Измерение напряжения. Виды и принцип измерений. Особенности
Измерение напряжения на практике приходится выполнять довольно часто. Напряжение измеряют в радиотехнических, электротехнических устройствах и цепях и т.д. Вид переменного тока может быть импульсным или синусоидальным. Источниками напряжения являются химические элементы или генераторы тока.
Виды измерения напряжения
Напряжение импульсного тока имеет параметры амплитудного и среднего напряжения. Источниками такого напряжения могут быть импульсные генераторы. Напряжение измеряется в вольтах, имеет обозначение «В» или «V». Если напряжение переменное, то впереди ставится символ «
», для постоянного напряжения указывается символ «-». Переменное напряжение в домашней бытовой сети маркируют
На аккумуляторах и гальванических элементах при указании напряжения знак «-» не используют, а ставят только цифры, например, «1,5 В». На корпусе гальванического элемента обязательно присутствует обозначение «+» возле положительного полюса. В практических электротехнических измерениях применяются кратные единицы: милливольты, киловольты и т.д.
Переменное напряжение имеет полярность, которая изменяется с течением времени. В бытовой сети напряжение изменяет полярность 50 раз за секунду, что означает частоту 50 герц. Постоянное напряжение имеет неизменную полярность. Поэтому для замеров напряжений переменного и постоянного тока применяют измерительные приборы, имеющие отличие в устройстве – вольтметры. Они могут быть цифровыми или аналоговыми (стрелочные). Однако существуют универсальные приборы, которые способны измерить постоянное и переменное напряжение, не переключая режимы.
Для начала измерений измерительный прибор соединяют параллельно с выводами источника питания или нагрузки специальными щупами.
Кроме вольтметров для измерения напряжения используют электронные осциллографы.
Это приборы, предназначенные для измерения и контроля характеристик электрических сигналов. Осциллографы работают на принципе отклонения электронного луча, который выдает изображение значений переменных величин на дисплее.
Измерение напряжения в сети переменного тока
Согласно нормативным документам величина напряжения в бытовой сети должна быть равной 220 вольт с точностью отклонений 10%, то есть напряжение может меняться в интервале 198-242 вольта. Если в вашем доме освещение стало более тусклым, лампы стали часто выходить из строя, либо бытовые устройства стали работать нестабильно, то для выяснения и устранения этих проблем для начала необходимо измерение напряжения в сети.
Перед измерением следует подготовить имеющийся измерительный прибор к работе:
Проверить целостность изоляции контрольных проводов со щупами и наконечниками.
Установить переключатель на переменное напряжение, с верхним пределом 250 вольт или выше.
Вставить наконечники контрольных проводов в гнезда измерительного прибора, например, мультиметра. Чтобы не ошибиться, лучше смотреть на обозначения гнезд на корпусе.
Включить прибор.
На мультиметре выбрана граница измерений 700 вольт. Некоторые приборы требуют для измерения напряжения устанавливать в нужное положение несколько разных переключателей: вид тока, вид измерений, а также вставить наконечники проводов в определенные гнезда. Конец черного наконечника в мультиметре воткнут в гнездо СОМ (общее гнездо), красный наконечник вставлен в гнездо с обозначением «V». Это гнездо является общим для измерения любого вида напряжения. Гнездо с маркировкой «ma» применяется для замеров небольших токов. Гнездо с обозначением «10 А» служит для измерения значительной величины тока, который может достичь 10 ампер.
Если измерять напряжение со вставленным проводом в гнездо «10 А», то прибор выйдет из строя, или сгорит предохранитель. Поэтому при выполнении измерительных работ следует быть внимательным. Наиболее часто ошибки возникают в случаях, когда сначала измеряли сопротивление, а затем, забыв переключить на другой режим, начинают измерение напряжения. При этом внутри прибора сгорает резистор, отвечающий за измерение сопротивления.
После подготовки прибора, можно начинать измерения. Если при включении мультиметра на индикаторе ничего не появляется, это означает, что элемент питания, расположенный внутри прибора, отслужил свой срок и требует замены. Чаще всего в мультиметрах стоит «Крона», выдающая напряжение 9 вольт. Срок ее службы составляет около года, в зависимости от производителя. Если мультиметром долго не пользовались, то крона все равно может быть неисправной. Если батарейка исправна, то мультиметр должен показать единицу.
Электрический ток
Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками. А вещества, в которых таких частиц нет – диэлектриками.
Принято считать направление тока от плюса к минусу, при этом электроны движутся от минуса к плюсу!
Единица измерения силы тока – Ампер (А). В формулах и расчетах сила тока обозначается буквой I. Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·10 18 электронов) за 1 секунду.
Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.
Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает сопротивление.
Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением, током и сопротивлением. Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.
Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это постоянный ток и соответственно постоянное напряжение. Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение. Максимальные и минимальные значения (на графике обозначены как Io) – это амплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц.
Как и чем измеряют напряжение
Напряжение измеряют с помощью прибора, который называется вольтметром. Вольтметр подключается параллельно элементу электрической цепи, где хотят измерить падение напряжения. Обозначается на схемах вольтметр в виде кружка, с расположенной внутри него буквой V.
Рис. 3. Различные вольтметры и их обозначение на схемах.
Раньше все вольтметры были стрелочные, и значение напряжения показывала стрелка на шкале прибора с нанесенными цифровыми значениями. Сейчас большинство этих приборов выпускаются с электронной индикацией (светодиодной или жидкокристаллической). Сам вольтметр не должен влиять на результат измерения, поэтому его собственное сопротивление делают очень большим, чтобы через него практически не протекали заряды (электрический ток).
Определение напряжения
В контексте статического электричества напряжение – это количество работы, необходимое для перемещения единичного заряда из одного места в другое, против действующей силы, которая пытается сохранить баланс электрических зарядов. В контексте источников электроэнергии напряжение – это количество доступной потенциальной энергии (работа, которую необходимо выполнить) на единицу заряда для перемещения зарядов через проводник. Поскольку напряжение – это выражение потенциальной энергии, представляющее возможность или потенциал для выделения энергии, когда заряд перемещается с одного «уровня» на другой, оно всегда находится между двумя точками. Рассмотрим аналогию с резервуаром:
Рисунок 6 – Энергия в зависимости от высоты падения
Из-за разницы в высоте падения при перемещении воды через трубопровод до точки 2 будет высвобождено больше энергии, чем при перемещении до точки 1. Эту идею можно интуитивно понять, рассмотрев падение камня: в результате чего будет получен более сильный удар, при падении камня с высоты одного фута или при падении этого же камня с высоты одной мили? Очевидно, что падение с большей высоты приводит к высвобождению большей энергии (более сильному удару). Мы не можем оценить количество накопленной энергии в водном резервуаре, просто измерив объем воды, точно так же, как мы не можем предсказать серьезность удара падающей породы, просто зная вес камня: в обоих случаях мы также должны учитывать, насколько далеко эти массы упадут с их начальной высоты. Количество энергии, высвобождаемой при падении массы, зависит от расстояния между ее начальной и конечной точками. Точно так же потенциальная энергия, доступная для перемещения носителей заряда из одной точки в другую, зависит от этих двух точек. Следовательно, напряжение всегда выражается как величина между двумя точками. Довольно интересно, что аналогия с массой, потенциально «падающей» с одной высоты на другую, является настолько удачной моделью, что напряжение между двумя точками иногда называют падением напряжения.
Электрическое напряжение
Это давление на дно и есть то самое напряжение (по аналогии с гидравликой). В данном случае, дно башни – это ноль, начальный уровень отсчёта. За начальный уровень отсчёта в электронике берут вывод батарейки или аккумулятора со знаком “минус”. Можно даже сказать, что уровень “воды в башне” у 12-вольтового автомобильного аккумулятора выше, чем уровень воды 1,5 Вольтовой пальчиковой батарейки.
Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа “блок питания может выдать от 0 и до 30 Вольт”. Или говоря детским языком, создать “электрическое давление” на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.
источник питания постоянного тока
Электрическое напряжение – это еще не значит, что в электрической цепи течет электрический ток. Для того, чтобы появился электрический ток, электроны должны двигаться в одном направлении, а они в данный момент тупо стоят на месте. А раз нет движения электронов, то и нет электрического тока.
С точки зрения электроники, на одном щупе блока питания есть давление, а на другом его нет. То есть это земля, на которой стоит башня, если провести аналогию с гидравликой. Поэтому, положительный щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп – черным или синим.
В электронике, чтобы указать, на каком выводе больше ” электрическое давление”, а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное “давление”, а на минусе – ноль.
Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.
Как работают источники напряжения?
Любой источник напряжения, включая аккумуляторы, имеет две точки для электрического контакта. В этом случае на рисунке выше у нас есть точка 1 и точка 2. Горизонтальные линии разной длины указывают на то, что это батарея, и дополнительно указывают направление, в котором напряжение этой батареи будет пытаться протолкнуть носители заряда по цепи. Тот факт, что горизонтальные линии в символе батареи кажутся разделенными (и, таким образом, не могут служить путем для потока заряда), не причина для беспокойства: в реальной жизни эти горизонтальные линии представляют собой металлические пластины, погруженные в жидкий или полутвердый материал, который не только проводит заряды, но и генерирует напряжение, которое толкает их, взаимодействуя с пластинами
Обратите внимание на маленькие значки «+» и «-» непосредственно слева от символа батареи. Отрицательный (-) конец батареи всегда является концом с самой короткой линией, а положительный (+) конец батареи всегда является концом с самой длинной линией
Положительный конец батареи – это конец, который пытается вытолкнуть из нее носители заряда (помните, что по соглашению мы думаем, что носители заряда положительно заряжены, даже если электроны заряжены отрицательно). Точно так же отрицательный конец – это конец, который пытается притянуть носители заряда. Когда «+» и «-» концы батареи ни к чему не подключены, между этими двумя точками будет напряжение, но потока зарядов через батарею не будет, потому что нет непрерывного пути, по которому могут перемещаться носители заряда.
Рисунок 8 – Аналогия резервуаров с водой
Тот же принцип справедлив и для аналогии с резервуаром для воды и насосом: без обратной трубы, по которой вода могла бы сливаться обратно в пруд, накопленная энергия в резервуаре не может быть выпущена в виде потока воды. Как только резервуар будет полностью заполнен, поток не может возникнуть, независимо от того, какое давление может создать насос. Для обеспечения непрерывного потока должен существовать полный путь (контур), по которому вода течет из пруда в резервуар и обратно в пруд. Мы можем обеспечить такой путь для батареи, соединив кусок провода от одного конца батареи к другому. Формируя цепь с петлей из проволоки, мы инициируем непрерывный поток зарядов по часовой стрелке:
Рисунок 9 – Электрическая цепь и аналогия с резервуарами
Стандартный ряд мощностей резисторов и их обозначение на схемах
Обратите внимание, что резисторы одного номинала могут быть с разной мощностью рассеивания. Этот параметр зависит от технологии изготовления, материала корпуса. Есть определенный ряд мощностей и их графическое обозначение по ГОСТу
Есть определенный ряд мощностей и их графическое обозначение по ГОСТу.
Вт | Условное обозначение не схемах |
---|---|
мощность резистора 0,05 Вт |
Как обозначается на схеме мощность рассеивания резистора 0,05 Вт |
мощность резистора 0,125 Вт |
Мощность резистора 0,125 Вт на схеме |
мощность резистора 0,025 Вт |
Как на схеме выглядит резистор мощностью 0,25 Вт |
мощность резистора 0,5 Вт |
Так на схеме обозначается резистор мощностью 0,5 Вт |
мощность резистора 1 Вт |
Мощность резистора 1 Вт схематически обозначается так |
мощность резистора 2 Вт |
Рассеиваемая на резисторе мощность 2 Вт |
мощность резистора 5 Вт |
Обозначение на схеме мощности резистора 5 Вт |
Графическое обозначение мощности резисторов на схеме — черточки и римские цифры, нанесенные на поверхность сопротивления. Самое малое стандартное значение 0,05 Вт, самое большое — 25 Вт, но есть и более мощные. Но это уже специальная элементная база и в бытовой аппаратуре не встречается.
Как обозначаются мощность маломощных резисторов надо просто запомнить. Это косые линии на прямоугольниках, которыми обозначают сопротивления на схемах. Количество косых черточек обозначает количество четвертей дюйма. При номиналах сопротивлений от 1 Вт на изображении ставятся римские цифры: I, II, III, V, VI и т.д. Цифра эта и обозначает мощность резистора в ваттах. Тут немного проще, так как соответствие прямое.
Резюме
- Носители заряда могут быть побуждены течь через проводник той же силой, что проявляется в статическом электричестве.
- Напряжение – это мера удельной потенциальной энергии (потенциальной энергии на единицу заряда) между двумя точками. С точки зрения дилетанта, это мера «толкания», позволяющая побуждать заряд перемещаться.
- Напряжение, как выражение потенциальной энергии, всегда относительно и измеряется между двумя точками. Иногда его называют «падением напряжения».
- Когда источник напряжения подключен к цепи, напряжение вызовет равномерный поток носителей заряда через эту цепь, называемый электрическим током.
- В одиночной (однопетлевой) цепи величина тока в любой точке равна величине тока в любой другой точке.
- При разрыве цепи, содержащей источник напряжения, в точках разрыва появится полное напряжение этого источника.
- +/- ориентация падения напряжения называется полярностью. Она также является относительной между двумя точками.
Закон Ома
Электрическая цепь состоит из отдельных участков — однородных и неоднородных. Участки цепи, на которых отсутствует действие сторонних сил, т.е.участки, без источников тока, называются однородными. Участки цепи, на которых имеются источники тока, называются неоднородными.
Формула закона Ома для однородного участка цепи выглядит так:
$ I = {U \over R} $ (1).
Полностью формулировка закона Ома звучит следующим образом: сила тока I для проводника на однородном участке цепи прямо пропорциональна напряжению U на этом участке и обратно пропорциональна сопротивлению проводника R.
Для неоднородного участка цепи, содержащего источник тока с электродвижущей силой Еэдс ,закон Ома записывается в следующем виде:
$ I = {E_{эдс} \over R + r} $ (2),
где: R — сопротивление цепи, r — сопротивление источника тока. Уравнение (2) называется законом Ома для полной цепи: сила тока в полной цепи равна ЭДС источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.
Закон Ома
Электрическая цепь состоит из отдельных участков — однородных и неоднородных. Участки цепи, на которых отсутствует действие сторонних сил, т.е.участки, без источников тока, называются однородными. Участки цепи, на которых имеются источники тока, называются неоднородными.
Формула закона Ома для однородного участка цепи выглядит так:
$ I = {U \over R} $ (1).
Полностью формулировка закона Ома звучит следующим образом: сила тока I для проводника на однородном участке цепи прямо пропорциональна напряжению U на этом участке и обратно пропорциональна сопротивлению проводника R.
Для неоднородного участка цепи, содержащего источник тока с электродвижущей силой Еэдс ,закон Ома записывается в следующем виде:
$ I = {E_{эдс} \over R + r} $ (2),
где: R — сопротивление цепи, r — сопротивление источника тока. Уравнение (2) называется законом Ома для полной цепи: сила тока в полной цепи равна ЭДС источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.
Как работают источники напряжения?
Любой источник напряжения, включая аккумуляторы, имеет две точки для электрического контакта. В этом случае на рисунке выше у нас есть точка 1 и точка 2. Горизонтальные линии разной длины указывают на то, что это батарея, и дополнительно указывают направление, в котором напряжение этой батареи будет пытаться протолкнуть носители заряда по цепи. Тот факт, что горизонтальные линии в символе батареи кажутся разделенными (и, таким образом, не могут служить путем для потока заряда), не причина для беспокойства: в реальной жизни эти горизонтальные линии представляют собой металлические пластины, погруженные в жидкий или полутвердый материал, который не только проводит заряды, но и генерирует напряжение, которое толкает их, взаимодействуя с пластинами
Обратите внимание на маленькие значки «+» и «-» непосредственно слева от символа батареи. Отрицательный (-) конец батареи всегда является концом с самой короткой линией, а положительный (+) конец батареи всегда является концом с самой длинной линией
Положительный конец батареи – это конец, который пытается вытолкнуть из нее носители заряда (помните, что по соглашению мы думаем, что носители заряда положительно заряжены, даже если электроны заряжены отрицательно). Точно так же отрицательный конец – это конец, который пытается притянуть носители заряда. Когда «+» и «-» концы батареи ни к чему не подключены, между этими двумя точками будет напряжение, но потока зарядов через батарею не будет, потому что нет непрерывного пути, по которому могут перемещаться носители заряда.
Рисунок 8 – Аналогия резервуаров с водой
Тот же принцип справедлив и для аналогии с резервуаром для воды и насосом: без обратной трубы, по которой вода могла бы сливаться обратно в пруд, накопленная энергия в резервуаре не может быть выпущена в виде потока воды. Как только резервуар будет полностью заполнен, поток не может возникнуть, независимо от того, какое давление может создать насос. Для обеспечения непрерывного потока должен существовать полный путь (контур), по которому вода течет из пруда в резервуар и обратно в пруд. Мы можем обеспечить такой путь для батареи, соединив кусок провода от одного конца батареи к другому. Формируя цепь с петлей из проволоки, мы инициируем непрерывный поток зарядов по часовой стрелке:
Рисунок 9 – Электрическая цепь и аналогия с резервуарами
Типичные напряжения
Обычное напряжение для батареек фонарика составляет 1,5 В (постоянный ток). Обычное напряжение для автомобильных аккумуляторов составляет 12 вольт (постоянного тока).
Стандартные напряжения, подаваемые энергокомпаниями потребителям, составляют от 110 до 120 вольт (переменного тока) и от 220 до 240 вольт (переменного тока). Напряжения в передаче электрической энергии линий , используемых для распределения электроэнергии от электростанций может быть в несколько сотен раз больше , чем потребительские напряжения, как правило , от 110 до 1200 кВ (переменного тока).
Напряжение, используемое в воздушных линиях для питания железнодорожных локомотивов, составляет от 12 кВ до 50 кВ (переменного тока) или от 0,75 кВ до 3 кВ (постоянного тока).
Как найти с помощью формулы напряжение
Людей, интересующихся электричеством и физикой, всегда волнует вопрос, как найти напряжения, если известны другие характеристики. Его можно найти через многие формулы: в соответствии с законом Ома, через работу тока, путём сложения всех напряжений в электрической цепи и практическим способом – с помощью вольтметра. Как вычислить показатель с помощью последнего способа было описано выше.
Важно! В цепях с последовательным соединением общее напряжение – сумма значений каждой нагрузки. При параллельном соединении общее напряжение равно значению каждой лампочки, у которых оно также эквивалентно. Измерение напряжения
Измерение напряжения
По каким формулам вычисляется напряжение через работу и сама сила тока, рассказывают на уроках физики, так как эти величины считаются базовыми. Работа тока равна произведению напряжения и заряда: A = U*q. Также, из этой формулы выводится A = U*I*t, так как заряд – произведение силы тока и времени. Из них следует, что U = A/q или U = A/(I*t). Кроме того, одной из основных является формула напряжения, выведенная из закона Ома: U = R/I.
Важно! Определить напряжение можно и через мощность электрического тока. Мощность равна A/t, и, так как A = U*I*t, конечная формула выглядит, как P = (U*I*t)/t. Здесь t сократится, и останется P = U*I, из которой следует, что U = P/I
Здесь t сократится, и останется P = U*I, из которой следует, что U = P/I.
О сути явления
Природа этого явления достаточно проста. Атомы, участвующие в построении любого вещества, имеют положительно заряженное ядро, вокруг которого быстро вращаются электроны, несущие отрицательный заряд. В обычном состоянии, в тот момент, когда число электронов соизмеримо с числом протонов в ядре, отвечающих за положительную составляющую заряда, сам атом в целом является нейтрально заряженным, то есть не обладает зарядом.
Отсутствие отрицательно заряженных электронов приводит атом в состояние недостатка этих частиц, и он будет стремиться вернуться в исходное состояние, обладая вокруг себя положительным зарядом. Обратная ситуация — возникновение лишних электронов в атоме ведёт к появлению отрицательного заряда (потенциала) в целом. Стоит отметить, что протоны не могут подвергаться удалению в этом случае, так как это изменить всю конфигурацию атома, и он в этом случае превратиться в иной.
Положительный и отрицательный потенциалы испытывают по отношению друг к другу притяжение, причём чем разность этих потенциалов больше, тем сильней действует это явление. Электрический ток появляется в том случае, когда потенциалы проводников, имеющие противоположные заряды, соединяются. Возникает так называемое целенаправленное передвижение частиц, обладающих зарядом, которые пытаются ликвидировать разность потенциалов.
Гидравлическая аналогия
Простая аналогия для электрической цепи — вода, протекающая по замкнутому контуру трубопровода , приводимая в действие механическим насосом . Это можно назвать «водяным контуром». Разность потенциалов между двумя точками соответствует разнице давлений между двумя точками. Если насос создает разницу давлений между двумя точками, тогда вода, текущая из одной точки в другую, сможет выполнять работу, например приводить в движение турбину . Точно так же работа может выполняться электрическим током, управляемым разностью потенциалов, обеспечиваемой батареей . Например, напряжение, обеспечиваемое достаточно заряженным автомобильным аккумулятором, может «протолкнуть» большой ток через обмотки автомобильного стартера . Если насос не работает, он не создает перепада давления, и турбина не вращается. Точно так же, если автомобильный аккумулятор очень слабый или «мертвый» (или «разряженный»), он не включит стартер.
Гидравлическая аналогия — полезный способ понять многие электрические концепции. В такой системе работа по перемещению воды равна « падению давления » (сравните pd), умноженному на объем перемещенной воды. Точно так же в электрической цепи работа, выполняемая по перемещению электронов или других носителей заряда, равна «разнице электрического давления», умноженной на количество перемещенных электрических зарядов. Что касается «потока», чем больше «разница давления» между двумя точками (разность потенциалов или разность давлений воды), тем больше поток между ними (электрический ток или поток воды). (См. « ».)