между затвором и истоком смещает момент перекрытия канала в сторону меньших значений напряжения Uси и тока стока Iс. Участок насыщения является рабочей областью выходных характеристик полевого транзистора. Дальнейшее увеличение напряжения Uси приводит к пробою р-n-перехода между затвором и каналом и выводит транзистор из строя.
На ВАХ Iс = f(Uзи) показано напряжение Uзап. Так как Uзи ≤ 0 p-n-переход закрыт и ток затвора очень мал, порядка 10-8…10-9 А, поэтому к основным преимуществам полевого транзистора, по сравнению с биполярным, относится высокое входное сопротивление, порядка 1010…1013 Ом. Кроме того, они отличаются малыми шумами и технологичностью изготовления.
Практическое применение имеют две основные схемы включения. Схема с общим истоком (рис. а) и схема с общим стоком (рис. б) , которые показаны на рисунке: