Ток короткого замыкания однофазных и трехфазных сетей

Содержание

  • 1. Определение сопротивлений питающей энергосистемы
  • 2. Определение сопротивлений трансформатора 6/0,4 кВ
  • 3. Определение сопротивлений шин
  • 4. Определение сопротивлений кабеля
  • 5. Определение сопротивлений трансформаторов тока
  • 6. Определение сопротивлений автоматических выключателей
  • 7. Определение сопротивлений контактных соединений кабелей и шинопроводов
  • 8. Определение тока трехфазного к.з. в конце кабельной линии
  • 9. Список литературы

В данном примере будет рассматриваться расчет тока трехфазного короткого замыкания в сети 0,4 кВ для схемы представленной на рис.1.

Исходные данные:

1. Ток короткого замыкания на зажимах ВН трансформатора 6/0,4 кВ составляет — 11 кА.

2. Питающий трансформатор типа ТМ — 400, основные технические характеристики принимаются по тех. информации на трансформатор:

  • номинальная мощностью Sн.т — 400 кВА;
  • номинальное напряжение обмотки ВН Uн.т.ВН – 6 кВ;
  • номинальное напряжение обмотки НН Uн.т.НН – 0,4 кВ;
  • напряжение КЗ тр-ра Uк – 4,5%;
  • мощность потерь КЗ в трансформаторе Рк – 5,5 кВт;
  • группа соединений обмоток по ГОСТ 11677-75 – Y/Yн-0;

3. Трансформатор соединен со сборкой 400 В, алюминиевыми шинами типа АД31Т по ГОСТ 15176-89 сечением 50х5 мм. Шины расположены в одной плоскости — вертикально, расстояние между ними 200 мм. Общая длина шин от выводов трансформатора до вводного автомата QF1 составляет 15 м.

4. На стороне 0,4 кВ установлен вводной автомат типа XS1250CE1000 на 1000 А (фирмы SOCOMEC), на отходящих линиях установлены автоматические выключатели типа E250SCF200 на 200 А (фирмы SOCOMEC) и трансформаторы тока типа ТСА 22 200/5 с классом точности 1 (фирмы SOCOMEC).

5. Кабельная линия выполнена алюминиевым кабелем марки АВВГнг сечением 3х70+1х35.

Решение

Для того, чтобы рассчитать токи КЗ, мы сначала должны составить схему замещения, которая состоит из всех сопротивлений цепи КЗ, после этого, определяем все сопротивления входящие в цепь КЗ. Активные и индуктивные сопротивления всех элементов схемы замещения выражаются в миллиомах (мОм).

Кто выполняет эти расчеты

Расчеты выполняет организация или электрик на стадии составления схемы электрической цепи. Если есть некоторые познания в области электроники, можно выполнить расчет самостоятельно или с помощью специальных программ (например, программы «Электрик», «БНТУ»). Кроме того, можно использовать специальные онлайн-калькуляторы.

Вам это будет интересно Особенности дифференциального тока

Программа «Электрик»

Важно! Дополнительные данные могут потребоваться в случае проведения экспертизы. Согласно Постановлению Правительства РФ № 145 (п

17) такие данные следует предоставлять в течение трех дней.

Как найти короткое замыкание в автомобиле

Короткое замыкание в машине (или «коротыш» на сленге электриков) – вещь очень серьезная. Большинство самостоятельных возгораний автомобилей происходит именно из-за них. Как же найти короткое замыкание проводки в авто?

Узнать о коротком замыкании не сложно. Если все прошло штатно, то при возникновении замыкания сгорает предохранитель и перестает работать соответствующая электрическая цепь. Питать она может что угодно от фар до часов в салоне. В поисках неисправности обычно первым делом проверяют предохранитель и, если он перебит, вставляют новый, с таким же номиналом. Если новый предохранитель постигла та же участь – значит в машине короткое замыкание.

Поиск замыкания в проводке производится методом исключения и представляет собой весьма муторное занятие. Смысл его заключается в отключении разных потребителей электричества на соответствующей электролинии (узнать, что именно на ней запитано можно из электросхемы автомобиля) и в проверке целостности проводов. Проверить провода, проходящие, например, под торпедой

, легко и просто не получится, поэтому начинать нужно именно с исключения потребителей. На провода же переходим, после того, как убедимся, что в «коротыше» не виноваты потребители.

Чтобы найти некое устройство (например, магнитолу), имеющее внутри себя короткое замыкание, нужно, чтобы электролиния была под напряжением. Как это сделать, ведь предохранитель тут же сгорает? В этом и есть весь секрет поиска коротких замыканий в автомобиле!

Перед тем, как приступить к поиску, нужно включить в электролинию собственный мощный потребитель электричества. Это нужно для того, чтобы понизить высокий ток короткого замыкания и не допустить возгорания проводки.

Для поиска короткого замыкания в автомобиле можно использовать обычную лампу головного света

Сделать это проще всего при помощи обычной лампы головного света на 55 Ватт, включенной вместо предохранителя. То есть нужно взять лампочку, подключить к ее выводам два провода с заранее обжатыми на них клеммами (Почитайте, как обжать клемму на проводе в автомобиле

) и другие концы проводов включить вместо предохранителя. Подключаться нужно через клеммы, то есть надежно. Если предохранители современные «флажковые», то на проводе следует обжатьклеммы типа «папа» . В блоках предохранителей классических моделей АвтоВАЗа эти клеммы не подойдут, в них, подключаться проще прямо к «лапкам», удерживающим предохранитель, надевая на нихклеммы типа «мама» . Подключение должно быть последовательным, то есть ток должен проходить через лампочку.

Лампу нужно расположить так, чтобы ее было видно. В момент включения в электролинию с коротким замыканием, она зажжется на полную мощность, как в фаре. Яркое свечение подтверждает наличие «коротыша». И теперь, при отключении различных устройств, включенных в линию, нужно дождаться, чтобы лампочка «притухла». Это произойдет при исключении оборудования, вызвавшего замыкание, из линии и большого снижения силы тока до нормальных значений. Если, при отключении, скажем регулятора подсветки приборов лампа начала светиться еле-еле, значит, вы устранили причину «коротыша», который произошел внутри регулятора.

Другое дело, если уже все потребители исключены из линии, а лампа продолжает светиться в полный накал. Это означает, что короткое замыкание произошло не в каком-то потребителе, а в проводке. Например, из-за повреждения изоляции провода.

Такой расклад гораздо сложнее, потому что, чтобы просмотреть всю электролинию, скорее всего, придется разбирать салон, снимать различные панели, а то и торпеду. Однако если воспользоваться мультиметром, то можно промерять доступные участки электролинии на предмет большого тока, тем самым сужая круг поисков. Если вы не сильно владеете данным инструментом и не «на ты» с электричеством, лучше доверить это дело электрикам. Причем не обычным, а автоэлектрикам, потому что кроме непосредственно поиска замыкания, человек должен еще уметь разбирать и собирать разные части машины.

Найдя устройство, вызвавшее короткое замыкание, можно попробовать его починить. Но лучше заменить новым – с замыканиями шутки плохи. Если предохранитель по какой-то причине выдержит проходящий ток и не сгорит, произойдет возгорание проводки и сгорит весь автомобиль.

Чтобы этого не допустить, нужно знать, как выбрать предохранители для автомобиля

,причины короткого замыкания в автомобиле , а при самостоятельном электромонтаже обязательно знать,как пользоваться изолентой .

Виды расчетов, предусмотренные в программе

  • Расчет токов во всех элементах сети и остаточных напряжений во всех узлах сети при КЗ в заданной точке. Результаты отображаются на схеме и в таблицах узлов и ветвей.
  • Расчет токов КЗ последовательно для заданных точек КЗ с отображением токов в ветвях первого пояса от точки КЗ. Результаты по всем КЗ отображаются на схеме и в специальной таблице.
  • Расчет ударных токов, периодической и апериодической составляющих тока КЗ, а также интегралов Джоуля для места повреждения. Время отключения основной и резервных защит задается для каждой точки КЗ. Результаты выводятся на схему и в специальную таблицу.
  • Расчет тока в заданной ветви при коротких замыканиях в указанных точках с приведением токов КЗ к ступени напряжения ветви. Результат отображается в виде специальной таблицы.
  • Расчет емкостных токов однофазных замыканий на землю в сети с изолированной нейтралью (только для узлов).
  • Расчеты разомкнутых участков сети (фидеров) с заданием нагрузки на головном участке и последующим распределением потоков мощности по ветвям дерева или с заданием нагрузок ТП с учетом коэффициентов одновременности и указанием токов КЗ для всех узлов дерева.
  • Расчеты токов и напряжений установившегося режима, предшествующего КЗ. Результаты отображаются на схеме и в таблицах результатов.

Принцип действия ТЗНП, защита нулевой последовательности

Одним из устройств, применяемых для защиты ЛЭП с напряжением 110 кВ, является токовая направленная защита нулевой последовательности (сокращенно – ТНЗНП).

Эти линии электропередач выполняются с эффективно заземленной нейтралью. В отличие от сетей 6-35кВ, у которых нейтраль изолирована, токи замыкания на землю достаточно большие, что вызывает необходимость фиксировать их и отключать с минимально возможной выдержкой времени. Но для этого нужно не просто определить факт наличия в системе замыкания на землю, но и найти линию, на которой оно произошло. Для этого такие защиты и делаются направленными.

Токи нулевой последовательности

Систему трехфазных токов и напряжений можно представить в виде векторной диаграммы, где векторы этих токов (напряжений) в нормальном режиме сдвинуты друг относительно друга в пространстве на одинаковый угол, равный 120 градусов.

При этом полученная диаграмма является еще и вращающейся относительно условного наблюдателя: сначала мимо него проходит вектора фазы «А», затем «В», потом «С». И так – по кругу.

Эту диаграмму принято называть системой токов (напряжений) прямой последовательности.

Если поменять порядок прохождения векторов с А-В-С на С-В-А, получается обратная последовательность. В обоих случаях неизменным остается одно: между векторами разных фаз сохраняется угол в 120 градусов.

Ток или напряжение нулевой последовательности получается, если все эти векторы сложить между собой. Для этого, если вспомнить геометрию, нужно начало второго вектора совместить с концом первого, затем так же добавить к нему третий. Поскольку угол между ними остается равным 120 градусов, то получим равносторонний треугольник, система замкнется. Результирующий вектор, определяющий сумму всех слагаемых, будет равен нулю. Он должен быть проведен от начала первого суммируемого вектора к концу последнего.

Но так будет только при отсутствии в системе замыканий на землю. При междуфазных КЗ увеличиваются векторы токов одновременно в двух фазах, а то и во всех трех. Сложение их между собой даст все тот же ноль. Поэтому такие КЗ еще называют симметричными.

Интересное видео о работе ТЗНП смотрите ниже:

Защита на токах нулевой последовательности

Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.

В системах с изолированной нейтралью для выделения этих токов используется специальный трансформатор, надеваемый на кабель.

На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.

На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.

Напряжение нулевой последовательности

Имея в наличии только информацию о токах нулевой последовательности, невозможно определить, где произошло КЗ: в самой линии, или «за спиной». В противоположном от линии конце находится либо распределительное устройство с другими подключенными к нему ЛЭП, либо трансформаторы. У них есть своя собственная защита, которая лучше разберется в ситуации.

Для того, чтобы определить направление на замыкание на землю, потребуется информация о напряжении нулевой последовательности. Оно берется с особых обмоток трансформаторов напряжения, соединенных в разомкнутый треугольник.

Это тоже векторная сумма, но не токов, а фазных напряжений. Она равна нулю в нормальном режиме и при симметричных КЗ, но при однофазных КЗ имеет определенную величину.

Далее в дело вступает реле направления мощности. На одну его обмотку подается напряжение нулевой последовательности, а на другую – ток, использующийся для работы земляной защиты. Срабатывание происходит при таком угле между этими величинами, когда мощность КЗ направлена в линию. В других случаях, при КЗ «за спиной», отсутствие срабатывания этого реле блокирует работу защиты.

Высокий ток КЗ – это хорошо или плохо?

Как я показал на графике ранее, чем дальше место замыкания от источника питания, тем меньше будет ток короткого замыкания, поскольку сопротивление линии будет больше. Высокий ток КЗ обычно бывает в тех местах электросети, которые расположены наиболее близко к подстанции, а кабельные линии имеют большое сечение проводов. В питающих сетях с напряжением 0,4 кВ относительно высокими считаются токи КЗ более 6кА, а токи КЗ выше 15 кА практически не встречаются. Итак, что мы имеем:

Минусы низкого тока КЗ

  • большое падение напряжения при достаточно мощной нагрузке;
  • как правило, низкое напряжение на электроприборах. При этом стабилизатор поможет не всегда;
  • нестабильность напряжения на электроприборах в зависимости от времени суток или времени года. По нормам на напряжение и его допуски ;
  • высокое (вплоть до бесконечности) время срабатывания автоматических выключателей при КЗ на землю (работает только тепловой расцепитель);
  • необходимость установки автоматических выключателей с характеристикой отключения “В” с целью более вероятного срабатывания электромагнитного расцепителя при КЗ. Этот спорный вопрос обсуждается в моей статье на Дзене ;
  • обязательная установка УЗО – при этом, кроме своих “основных” обязанностей (отключение питания при высоком токе утечки, а также для защиты человека при прямом и косвенном прикосновении), УЗО выполняет функцию защиты от КЗ на землю (ПУЭ 1.7.59, 7.1.72).

Плюсы низкого тока КЗ

  • можно устанавливать дешевые автоматические выключатели с низкой номинальной наибольшей отключающей способностью (Icn = 4500 А);
  • сравнительно легко можно обеспечить селективность между вводным и нижестоящим автоматами. Но нужен расчет и измерение точного значения тока КЗ,
  • низкий пусковой ток электродвигателей и другой инерционной нагрузки. Статья Что такое пусковой ток, как его измерить и посчитать.

Минусы высокого тока КЗ

  • невозможность обеспечить селективность между вышестоящими и нижестоящими автоматами. Выход – установка рубильника либо селективного по времени автоматического выключателя;
  • необходимость установки АВ с высокой номинальной наибольшей отключающей способностью (Icn = 6000, 10000 А и т.д.). Отключающая способность должна быть выше, чем ток КЗ в начале защищаемого участка (ПУЭ п. 3.1.3);
  • большие негативные последствия при возникновении КЗ.

Плюсы высокого тока КЗ

  • легко гарантировать стабильное напряжение на нагрузке и вообще качество электроэнергии;
  • имеется перспектива подключения новых потребителей и увеличения нагрузки;
  • гарантированное отключение линии при КЗ.

Резюмируя плюсы и минусы, можно сказать, что значение тока КЗ – палка о двух концах. В бытовом секторе ток КЗ часто бывает низким, и его стараются увеличить, прокладывая новые линии с высоким сечением проводов и устанавливая новые трансформаторные подстанции. В серьезной энергетике наоборот, применяют методы по уменьшению тока КЗ.

2.1. Порядок измерения прибором MZC-300, MZC-303E

2.1.1 Условия выполнения измерений и получения правильных результатов

Чтобы начать измерение, необходимо соблюдение нескольких условий. Измеритель автоматически блокирует возможность начала измерений (это не касается измерения напряжения сети) в случае обнаружения каких-либо из ниже перечисленных ненормальных условий:

Ситуация Отображаемые символы и предупреждающие сигналы Пояснения Напряжение, приложенное к измерителю, больше 250В. Надпись OFL и длительный звуковой сигнал. Незамедлительно отсоедините измеритель от испытуемой сети! Нарушена целостность провода PE/N. Отображается символ _—_ и звучит продолжительный звуковой сигнал

Символ и звуковой сигнал появляются после нажатия клавиши Необходимо принять меры предосторожности, так как в испытуемой сети отсутствует защита от сверхтоков! Напряжение, приложенное к измерителю, слишком мало для измерения сопротивления – менее 180В. Отображается надпись -U- и звучат два длинных звуковых сигнала

Надпись и звуковые сигналы появляются после нажатия клавиши Термическая защита блокирует измерение, что возможно при очень интенсивных измерениях. Отображается символ Т на дисплее и звучат два длинных звуковых сигнала. Символ и звуковые сигналы появляются после нажатия клавиши Во время Автокалибровки сумма полного сопротивления цепи и полного сопротивления измеряемого провода очень велика. Вместо результата измерения отображается символ ]-[, прибор дополнительно генерирует два длинных звуковых сигнала.

Измеритель также сигнализирует о ситуации, в которой результат измерения не может быть признан верным: ¦ Если элементы питания разряжены, то на дисплее попеременно с результатом измерения напряжения отображается надпись bAt . Заданное измерение можно произвести, однако полученные результаты не могут быть основанием для правильной оценки электробезопасности испытуемой электроустановки.

2.1.2 Способы подключения измерителя

Рис.6. Измерение в рабочей цепи (L-N)

Рис. 7. Измерение в защитной цепи (L-PE) а) сети TN (с занулением) б) сети ТТ (с защитным заземлением)

Рис. 8. Тестирование эффективности защиты корпуса электроустановки

Измеритель подключается к тестируемой цепи или к устройству как показано на Рис.6, 7 и 8

Следует обратить внимание на правильный подбор измерительных наконечников, так как точность выполняемых измерений сильно зависит от качества выполненных подключений. Следует обеспечить хорошее соединение и сделать возможным непрерывное протекание большого измерительного тока

Недопустимо, например, присоединение зажима «Крокодил» к грязным или ржавым элементам — необходимо их тщательно очистить или использовать для измерений остроконечные зонды.

2.1.3 Измерение напряжения переменного тока

Приборами семейства MZC-300 можно измерить напряжение переменного тока в диапазоне 0. 250В. Прибор измеряет напряжение между измерительными гнёздами L и PE/N. Входное сопротивление вольтметра не менее 150 кОм. Включение режима вольтметра происходит автоматически после включения питания измерителя, а также примерно через 5 секунд после: • Выполнения измерения полного сопротивления, ожидаемого тока короткого замыкания либо сопротивления измерительного провода (во время Автокалибровки); • Последнего нажатия какой-либо из клавиш, связанных с выводом на дисплей результатов измерения.

Что такое межфазное замыкание?

Это аварийный режим работы электросети, вызванный электроконтактом разноименных фаз. В качестве примера приведем типовые виды замыканий.

Виды коротких замыканий

Обозначения:

  1. Трехфазные КЗ.
  2. Замыкание двух фазных проводов.
  3. КЗ на землю при двухфазном замыкании.
  4. Фазное (однофазное) КЗ. Замыкание может происходить с землей или нулевым проводом в системах с изолированной или заземленной нейтралью.

Как видно из рисунка, под определение межфазного замыкание подходит пункт 2. Заметим, что при определенных условиях 1 и 3 также можно рассматривать как частный случай межфазного КЗ.

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

При его срабатывании зажигается табло, привлекающее к себе внимание. Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.

Классификация автоматических выключателей

В этой статье рассмотрим базовые параметры, по которым выполняется расчет автоматического выключателя. Автоматический выключатель – защитный аппарат, который рассчитан на отключение любых сверхтоков в защищаемой цепи в пределах своей чувствительности, прежде чем те вызовут какие-либо повреждения при тепловом воздействии на жилы и изоляцию самого проводника, а также на окружающие его материалы. Под сверхтоками следует понимать токи перегрузки и токи коротких замыканий. Ввиду необходимости защиты сети от токов КЗ и токов перегрузок в автоматических выключателях применяются комбинированные расцепители (тепловой и электромагнитный), выбор уставок которых рассмотрим ниже.

Расчет автоматов по нагрузке

На основании п. 3.1.4 ПУЭ номинал автомата выбирается наименьшим по расчетному току участка цепи или по току нагрузки электроприемников. Номинал автоматического выключателя по совместительству является уставкой теплового расцепителя. Расчет автоматов по мощности нагрузки сводится к простейшей формуле по оценке максимального тока нагрузки, если нам известна суммарная мощность электроприемников — IB=S/U (при однофазном подключении). После чего подбираем стандартный автомат с номинальным током не менее высчитанного по формуле.

При этом следует учитывать, что выключатель предназначен защищать не нагрузку, а проводник линии, ее питающий.

Основополагающим является следующее условие:

где IB — максимальный рабочий ток нагрузки, In — номинальный ток выключателя, Iz — длительно допустимый ток проводника линии.

См. таблицу расчетов автомата в зависимости от типа подключения и мощности, упрощающую выбор.

Расчет автоматов по току КЗ

Для бытового применения можно ограничиться выбором соответствующего диапазона токов мгновенного расцепления по типу автомата. Для этого вполне подходят типы В (от 3In до 5In) и С (от 5In до 10In). Выбор типа выключателей в зависимости от типа подключенной нагрузки приведен на рисунке.

Конечно, для более точного расчета следует рассчитать величину тока КЗ в конце защищаемого участка цепи, располагая при этом соответствующими исходными данными о питающей подстанции и характеристиках питающей линии. Данные расчеты в большинстве случаев выполняются в специализированных программных комплексах при проектировании новых и реконструкции старых объектов электроснабжения.

Для простых случаев ток однофазного замыкания в искомой точке можно рассчитать по формуле:

Zц определяется по формуле:

Для автоматических выключателей с комбинированным расцепителем допускается обеспечивать защиту от токов однофазного КЗ посредством одного из расцепителей (любого).

Полученное значение тока Iк должно удовлетворять условиям:

Ik≥6In – для теплового расцепителя по п.7.3.139 ПУЭ; Ik ≥1,25 IM – для электромагнитного расцепителя, где IM- уставка ЭМ расцепителя, 1,25- коэффициент, обеспечивающий чувствительность и срабатывание.

Главное, чтобы защитный аппарат обеспечил отключение защищаемого участка цепи при повреждении в конце линии, так как ток КЗ в данной расчетной точке наименьший.

Источник