Интегральные микросхемы и работа с ними

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему.

Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Причины и области применения ШИМ

Принцип широтно-импульсной модуляции используется в регуляторах частоты вращения мощных асинхронных двигателей. В этом случае модулирующий сигнал регулируемой частоты (однофазный или трехфазный) формируется маломощным генератором синусоиды и накладывается на несущую аналоговым способом. На выходе получается ШИМ-сигнал, который подается на ключи потребной мощности. Дальше можно пропустить получившуюся последовательность импульсов через фильтр низкой частоты, например через простую RC-цепочку, и выделить исходную синусоиду. Или можно обойтись без нее – фильтрация произойдет естественным образом за счёт инерции двигателя. Очевидно, что чем выше частота несущей, тем больше форма выходного сигнала близка к исходной синусоиде.

Возникает естественный вопрос – а почему нельзя усилить сигнал генератора сразу, например, применением мощных транзисторов? Потому что регулирующий элемент, работающий в линейном режиме, будет перераспределять мощность между нагрузкой и ключом. При этом на ключевом элементе впустую рассеивается значительная мощность. Если же мощный регулирующий элемент работает в ключевом режиме (тринистор, симистор, RGBT-транзистор), то мощность распределяется во времени. Потери будут намного ниже, а КПД – намного выше.

В цифровой технике особой альтернативы широтно-импульсному регулированию нет. Амплитуда сигнала там постоянна, менять напряжение и ток можно лишь промодулировав несущую по ширине импульса и впоследствии усреднив её. Поэтому ШИМ применяют для регулирования напряжения и тока на тех объектах, которые могут усреднять импульсный сигнал. Усреднение происходит разными способами:

  1. За счет инерции нагрузки. Так, тепловая инерция термоэлектронагревателей и ламп накаливания позволяет объектам регулирования заметно не остывать в паузах между импульсами.
  2. За счёт инерции восприятия. Светодиод успевает погаснуть от импульса к импульсу, но человеческий глаз этого не замечает и воспринимает как постоянное свечение с различной интенсивностью. На этом принципе построено управление яркостью точек LED-мониторов. Но незаметное мигание с частотой несколько сот герц все же присутствует и служит причиной усталости глаз.
  3. За счет механической инерции. Это свойство используется при управлении коллекторными двигателями постоянного тока. При правильно выбранной частоте регулирования двигатель не успевает затормозиться в бестоковых паузах.

Поэтому ШИМ применяют там, где решающую роль играет среднее значение напряжения или тока. Кроме упомянутых распространенных случаев, методом PWM регулируют средний ток в сварочных аппаратах и зарядных устройствах для аккумуляторных батарей и т.д.

Если естественное усреднение невозможно, во многих случаях эту роль на себя может взять уже упомянутый фильтр низкой частоты (ФНЧ) в виде RC-цепочки. Для практических целей этого достаточно, но надо понимать, что без искажений выделить исходный сигнал из ШИМ с помощью ФНЧ невозможно. Ведь спектр PWM содержит бесконечно большое количество гармоник, которые неизбежно попадут в полосу пропускания фильтра. Поэтому не стоит строить иллюзий по поводу формы восстановленной синусоиды.

Очень эффективно и эффектно управление методом ШИМ RGB-светодиодом. Этот прибор имеет три p-n перехода – красный, синий, зеленый. Изменяя раздельно яркость свечения каждого канала, можно получить практически любой цвет свечения LED (за исключением чистого белого). Возможности по созданию световых эффектов с помощью PWM безграничны.

Наиболее употребительная сфера применения цифрового сигнала, промодулированного по длительности импульса – регулирование среднего тока или напряжения, протекающего через нагрузку. Но возможно и нестандартное использование этого вида модуляции. Все зависит от фантазии разработчика.

Что такое импульсный блок питания и где применяется

Что такое аттенюатор, принцип его работы и где применяется

Что такое частотный преобразователь, основные виды и какой принцип работы

Преобразователи напряжения с 12 на 220 вольт

Что такое диодный мост, принцип его работы и схема подключения

Что такое триггер, для чего он нужен, их классификация и принцип работы

История[править | править код]

В году двое учёных, живущих в совершенно разных местах, изобрели практически идентичную модель интегральной схемы. Один из них, Джек Килби, работал на Texas Instruments, другой, Роберт Нойс, был владельцем собственной компании по производству полупроводников Fairchild Semiconductor Corporation. Обоих объединил вопрос: «Как в минимум места вместить максимум компонентов?». Транзисторы, резисторы, конденсаторы и другие детали в то время размещались на платах отдельно, и ученые решили попробовать их объединить в один монолитный кристалл из полупроводникового материала. Только Килби воспользовался германием, а Нойс предпочёл кремний. В году они отдельно друг от друга получили патенты на свои изобретения — началось противостояние двух компаний, которое закончилось мирным договором и созданием совместной лицензии на производство чипов. После того как в году Fairchild Semiconductor Corporation пустила интегральные схемы в свободную продажу, их сразу стали использовать в производстве калькуляторов и компьютеров вместо отдельных транзисторов, что позволило значительно уменьшить размер и увеличить производительность.
Первая российская (советская) полупроводниковая микросхема была создана в 1961 г. в Таганрогском радиотехническом институте, в лаборатории Л. Н. Колесова.

Как правильно составлять схему

Электросхему для начинающих следует рисовать на клетчатом листе, чтобы ровно вычерчивать все линии и символы. Чаще всего общий провод соединен с отрицательным полюсом источника постоянного тока. Линейные элементы рисуются слева направо. Не рекомендуется изображать более 3 параллельных проводников подряд, это затруднит чтение схемы.

Для составления ПС, МС и чертежей можно воспользоваться приложениями для компьютера. Одно из них — Microsoft Visio — входит в состав офисного пакета. В наборе функций этой программы доступно более 100 символов для деталей, проводников и механизмов. Поддерживается автоматическая привязка концов рисуемых элементов, что обеспечивает целостность диаграммы при редактировании.

Еще одно приложение для правильного составления схем — это отечественный sPlan. Программа распространяется бесплатно и имеет русифицированные интерфейс и справку. С помощью sPlan создают электросхемы, соответствующие ГОСТу. Кроме того, имеется встроенный графический редактор, позволяющий создать монтажную диаграмму.

Схема мультивибратора

Изготовить металлоискатель на микросхеме 555 сможет любой начинающий радиолюбитель, но для этого нужно изучить особенности работы этого прибора. Мультивибратор – это специальный генератор, который вырабатывает с определенной периодичностью прямоугольные импульсы. Причем строго задается амплитуда, длительность и частота – зависят значения от того, какая задача стоит перед устройством.

Для формирования повторяющихся сигналов применяются резисторы и конденсаторы. Длительность сигнала t1, паузы t2, частоту f, и период T можно найти по следующим формулам:

  • t1=ln2*(R1+R2)*C=0,693*(R1+R2)*C;
  • t2=0,693*C*(R1+2*R2);
  • T=0,693*C*(R1+2*R2);
  • f=1/(0,693*C*(R1+2*R2)).

Исходя из этих выражений, можно увидеть, что пауза по длительности не должна быть больше времени сигнала

Другими словами, скважность не будет никогда больше 2. От этого напрямую зависит практическое применение микросхемы 555

Схемы различных устройств и конструкций строятся по даташитам — инструкциям. В них даны все возможные рекомендации для сборки приборов. Скважность можно найти по формуле S=T/t1. Чтобы увеличить этот показатель, необходимо добавить в схему полупроводниковый диод. Его катод соединяется с шестой ножкой, а анод с седьмой.

Если посмотреть в даташит, то в нем указывается обратная величина скважности – ее можно посчитать по формуле D=1/S. Измеряется она в процентах

Работу схемы мультивибратора можно описать следующим образом:

  1. При подаче питания конденсатор полностью разряжен.
  2. Таймер переводится в высокоуровневое состояние.
  3. Конденсатор накапливает заряд и на нем напряжение достигает максимума – 2/3 от питающего.
  4. Происходит переключение микросхемы и на выходе появляется низкоуровневый сигнал.
  5. Конденсатор разряжается в течение t1 до уровня 1/3 от питающего напряжения.
  6. Микросхема 555 переключается снова и на выходе образуется опять высокоуровневый сигнал.

Такой режим работы называется автоколебательным. На выходе постоянно изменяется величина сигнала, микросхема-таймер 555 равные промежутки времени находится в различных режимах.

Форма сигнала

Схемотехнику принято делить на две большие области: цифровую и аналоговую, по типу сигнала. Аналоговая оперирует такими параметрами, как сила тока, напряжение (иногда оно бывает отрицательным) и сопротивление. В цифровой все проще — в схеме есть только высокий и низкий логические уровни, даже без конкретных значений.

В С/С++ подобное отношение моделирует тип и два его состояния — и . Я и дальше буду использовать аналогии из языков программирования, где это уместно. Надеюсь, это поможет тебе лучше понять происходящее. Кроме того, это ярко показывает, насколько тесно все связано в цифровом мире.

Аналоговая схемотехника капризна и непредсказуема — на параметры сигнала могут влиять не только хорошо известные факторы вроде температуры и внешних наводок, но и даже такие неочевидные вещи, как вовремя не отмытый с платы флюс или окислившиеся контакты (без шуток). Цифровая схемотехника, напротив, слабо зависит от окружающих условий и вообще устойчива к шумам.

Так что нет ничего удивительного в том, что сегодня большая часть информации существует именно в цифровом виде, а компьютеры оперируют исключительно числами (если точнее, то их двоичным представлением). Для базового понимания цифровой схемотехники не требуется особых знаний — достаточно только уметь переводить числа из десятичной формы в двоичную и обратно.

Микросхема 555

Всем привет. Сегодня я хочу рассказать вам о микросхеме 555. Её история началась ещё в далеком 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (The IC Time Machine). В те времена это была единственная «таймерная» микросхема, которая была доступна массовому потребителю. Сразу после выхода 555 завоевала бешеную популярность и её начали выпускать почти все производители полупроводников. Отечественные производители тоже выпускали данную микросхему под названием КР1006ВИ1.

Что это за чудо?

Микросхема выпускается в двух вариантах корпуса — пластиковом DIP и круглом металлическом. Правда встретить 555 в круглом металлическом корпусе в наши времена очень сложно, чего не скажешь о версии в пластиковом DIP корпусе. Внутри корпуса с восемью выводами скрываются транзисторы, диоды и резисторы. Не будем вдаваться в доскональное изучение 555, но про ножки этой микросхемы я расскажу более подробно. Всего ножек 8.

1. Земля

. Вывод, который во всех схемах нужно подключать к минусу питания. 2.Триггер , он же запуск. Если напряжение на пуске падает ниже 1/3 Vпит, то таймер запускается. Ток, потребляемый входом, не превышает 500нА. 3.Выход . Напряжение выхода примерно на 1,7 В ниже напряжения питания, когда он включен. Максимальная нагрузка, которую может выдержать выход — 200 мА. 4.Сброс . Если подать на него низкий уровень напряжения (меньше 0,7 В), то схема переходит в исходное состояние не зависимо от того, в каком режиме находится таймер на данный момент. Если в схеме не нужен сброс, то рекомендуется подключить этот вывод к плюсу питания. 5.Контроль . Этот вывод позволит нам получить доступ к опорному напряжению компаратора №1. Используется этот вывод очень редко, а вися в воздухе может сбивать работу, поэтому в схеме его лучше всего присоединить к земле. 6.Порог , он же стоп. Если напряжение на этом выходе выше 2/3 Vcc, то таймер останавливается и выход переводится в состояние покоя. Стоит заметить, что работает выход только тогда, когда вход выключен. 7.Разряд . Этот выход соединяется с землей внутри самой микросхемы, когда на выходе микросхемы низкий уровень и закрыт, когда на выходе высокий уровень. Может пропускать до 200 мА и иногда используется как дополнительный выход. 8.Питание . Данный выход нужно подключать к плюсу питания. Микросхема поддерживает напряжение в пределах 4,5-16 В. Может работать от обычной 9В-батарейки или от проводка USB.

Режимы

Ну что же пришло время поведать вам о режимах микросхемы 555. Их всего 3 и о каждом я расскажу более подробно.

Моностабильный

При подаче сигнала на вход нашей микросхемы, она включается, генерирует выходной импульс заданной длины и выключается, ожидая входного импульса

Важно, что после включения микросхема не будет реагировать на новые сигналы. Длину импульса можно рассчитать по формуле t=1.1*R*C

Пределов по длительности импульсов нет — как по минимальной, так и по максимальной длительности. Есть некоторые практические ограничения, которые можно обойти, но стоит задуматься над тем, нужно ли это и не проще ли выбрать другое решение. Итак, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С — 95пФ. Можно и меньше, но при этом схема начнет поглощать много электричества.

Нестабильный мультивибратор

В этом режиме все довольно таки просто. Управлять таймером не нужно. Он все сделает сам — сперва включится, подождет время t1, потом выключится, подождет время t2 и начнет все заново. На выходе у нас получится забор из высоких и низких состояний. Частота с которой будет колебаться зависит от параметров величин R1,R2 и C и определяется она по формуле F= 1,44/((R1+R2)C). В течение времени t1 = 0.693(R1+R2)C на выходе будет высокий уровень, а в течение времени 2 = 0.693R2C — низкий.

Бистабильный

В данном режиме наша микросхема 555 используется как выключатель. Нажал одну кнопку — выход включился, нажал другую — выключился.

Ситуация на рынке

На данный момент ведущими производителями полупроводников являются тайваньская Taiwan Semiconductor Manufacturing Company (TSMC) и южнокорейская Samsung. Первая занимает 54% рынка, вторая — 17%.

Топ-10 производителей полупроводников, их доли рынка в долларах

(Фото: Statista)

Аналитики TrendForce выяснили, что мировой спрос на микросхемы оказался на 10–30% выше текущего предложения. По данным Susquehanna Financial Group, за первые четыре месяца 2021 года производители полупроводников резко начали отставать по исполнению заказов. Крупным компаниям приходится ждать микросхемы до 17 недель, а небольшим — до одного года или вообще отказываться от проектов. Одновременно растут цены на потребительскую электронику.

При этом со второго квартала 2021 года более 30 производителей полупроводников повысили цены на свою продукцию от 10% до 30%. В число этих компаний вошли UMC, SMIC и Power Semiconductor Manufacturing. Цены на отдельные продукты взлетели в десятки раз.

TSMC уже изменила приоритеты по выпуску своей продукции. В третьем квартале 2021 года компания собирается производить в первую очередь процессоры для Apple и чипы для автопроизводителей. Микросхемы для других клиентов, в том числе для Intel, Qualcomm, Google и Xilinx, будут отгружаться по мере их изготовления.

Apple в конце 2020 года закупила 80% мощностей TSMC для массового производства своих собственных чипов М1. Таким образом, только она в этом году сможет успешно выполнить план по производству новых iPhone, которые должны представить в сентябре или октябре. Остальные производители смартфонов оказались застигнуты врасплох глобальным дефицитом чипов. Так, Samsung уже предупредила, что может пропустить выпуск новой линейки смартфонов Galaxy Note в 2021 году.

Война за чипы: сменят ли ARM процессоры x86 и почему все зависит от Apple

Нехватка чипов повлияла даже на производство автомобилей. Крупнейшие мировые автоконцерны еще в начале 2021 года заявили, что им придется снижать планы по выпуску машин. Проблемы возникли у Nissan, Honda, Ford, Fiat Chrysler, Volkswagen, Suzuki, Subaru и других. Даже «АвтоВАЗ» начал выпускать автомобили Lada моделей Vesta, Xray и Largus без магнитолы. Автопроизводители потеряют в 2021 году более $110 млрд.

Диганта Дас, исследователь контрафактной электроники в Центре инженерии продвинутого цикла жизни (CALCE), предупредил, что в связи с дефицитом будут расти поставки контрафактных полупроводников. Проблема не коснется технологических гигантов, которые закупают комплектующие непосредственно у производителей, но затронет мелких производителей с более сложными цепочками поставок. Опасность этого заключается в том, что многие небольшие производители электроники заняты в таких отраслях, как здравоохранение, оборона и образование.

Напряжение и ток – понятия

Для работы любого электронного компонента требуется наличие электрического тока. Он создается электрическим потенциалом, то есть «напором» частиц. Самого потенциала недостаточно для течения тока. Нужен также проводник, способный пропустить его через себя. Если проводника нет, то потенциал уходит в воздух, который очень хорошо препятствует распространению тока. Объекты, которые останавливают ток, называются диэлектриками, а позволяющие протекать через них – проводниками.

Помимо проводника, для течения тока нужна разность потенциалов, возникающая в цепи. Аналогию можно провести с водопроводной трубой. Если с обеих ее сторон подается одинаковый напор, то каким бы сильным он ни был, вода не будет течь. Разность потенциалов называется напряжением. Оно обозначается буквой «U» и измеряется в вольтах. Сила тока же обозначается «I» и измеряется в амперах.

Вам это будет интересно Особенности теплого света

Классификация

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

  • малая интегральная схема (МИС) — до 100 элементов в кристалле
  • средняя интегральная схема (СИС) — до 1000 элементов в кристалле
  • большая интегральная схема (БИС) — до 10 тыс. элементов в кристалле
  • сверхбольшая интегральная схема (СБИС) — более 10 тыс. элементов в кристалле

Ранее использовались также теперь уже устаревшие названия: ультрабольшая интегральная схема (УБИС) — от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) — более 1 млрд элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Технология изготовления

Гибридная микросборка STK403-090, извлечённая из корпуса

Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия).

  • Плёночная интегральная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок:
    • толстоплёночная интегральная схема;
    • тонкоплёночная интегральная схема.
  • Гибридная микросхема (часто называемая микросборкой), содержит несколько бескорпусных диодов, бескорпусных транзисторов и (или) других электронных активных компонентов. Также микросборка может включать в себя бескорпусные интегральные микросхемы. Пассивные компоненты микросборки (резисторы, конденсаторы, катушки индуктивности) обычно изготавливаются методами тонкоплёночной или толстоплёночной технологий на общей, обычно керамической подложке гибридной микросхемы. Вся подложка с компонентами помещается в единый герметизированный корпус.
  • Смешанная микросхема — кроме полупроводникового кристалла, содержит тонкоплёночные (толстоплёночные) пассивные элементы, размещённые на поверхности кристалла.

Вид обрабатываемого сигнала

  • Аналоговые.
  • Цифровые.
  • Аналого-цифровые.

 — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

 — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем типа ТТЛ при напряжении питания +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон от 2,4 до 5 В — логической единице; для микросхем ЭСЛ-логики при напряжении питания −5,2 В диапазон от −0,8 до −1,03 В — логической единице, а от −1,6 до −1,75 В — логическому нулю.

совмещают в себе формы цифровой и аналоговой обработки сигналов, например, усилитель сигнала и аналого-цифровой преобразователь.

Начало изучения радиотехники начинающими

Перед тем, как изучать радиотехнику или электронику, нужно понять, зачем именно это нужно человеку

Если это увлечение на пару дней или месяцев, то лучше сразу бросить затею, поскольку, если относиться к электронике халатно и не соблюдать меры предосторожности, можно нанести сильный вред своему организму. Если данная сфера увлекала еще с детства, но не было времени начать заниматься, то сейчас самое время начать

Постепенное погружение подразумевает:

  • Получение или закрепление теоретических знаний физики. Для начала достаточно будет школьных знаний по электрофизике, включающих подробное изучение закона Ома – основы всей электрики.
  • Ознакомление с теорией. От более абстрактных вещей физики следует перейти к более осязаемым. Теория подразумевает точное и полное описание всех понятий, деталей, инструментов и приборов, которые будут использоваться на практике. Садиться и начать что-либо паять без теоретических основ не получится.
  • Применение на практике. Логическое завершение теории, позволяющее закрепить весь изученный материал и применить его при создании конкретных схем или приборов.

Закон Ома

Практика

До этого момента в статье была сплошь теория. Сейчас я предлагаю закрепить ее практической частью и собрать восьмибитный сумматор. Нам потребуется пара беспаечных макетных плат, несколько DIP-переключателей, светодиоды для индикации, токоограничивающие резисторы на 10 кОм и пара микросхем 74HC283.

Серия 74xx включает в себя микросхемы самого разного назначения. Это могут быть как сборки логических вентилей (например, 74HC04 — шесть инверторов в одном корпусе), так и полноценные АЛУ (74HC181). Помимо комбинационных схем, там есть и последовательностные: триггеры (74НС74), регистры (74НС373) и счетчики (74НС393).

Чтобы ориентироваться во всем этом номенклатурном разнообразии, я рекомендую не скачивать документацию на каждую микросхему в отдельности, а сразу найти целый справочник по всей серии. Например, есть справочник Texas Instruments в PDF.

Расположение выводов у микросхемы 74HC283 можно найти на странице 176 справочника, принципиальную схему и таблицы истинности смотри на страницах 390–391. И хотя это сумматор всего лишь на четыре бита, тут есть функция ускоренного переноса, а сами микросхемы можно объединять, собирая сумматоры на 8, 16 или даже 32 бит.

Хорошо видно, что схема здесь несколько отличается от той, что мы вывели ранее. В этом нет ничего необычного, одну и ту же функцию можно реализовать несколькими способами, и в производстве зачастую используют тот, который дешевле (по элементам) и лучше подходит для техпроцесса.

При этом все равно осталось некоторое сходство — его можно заметить при внимательном изучении. Например, элементы XOR от полусумматоров располагаются непосредственно перед выходом для значений каждого из разрядов.

Кроме того, можно понять, что значение для переноса вычисляется параллельно со значениями разрядов — для этого в микросхеме и присутствуют «лишние» элементы. Пожалуй, это самая сложная часть в статье. Поэтому, если у тебя возникли трудности, попробуй рассмотреть схему ускоренного переноса отдельно — это ИС 74HC182 на с. 338 (вот она, польза от полноценного справочника).

Сложение

Теперь, когда принцип работы микросхемы и назначение каждого ее вывода для нас не составляет секрета, можно собирать рабочий сумматор на восемь бит на макетных платах. Потребуется целый ворох проводов и перемычек, чтобы соединить все компоненты, так что главное здесь — быть внимательным и не допускать ошибок.

Как правило, значения в АЛУ попадают из регистров — самого быстрого типа памяти в компьютере. Здесь же я для удобства использую пару DIP-переключателей (левый верхний угол), чтобы можно было легко задавать нужные значения. По сути, это регистры А и В нашего протокомпьютера.

К сожалению, производитель переключателей явно не рассчитывал на такое применение, поэтому нумерация битов в каждом регистре мало того что начинается с единицы, так еще и идет в «неправильном» порядке, слева направо! Учитывай это, когда будешь работать со схемой.

Пара 74НС283 располагается по центру на нижней макетке, а результат операции отображается на линии из светодиодов (правый верхний угол). В левом нижем углу роль источника питания выполняет преобразователь USB — UART (другого способа подать стабильные 5 В я в тот момент не нашел).

Если схема была собрана без ошибок, то, задавая двоичное представление чисел на переключателях, ты сможешь наблюдать значение суммы на светодиодах. Примерно как на картинке выше.

Вычитание

Удивительно, но такую схему без каких-либо изменений и доработок можно использовать и для вычитания. Да, раньше я не говорил об этом ни слова, но такое действительно возможно. Если использовать представление отрицательных чисел в дополнительном коде, нам никак не нужно переопределять операцию сложения — все будет работать на имеющемся железе.

Наверняка ты уже представляешь, как на уровне цифровой схемы из положительного числа можно сделать отрицательное (в дополнительном коде). Действительно, достаточно только к каждому биту применить операцию NOT, а затем подать на вход сумматора вместе с единицей. Как видишь, подобное представление неочевидно с точки зрения человека, но очень удобно для реализации из набора логических вентилей.