Защита трансформаторов распределительных сетей

Устройство и принцип действия сетей с глухозаземлённой нейтралью

Принцип работы источников электроэнергии, в частности, понижающих трансформаторов основан на законе взаимоиндукции и передаче энергии по магнитному сердечнику. Первичная обмотка при этом может и не иметь нулевого провода, в отличие от вторичной, где соединение его с нулём через проводник с низким сопротивлением, который можно приравнять с нулевым значением, будет являться эффективным средством защиты от поражения человека опасным для его жизни и здоровья напряжением.

Главной особенностью сетей с глухозаземлённой нейтралью является появление не только линейного, но и фазного напряжения. Что это такое и чем оно отличается друг от друга, рассмотрим на примере простой принципиальной схемы.

Фазное напряжение — это потенциал между одним из проводов линии и нулевой точкой, присоединенной к земле, то есть наглухо заземлённой. Линейное напряжение — разница потенциалов между двумя выводами линий, то есть L1 и L2, L1-L3, или же L2-L3, называется оно также межфазное. Такие источники электрической энергии в бытовых условиях имеют распространенное значение напряжения в виде 380 В — линейного, и 220 — фазного. Линейное напряжение больше фазного на √3, то есть на 1,72.

Но основная задача такой системы это не только транспортировка к потребителям напряжений двух значений при разном количестве фаз в одной системе электроснабжения, но и защита человека при пробое изоляции и появлении напряжения в точках, которые в нормальном состоянии не имеют опасного потенциала. В жилых зданиях это:

  • корпуса всех бытовых приборов, которые проводят электрический ток, то есть сделаны из стали или другого токопроводящего металла;
  • металлоконструкции щитовых и распределительных устройств;
  • защитная оболочка кабелей.

Также для обеспечения безопасности все перечисленные выше элементы должны быть заземлены, именно в этом случае опасность от использования напряжения и применения бытовых приборов в сетях с глухозаземлённой нейтралью будет минимальна. При этом для таких цепей обязательна равномерность распределения однофазных нагрузок.

Классификация реле

Согласно СИПам реле управления включается прямо в электрическую цепь и предназначено для частных подключений. Оно относится к самым распространенным электротехническим изделиям, и широко применяются в качестве комплектующих.

Классификация реле проводится по нескольким различным критериям, а именно, таким как:

  • По назначению;
  • Принципу действия;
  • Замеряемой величине;
  • Мощности управления;
  • Времени срабатывания.

Защитное реле применяется для включения и отключения защиты устройств – вентиляторов, электродвигателей и других приборов, имеющих термоконтакты. Защитительный аппарат может автоматически отключиться, если контакты разомкнутся. Повторное включение питания сети, возможно, исключительно после того, как двигатель хорошо остынет до требуемой температуры.

По принципу воздействия, устройство подразделяется на:

  • Электромеханическое;
  • Индукционное;
  • Магнитное;
  • Электронное;
  • Фотоэлектронное.

Электрическими реле называются аппараты, приводящие в действие одну или сразу несколько управляемых электрических цепей при воздействии на него определенных электрических сигналов. Самыми распространенными считаются электромеханические реле, которые наиболее часто применяются в устройствах телемеханики, автоматики, вычислительной техники.

Защита на токах нулевой последовательности

Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.

На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.

Обычно защищаемый участок разделяется на участки (зоны), примерно, как у дистанционной защиты. Сама защита выполняется многоступенчатой. Ток срабатывания первой ступени максимальный, выдержка времени – минимальна или равна нулю. Следующая ступень срабатывает при меньшем токе, но с большей выдержкой по времени. И так далее.

На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.

Разновидности максимально-токовых защит

Максимально-токовые защиты по виду время-токовой характеристики подразделяются:

  • МТЗ с независимой от тока выдержкой временем
  • МТЗ с зависимой от тока выдержкой времени
  • МТЗ с ограниченно-зависимой от тока выдержкой времени

Применяются также комбинированный вид защиты МТЗ – Максимально-токовая защита с пуском (блокировкой) от реле минимального напряжения.

МТЗ с независимой от тока выдержкой времени

МТЗ с независимой от тока выдержкой времени имеет во всём рабочем диапазоне величину выдержки времени, независимую от тока (время-токовая характеристика в виде прямой, отстоящей от оси абсцисс на величину времени выдержки tсраб; при токе, равном и меньшем тока срабатывания время-токовая характеристика скачкообразно становится равной нулю).

МТЗ с зависимой от тока выдержкой времени

МТЗ с зависимой от тока выдержкой времени имеет нелинейную обратную зависимость выдержки времени от тока (обычно время-токовая характеристика близка к гиперболе, как к кривой постоянной мощности). Применение МТЗ с зависимой от тока выдержкой времени позволяет учитывать перегрузочную способность оборудования и осуществлять т.н. “защиту от перегрузки”.

МТЗ с ограниченно-зависимой от тока выдержкой времени

Характеристика МТЗ с ограниченно-зависимой от тока выдержкой времени состоит из двух частей, в первой части зависимость времени от тока-гиперболическая, вторая часть-независимая (или почти независимая)-время-токовая характеристика состоит из плавно сопряжённых гиперболы и прямой. Переход из независимой в зависимую часть характеристики может происходить при малых кратностях от тока срабатывания (150%)-т.н. “крутая характеристика”, и при больших кратностях (300-400%)- т.н. “пологая характеристика” (обычно МТЗ с “пологой характеристикой” применяются для защит двигателей большой мощности для лучшей отстройки от пусковых токов).

МТЗ с пуском (блокировкой) от реле минимального напряжения

Для улучшения чувствительности МТЗ и отстройки её от токов нагрузки применяется ещё одна разновидность МТЗ – это максимальная токовая защита с пуском (блокировкой) от реле минимального напряжения (комбинация МТЗ и защиты минимального напряжения). Такая защита будет действовать только при повышении тока, большем или равном току уставки, сопровождающееся уменьшением напряжения в сети ниже напряжения уставки. При пуске двигателей ток в сети резко возрастает, что может привести к ложному срабатыванию защит. Для этого устанавливается реле минимального напряжения, которое не дает защитам отработать, т.к. напряжение в сети остается прежним, то и защиты соответственно не реагируют на резкое увеличение тока.

Как выполняется зануление электрооборудования

Далее расскажем о том, откуда защитное зануление попадает в наш дом, и рассмотрим его путь от трансформаторной подстанции и безопасно ли выполнять зануление в квартире. Начинается такое зануление с глухозаземлённой нейтрали — соединенной с заземляющим устройством нейтрали силового трансформатора.

Нейтраль вместе с трехфазной линией сначала попадает во вводной шкаф. Оттуда же она распределяется по находящимся на этажах электрическим щиткам.

От нее берется рабочий ноль, образующий вместе с фазой привычное для нас фазное напряжение. Название «рабочий ноль» связано с тем, что он используется для работы электроустановок или электроприборов.

Взятым с электрощитка защитным отдельным нулем, имеющим электрическое соединение с глухозаземлённой нейтралью, и образуется защитное зануление. Необходимо обязательно знать, что в цепи защитных зануляющих проводников никаких коммутационных аппаратов (автоматов, рубильников и т.п.), а также предохранителей быть не должно.

Реле RBUZ. Функции и параметры.

Производство находится в Киеве. На украинском рынке данное реле продается под торговой маркой ZUBR, на российском рынке — RBUZ

Но это не важно, главное не название, а параметры

Реле напряжения RBUZ – модели, токи и мощность

Реле RBUZ D2-63, которое будет рассмотрено в статье – на 63 А. Забегая вперед скажу, там внутри установлено реле на 80 А. Поэтому запас есть. С другой стороны, этот ток – чисто активный (режим работы АС1), иначе говоря, теоретический. Реальный режим работы этого реле – с активно-реактивной нагрузкой (АС15), это означает, что реальный максимальный ток желательно должен быть меньше.

Впрочем, есть защита от перегрева, которая может быть полезна не только при превышении тока, но и в случае плохих контактов при подключении к РН, когда повышается температура внутри самого реле. Когда температура внутри достигает 80 °С, РН выключается с индикацией перегрева, а включится только при снижении до 60 °С. При этом температура внутри щитка имеет не такое значение, как температура внутри РН.

РН RBUZ параметры

Большинство важных параметров приведено на корпусе:

Параметры РН RBUZ на корпусе

Параметры – обычные для большинства РН. “Зацепило” число 500 000 коммутаций без нагрузки. Понятно, что без нагрузки это реле не работает, нагрузка есть всегда. С другой стороны, она далеко не всегда будет номинальной (63 А). Поэтому реальное количество коммутаций будет где-то посередине – около 200 000. Но реально, по моему опыту, такое реле в рабочей обстановке выключается около 20 раз в году (конечно, сильно зависит от состояния электросетей), что говорит о его потенциальной работе в течение 10 тыс. лет. Но оставим фантазии, переходим к реальному железу. Отмечу, что компания-производитель дает 5-летнюю гарантию на все реле напряжения RBUZ.

Что такое нулевая последовательность?

Преимущественное большинство сетей получают питание по трехфазной системе. Которая характеризуется тем, что напряжение каждой фазы смещено на 120º.

Рис. 1. Форма напряжения в трехфазной сети

Как видите из рисунка 1 на диаграмме б) показана работа сбалансированной симметричной системы. При этом если выполнить геометрическое сложение представленных векторов, то в нулевой точке результат сложения будет равен нулю. Это означает, что в системах 110, 10 и 6 кВ, для которых характерно заземление нейтралей трансформаторов, при нормальных условиях работы, какой-либо ток в нейтрали будет отсутствовать. Также следует отметить, что геометрически смена фаз может подразделяется на такие виды:

  • прямой последовательности, при которой их чередование выглядит как A – B – C;
  • обратной последовательности, при которой чередование будет C – B – A;
  • и вариант нулевой последовательности, соответствующий отсутствию угла сдвига.

Какие преимущества дает УРОВ?

Изначально УРОВ, в виде панели с электромеханическими реле, применялось на подстанциях и станциях с РУ 220 кВ и выше. Его применение обусловлено повышенными требованиями к надежности отключение короткого замыкания за наименьший промежуток времени.

Представьте, что на линии 220 кВ, в соответствии с принципом ближнего резервирования, установлены комплекты основной (ДФЗ) и резервных защит (ДЗ, ТЗНП, ТО), и все это бесполезно из-за механической неисправности привода выключателя. Сигнал на отключение защитами выдан, но ничего не происходит, и линия продолжает «гореть».

Остается надежда только на защиты дальнего резервирования, которые установлены на противоположных концах соседних линий.

По требованию дальнего резервирования эти защиты обязаны чувствовать КЗ на смежной лини и устранять их. Но во-первых, выдержки времени в этом случае могут быть достаточно большими (особенно, если ДЗ или ТЗНП начинают чувствовать КЗ только после отключения некоторых параллельных линий). А во-вторых, дальнее резервирование удается обеспечить не всегда. К тому же при действии защит дальнего резервирования происходит отключение множества выключателей на разных подстанциях, что затрудняет работу диспетчера при локализации аварии.

В таких случая, требуется меры по усилению ближнего резервирования, т.е. установке устройства резервирования при отказе выключателя.

УРОВ принимает команду отключения выключателя от защит и если через время Туров отключения не происходит, то устройство дает команду на отключение смежных выключателей. Просто и надежно

При этом время отключения от УРОВ всегда определено как сумма времени действия собственной защиты присоединения плюс ступень селективности. К тому же УРОВ «использует» чувствительность своей защиты, которая выше, чем у защиты дальнего резервирования.

На напряжении 110 кВ и ниже УРОВ использовался реже из-за стоимости панели и отсутствия жестких требований к скорости отключения, как на сверхвысоком напряжении. Ведь панель УРОВ стоит денег и занимает место.

Однако, с развитием микропроцессорной техники функция УРОВ стала практически бесплатной. Распределенный алгоритм УРОВ стал использоваться в логике терминалов, а «снаружи» остались только шинки и ключи ввода/вывода. Сегодня УРОВ применяют на всех классах напряжения, начиная с 6 кВ.

Давайте рассмотрим, что дает УРОВ на стандартной подстанции по схеме «6-1» (одна секционированная система шин 6 кВ).

1 случай (удаленное КЗ на линии 1)

При возникновении короткого замыкания на линии 1 в зоне действия МТЗ (конец линии), защита срабатывает с выдержкой времени 0,9 с. При отказе выключателя алгоритм УРОВ отключит вводной выключатели через время Тзащ. = Тмтз + Туров = 0,9 + 0,3= 1,2 с.

Если алгоритм УРОВ отсутствует, то МТЗ ввода отключит КЗ через 1,5 с (дальнее резервирование).

Таким образом, мы получаем выигрыш 0,3 с.

Также обратите внимание, что здесь для пуска алгоритма мы используем МТЗ линии, а не ввода, что дает значительно большую чувствительность. Особенно сильна эта разница будет для секций 6 кВ с двигателями. 2 случай (близкое КЗ на линии 1)

2 случай (близкое КЗ на линии 1)

При возникновении короткого замыкания на линии 1 в зоне действия отсечки (начало линии), защита срабатывает с выдержкой времени 0,1 с. При отказе выключателя алгоритм УРОВ отключит вводной выключатели через время Тзащ. = Тто + Туров = 0,1 + 0,3= 0,4 с.

По дальнему резервированию мы так же получим 1,5 с, т.е. теперь выигрыш уже 1,1 с.

Советуем изучить Коэффициент трансформации

Очевидно, что и на 6 кВ применение УРОВ дает преимущество в быстродействии и чувствительности

При всех своих плюсах УРОВ — достаточно «опасная» функция и применять ее нужно обдуманно. Следует помнить, что при срабатывании УРОВ полностью отключает участок сети с блокировкой любой автоматики восстановления питания, такой как АПВ и АВР. Это означает невозможность быстрого восстановления нормального режима и массовый недоотпуск электроэнергии (особенно если нижестоящие потребители не имеют своих АВР).

В связи с этой особенностью при пуске УРОВ, помимо контроля тока через выключатель, применяют различные способы ограничения возможности излишнего действия.

О логике и схемах УРОВ мы поговорим в следующей статье

Терминал «ТОР 300 РЗТ 52Х»

Цепи тока IA,ВН, IB,ВН, IC,ВН – фазные токи стороны ВН

3I0,ВН – ток нулевой последовательности стороны ВН

Цепи напряжения UAВ,СН, UBС,СН – линейные напряжения стороны СН

UAВ,НН1, UBС,НН1 – линейные напряжения стороны НН1

UAВ,НН2, UBС,НН2 – линейные напряжения стороны НН2

Цепи постоянного тока и напряжения IЭМО1, IЭМО2, IЭМВ – постоянные токи электромагнитов

UЭМ1, UЭМ2 – постоянные напряжения электромагнитов

Дискретные входы 53 шт.
Выходные реле 53 шт.

Терминал обеспечивает осциллографирование с частотой дискретизации до 2000 Гц и хранение в энергонезависимой памяти до 200 записей.

Релейная защита и автоматика систем электроснабжения

Газовая защита

Обеспечивается действие от сигнальной и отключающей ступеней газовой защиты бака трансформатора и газовой защиты (струйного реле) бака РПН. Реализован контроль изоляции цепей газовой защиты с помощью РКТУ с действием на сигнализацию, предусмотрена возможность блокирования действия на отключение от неисправной газовой защиты. Обеспечивается минимальная длительность отключения от газовой защиты для исключения влияния дребезга контакта.

Отключающая ступень газовой защиты может быть переведена на сигнал с помощью оперативного переключателя, сигнальная ступень – на отключение с помощью программной накладки.

УРОВ ВН

Устройство резервирования отказов выключателя ВН выполнено с контролем по току с использованием реле тока с малым временем возврата (не более 20 мс). При отказе выключателя УРОВ ВН осуществляет действие на отключение смежных выключателей через цепи ДЗШ. Предусмотрена возможность выполнения УРОВ с автоматическим действием на свой выключатель (действие «на себя») для проверки его исправности, или с контролем действия на электромагнит отключения по факту пропадания сигнала РПВ из автоматики управления выключателя.

ТЗНП ВН

Токовая защита нулевой последовательности стороны ВН выполнена ненаправленной и действует на отключение через четыре выдержки времени: на отключение смежного трансформатора с разземленной нейтралью, деление ШСВ/СВ, отключение своего выключателя ВН и трансформатора со всех сторон. Предусмотрена ступень для отключения выключателя ВН при работе трансформатора с разземленной нейтралью, ввод данной ступени производится автоматически по факту отсутствия тока нулевой последовательности в нейтрали «своего» трансформатора и наличия его в нейтрали смежного трансформатора, а также пуска реле тока обратной последовательности ВН.

МТЗ ВН

Максимальная токовая защита стороны ВН выполнена с пуском по напряжению сторон СН, НН1 и НН2 и действует на отключение трансформатора со всех сторон. Предусмотрено включение реле тока МТЗ ВН на разность токов фаз. МТЗ ВН имеет до трех ступеней, одна из которых может использоваться в качестве токовой отсечки.

Основные и резервные защиты: мифы и реальность

Автоматика управления выключателем

  • трёхфазное автоматическое повторное включение присоединения и шин с контролем и улавливанием синхронизма;
  • включение выключателя от ключа управления и по логике АПВ;
  • отключение выключателя от ключа управления и от защит (через ЭМО 1 и ЭМО 2);
  • подхват отключения выключателя при протекании тока в ЭМО;
  • подхват включения выключателя при протекании тока в ЭМВ.

Защиты выключателя

Терминал «ТОР 300 РЗТ 52Х»

Цепи тока IA,ВН, IB,ВН, IC,ВН – фазные токи стороны ВН

3I0,ВН – ток нулевой последовательности стороны ВН

Цепи напряжения UAВ,СН, UBС,СН – линейные напряжения стороны СН

UAВ,НН1, UBС,НН1 – линейные напряжения стороны НН1

UAВ,НН2, UBС,НН2 – линейные напряжения стороны НН2

Цепи постоянного тока и напряжения IЭМО1, IЭМО2, IЭМВ – постоянные токи электромагнитов

UЭМ1, UЭМ2 – постоянные напряжения электромагнитов

Дискретные входы 53 шт.
Выходные реле 53 шт.

Терминал обеспечивает осциллографирование с частотой дискретизации до 2000 Гц и хранение в энергонезависимой памяти до 200 записей.

Релейная защита и автоматика систем электроснабжения

Газовая защита

Обеспечивается действие от сигнальной и отключающей ступеней газовой защиты бака трансформатора и газовой защиты (струйного реле) бака РПН. Реализован контроль изоляции цепей газовой защиты с помощью РКТУ с действием на сигнализацию, предусмотрена возможность блокирования действия на отключение от неисправной газовой защиты. Обеспечивается минимальная длительность отключения от газовой защиты для исключения влияния дребезга контакта.

Отключающая ступень газовой защиты может быть переведена на сигнал с помощью оперативного переключателя, сигнальная ступень – на отключение с помощью программной накладки.

УРОВ ВН

Устройство резервирования отказов выключателя ВН выполнено с контролем по току с использованием реле тока с малым временем возврата (не более 20 мс). При отказе выключателя УРОВ ВН осуществляет действие на отключение смежных выключателей через цепи ДЗШ. Предусмотрена возможность выполнения УРОВ с автоматическим действием на свой выключатель (действие «на себя») для проверки его исправности, или с контролем действия на электромагнит отключения по факту пропадания сигнала РПВ из автоматики управления выключателя.

ТЗНП ВН

Токовая защита нулевой последовательности стороны ВН выполнена ненаправленной и действует на отключение через четыре выдержки времени: на отключение смежного трансформатора с разземленной нейтралью, деление ШСВ/СВ, отключение своего выключателя ВН и трансформатора со всех сторон. Предусмотрена ступень для отключения выключателя ВН при работе трансформатора с разземленной нейтралью, ввод данной ступени производится автоматически по факту отсутствия тока нулевой последовательности в нейтрали «своего» трансформатора и наличия его в нейтрали смежного трансформатора, а также пуска реле тока обратной последовательности ВН.

МТЗ ВН

Максимальная токовая защита стороны ВН выполнена с пуском по напряжению сторон СН, НН1 и НН2 и действует на отключение трансформатора со всех сторон. Предусмотрено включение реле тока МТЗ ВН на разность токов фаз. МТЗ ВН имеет до трех ступеней, одна из которых может использоваться в качестве токовой отсечки.

Основные и резервные защиты: мифы и реальность

Автоматика управления выключателем

  • трёхфазное автоматическое повторное включение присоединения и шин с контролем и улавливанием синхронизма;
  • включение выключателя от ключа управления и по логике АПВ;
  • отключение выключателя от ключа управления и от защит (через ЭМО 1 и ЭМО 2);
  • подхват отключения выключателя при протекании тока в ЭМО;
  • подхват включения выключателя при протекании тока в ЭМВ.

Защиты выключателя

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.


Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Что является источником токов обратной и нулевой последовательностей?

Ток нулевой последовательности это:

Сумма мгновенных значений токов трех фаз трехфазной системы Система нулевой последовательности существенно отличается от прямой иобратной тем, что отсутствует сдвиг фаз. Нулевая система токов по существу представляет три однофазныхтока, для которых три провода трехфазной цепи представляют прямой провод, а обратным проводом служитземля или четвертый (нулевой), по которому ток возвращается.

Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное илидвухфазноеКЗ). Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Ток обратной последовательности, как известно из , появляется при любом несимметричном, а кратковременно и при трехфазном КЗ. Ток нулевой последовательности используется для повышения чувствительности пуска ВЧ-передатчика при КЗ на землю, а пусковое реле фазного тока КА – при симметричных КЗ

Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0 .

Зёх фазный ток – это когда фазы а,в,с отстоют друг от друга на 120градусов. Когда три фазы повёрнуты в 1 сторону – ток нулевой последовательности. Такое возникает при однофазных замыканиях на землю в сетях с заземлённой нейтралью. Поэтому применяются ТЗНП – токовые защиты нулевой последовательности для защиты от замыканий на землю – появился ток нулевой последовательности, значит есть замыкание на землю, защита срабатывает. . Токи обратной последовательности – это когда нарушен порядок чередования фаз. Возникают при межфазных замыканиях, для зашиты применяю ТЗОП – токовые защиты обратной последовательности. В двух словах так. Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное или двухфазное КЗ).

Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Токи нулевой последовательности по существу являются однофазным током, разветвленным между тремя фазами и возвращающимся через землю и параллельные ей цепи. В силу этого, путь циркуляции токов нулевой последовательности резко отличен от пути, по которому проходят токи прямой или обратной последовательности Для практической реализации метода симметричных составляющих необходимо составлять три схемы замещения: прямой, обратной и нулевой последовательностей. Конфигурация этих схем и параметры их элементов в общем случае не одинаковы.

Схема прямой последовательности является той же, что и для расчета тока трехфазного замыкания. Из этой схемы находят результирующую ЭДС и результирующее сопротивление прямой последовательности: и . Началом этой схемы являются точки нулевого потенциала источников питания, концом – место короткого замыкания, к которой приложено напряжение прямой последовательности . Составляющие обратной последовательности возникают при появлении в сети любой несимметрии: однофазного или двухфазного короткого замыкания, обрыва фазы, несимметрии нагрузки.

Составляющие нулевой последовательности имеют место при замыканиях на землю (одно- и двухфазных) или при обрыве одной или двух фаз. В случае междуфазного замыкания составляющие нулевой последовательности(токи и напряжения) равны нулю.

Этот метод используют многие устройства РЗиА. В частности, принцип работы трансформатора тока нулевой последовательности основан на сложении значений тока во всех трех фазах защищаемого участка. В нормальном(симметричном) режиме сумма значений фазных токов равна нулю. В случае возникновения однофазного замыкания, в сети появятся токи нулевой последовательности и сумма значений токов в трех фазах будет отлична от нуля, что зафиксирует измерительный прибор (например, амперметр), подключенный ко вторичной обмотке трансформатора тока нулевой последовательности.

Для трехфазных транспозированых ЛЭП результат этого преобразования — точная матрица собственных векторов (матрица модального преобразования). Она одинакова как для тока, так и для напряжения.

Принцип работы токовой направленной защиты нулевой последовательности в электрических сетях 110 кВ

В электротехнике есть понятие о симметричных и несимметричных системах фазных токов или напряжений. Симметричная система предусматривает равенство фазных токов (напряжений) трехфазной сети. При этом векторы фазных токов могут стоять относительно друг к другу в прямой, обратной, а также нулевой последовательности (НП). При прямой последовательности векторы фазных токов идут в последовательности А, В, С, каждая из фаз отстает от другой на 120 гр. Обратная последовательность – чередование фаз А, С, В, угол сдвига фаз тот же – 120 гр. При нулевой последовательности векторы трех фаз совпадают по направлению. Несимметричная система представляется как значение тока – геометрическая сумма векторов всех составляющих прямой, обратной и нулевой последовательности.

В нормальном режиме работы участка электросети система токов и напряжений является симметричной, то же самое касается межфазных коротких замыканий. В данном случае, как напряжение, так и ток НП равны нулю. В случае возникновения однофазного замыкания на землю система становится несимметричной – возникает ток и напряжение НП.

В данном случае ток (напряжение) одной из фаз нулевой последовательности равен трети суммы векторов несимметричной системы, соответственно сумма векторов несимметричной системы – это тройной ток (напряжение) НП.

Результаты расчетов коротких замыканий в электрических сетях также показывают, что ток однофазного замыкания на землю в электрических сетях равен тройному значению тока НП – 3I0, а напряжение, возникающее между нейтралью трансформатора и точки короткого замыкания – тройному значению напряжения НП – 3U0.

Принцип работы токовой защиты нулевой последовательности заключается в контроле значения 3I0 на линии электропередач и в случае достижения его определенной величины – реализации автоматического отключения выключателя линии электропередач с определенной выдержкой времени.

На практике токи небаланса 3I0 получают на выходе так называемого фильтра токов нулевой последовательности. Данный фильтр получают путем электрического соединения между собой начал и концов обмоток трансформаторов тока каждой из фаз линии.

В нормальном режиме работы участка электрической сети на выходе фильтра токов НП отсутствует ток. В случае возникновения повреждения – падения одного из фазных проводов линии электропередач на землю, возникает небаланс – появляется некоторое значение тока 3I0, значение которого фиксируется на выходе фильтра токов НП.

ТНЗНП, как правило, многоступенчатая защита. Каждая из ступеней защиты имеют свою выдержку времени срабатывания. Для обеспечения селективности работы защит на смежных подстанциях участки электрической сети разделяют на участки (зоны действия). Таким образом, защита обеспечивает защиту линии электропередач, питающейся от подстанции, где установлен данный комплект защит, и выступает в роли резервирующей защиты смежных подстанций.

Существует такое явление, как качания в системе. Если защита от междуфазных КЗ, например, дистанционная защита, может ложно срабатывать при возникновении данного явления, то ложное срабатывание ТНЗНП исключено, так как данная защита реагирует исключительно на возникновение токов нулевой последовательности, возникновение которых нехарактерно для явления качаний в энергосистеме.

Защита трансформаторов распределительных сетей — дифференциальная токовая защита

Рассматриваемая в статье защита, по сути, является защитой от замыканий на землю, поэтому данная защита имеет альтернативное название – земляная защита (ЗЗ) .

Какие устройства выполняют функцию направленной токовой защиты нулевой последовательности в электрических сетях

Для обеспечения защиты линий электропередач от всех видов повреждений (как однофазных, так и междуфазных коротких замыканий) токовая защита нулевой последовательности реализуется совместно с дистанционной защитой. Устройства, выполняющие функции данных защит, могут быть выполнены, как на реле электромеханического принципа работы, так и на современных устройствах – микропроцессорных терминалах защит.

Среди электромеханических защит приобрели наибольшую популярность комплекты типа ЭПЗ-1636, которые имеют несколько различных модификаций. В современных условиях, при строительстве новых распределительных подстанций или техническом переоснащении старых объектов, преимущество отдается микропроцессорным защитным устройствам. Для реализации резервных защит линий 110 кВ, в том числе и ТНЗНП, часто используются микропроцессорные терминалы производства компании ABB, например, многофункциональное устройство REL650.

Инсталляция МТЗ

При КЗ электроток идет от источника питания к месту замыкания.

Поэтому чем ближе к ИП установлен блок защитного устройства, тем обширнее участок сети на возникновение, неисправности в котором она будет реагировать. К примеру, рассмотрим защиту понижающего трансформатора. Автоматика, установленная на кабель высокого напряжения ближе к ИП, среагирует на возникновение неисправности этого кабеля, устройств коммутации, самого трансформатора, проводки низкого напряжения и подключенных к ней потребителей. А при ее установке на шины пониженного напряжения возникающие дефекты трансформатора и подвода питающего напряжения останутся «незамеченными».

Следовательно, для максимального контроля участка сети защитой ее необходимо устанавливать на кабель, подающий питание возможно ближе к источнику. Но 1 защитное устройство для всего участка сети удобно в эксплуатации только при небольшом количестве потребителей на нем. Так как защитное отключение участка с большим числом электроприемников, во-первых, обесточивает не только вышедшей из строя потребитель, но и все исправные. А во-вторых не позволяет определить, в какой зоне произошла авария. Поэтому для удобства работы и облегчения содержания электросети в исправном состоянии следует также установить автоматику на стороне низкого напряжения.