Что является источником токов обратной и нулевой последовательностей?
Ток нулевой последовательности это:
Сумма мгновенных значений токов трех фаз трехфазной системы Система нулевой последовательности существенно отличается от прямой иобратной тем, что отсутствует сдвиг фаз. Нулевая система токов по существу представляет три однофазныхтока, для которых три провода трехфазной цепи представляют прямой провод, а обратным проводом служитземля или четвертый (нулевой), по которому ток возвращается.
Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное илидвухфазноеКЗ). Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Ток обратной последовательности, как известно из , появляется при любом несимметричном, а кратковременно и при трехфазном КЗ. Ток нулевой последовательности используется для повышения чувствительности пуска ВЧ-передатчика при КЗ на землю, а пусковое реле фазного тока КА – при симметричных КЗ
Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0 .
Зёх фазный ток – это когда фазы а,в,с отстоют друг от друга на 120градусов. Когда три фазы повёрнуты в 1 сторону – ток нулевой последовательности. Такое возникает при однофазных замыканиях на землю в сетях с заземлённой нейтралью. Поэтому применяются ТЗНП – токовые защиты нулевой последовательности для защиты от замыканий на землю – появился ток нулевой последовательности, значит есть замыкание на землю, защита срабатывает. . Токи обратной последовательности – это когда нарушен порядок чередования фаз. Возникают при межфазных замыканиях, для зашиты применяю ТЗОП – токовые защиты обратной последовательности. В двух словах так. Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное или двухфазное КЗ).
Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Токи нулевой последовательности по существу являются однофазным током, разветвленным между тремя фазами и возвращающимся через землю и параллельные ей цепи. В силу этого, путь циркуляции токов нулевой последовательности резко отличен от пути, по которому проходят токи прямой или обратной последовательности Для практической реализации метода симметричных составляющих необходимо составлять три схемы замещения: прямой, обратной и нулевой последовательностей. Конфигурация этих схем и параметры их элементов в общем случае не одинаковы.
Схема прямой последовательности является той же, что и для расчета тока трехфазного замыкания. Из этой схемы находят результирующую ЭДС и результирующее сопротивление прямой последовательности: и . Началом этой схемы являются точки нулевого потенциала источников питания, концом – место короткого замыкания, к которой приложено напряжение прямой последовательности . Составляющие обратной последовательности возникают при появлении в сети любой несимметрии: однофазного или двухфазного короткого замыкания, обрыва фазы, несимметрии нагрузки.
Составляющие нулевой последовательности имеют место при замыканиях на землю (одно- и двухфазных) или при обрыве одной или двух фаз. В случае междуфазного замыкания составляющие нулевой последовательности(токи и напряжения) равны нулю.
Этот метод используют многие устройства РЗиА. В частности, принцип работы трансформатора тока нулевой последовательности основан на сложении значений тока во всех трех фазах защищаемого участка. В нормальном(симметричном) режиме сумма значений фазных токов равна нулю. В случае возникновения однофазного замыкания, в сети появятся токи нулевой последовательности и сумма значений токов в трех фазах будет отлична от нуля, что зафиксирует измерительный прибор (например, амперметр), подключенный ко вторичной обмотке трансформатора тока нулевой последовательности.
Для трехфазных транспозированых ЛЭП результат этого преобразования — точная матрица собственных векторов (матрица модального преобразования). Она одинакова как для тока, так и для напряжения.
Определение коэффициента чувствительности защиты
Определение коэффициента чувствительности защиты по первичному току короткого замыкания дает завышенные результаты.
При определении чувствительности защиты необходимо учитывать токовую погрешность трансформатора тока.
Коэффициент чувствительности токовых реле определяется по выражению:
где:
- Iк.мин — минимальный первичный ток короткого замыкания (КЗ) в конце зоны действия защиты, определяемый расчетом в реально возможном минимальном режиме;
- Ic.p. — ток срабатывания реле;
- nт — коэффициент трансформации трансформатора тока (ТТ);
- Iвтк.мин. — минимальный вторичный ток К3, Iвтк.мин. = Iк.мин/nт;
При КЗ значение тока Iк.мин может в несколько раз превышать то значение расчетного тока, при котором производилось проверка трансформаторов тока (ТТ) на 10%-ую погрешность . В связи с этим весьма вероятно увеличение токовой погрешности свыше 10%. Таким образом, основной недостаток защит заключается в том, что трансформаторы тока не могут обеспечить во всех режимах трансформацию достаточно близкую к идеальной, хотя в основу работы защиты положена идеальная трансформация тока. Это обстоятельство не учитывается при определении коэффициента чувствительности в соответствии с выражением (1).
Определение коэффициента чувствительности по выражению (1) дает завышенное значение, так как известно, что вторичный ток трансформаторов тока при погрешности выше 10% существенно отличается от его идеального значения Iвтк.мин.
Завышение коэффициента чувствительности может привести к ошибочным выводам относительно фактического значения коэффициента чувствительности. Он может оказаться меньше минимально допустимого коэффициента чувствительности. Обеспечение 10%-ной погрешности при токе К3 Iк.мин уменьшит погрешность ТТ, увеличивая тем самым коэффициент чувствительности.
Проверка ТТ на 10% погрешность при КЗ определяется по кривым предельных кратностей, а при их отсутствии — по значению номинальной предельной кратности.
В тех случаях, когда 10%-ная погрешность при токе КЗ, равном Iк.мин, не обеспечивается, для её обеспечения необходимо увеличить номинальный ток трансформаторов тока, соединить последовательно две обмотки и/(или) уменьшить сопротивление вторичной нагрузки Zн.
В тех случаях, когда это невозможно, чувствительность реле необходимо определять графически в соответствии с рис. 1.
Рис.1 — Графическое определение вторичного тока КЗ в реле по расчетному значению при погрешности трансформатора выше 10%
Для определения чувствительности по действительному вторичному току в реле, необходимо:
1. Определить сопротивление нагрузки Zн трансформатора тока и вторичный ток КЗ Iвтк.мин.;
2. Построить характеристику намагничивания Е2=f(I’нам), где: Е2 — электродвижущая сила (ЭДС);
I’нам = Iнам/ nт — ток намагничивания, приведенный к вторичной стороне.
3. На графике характеристики намагничивания построить прямую зависимости ЭДС от вторичной нагрузки Zн.
где:
- Z2 — сопротивление трансформатора тока;
- І2 — вторичный ток.
4. Построить зависимость ЭДС от тока первичной обмотки, для чего в нескольких выбранных точках при соответствующем одном значении Е2 определить I’1 как сумма токов І2 (абсцисса построенной прямой) и I’нам — абсцисса характеристики намагничивания).
5. Определить вторичный ток в реле Iвт, соответствующий Iвтк.мин., пользуясь кривой Е=f/( I’1) и прямой Е2=(I2), как показано на рис.1.
6. Определить коэффициент чувствительности:
Из рисунка следует, что фактический коэффициент чувствительности реле будет в Iвтк.мин./Iвт меньше, определенного в соответствии с выражением (1).
Приближенное значение вторичного тока КЗ с учетом токовой погрешности может быть определено по выражению:
где:
- f — токовая погрешность ТТ ;
- Кн — коэффициент надежности (Кн=1,2-1,3).
Вывод:
1.В тех случаях, когда 10%-ная погрешность ТТ при КЗ не обеспечивается, для её обеспечения необходимо увеличить номинальный ток трансформаторов тока, соединить последовательно две обмотки и/(или) уменьшить сопротивление вторичной нагрузки.
В тех случаях, когда это невозможно, коэффициент чувствительности реле необходимо определять графически по действительному вторичному току.
Литература:
1.Шабад МЛ. Расчеты релейной защиты и автоматики распределительных сетей. — Л.: Энергоатомиздат, 1985 — 296 е., ил.
Всего наилучшего! До новых встреч на сайте Raschet.info.
ТО устройства на МТЗ
В процессе эксплуатации на генераторе оседают частицы масла и пыль, которые следует удалять чистой ветошью. Если грязь набилась во внутренние полости оборудования, то узел необходимо снять для разборки и чистки ветошью, смоченной бензином. Не допускается образование слоя окислов на клеммах или разрушение изоляции проводов бортовой сети трактора.
Не допускается эксплуатация оборудования с поврежденными шкивом или крыльчаткой вентилятора. Рекомендуется периодически проверять и регулировать натяжение ремня (стрела прогиба 30 мм при нагрузке 3 кг). Чрезмерно натянутый привод перегружает подшипники ротора. По причине износа элементов нарушается нормальный зазор между вращающимся узлом и статором. Трещины или надрывы на ремне приводят к проскальзыванию привода.
Расчет тока срабатывания МТЗ
Стабильность работы и надёжность функционирования максимально-токовой защиты зависит от настройки параметров по току срабатывания. Расчёты должны обеспечивать гарантированное срабатывание реле при авариях, однако на её работу не должны влиять параметры тока нагрузки, а также кратковременные всплески, возникающие в режиме запуска двигателей.
Следует помнить, что слишком чувствительные реле могут вызывать ложные срабатывания. С другой стороны, заниженные параметры срабатывания не могут гарантировать безопасности стабильной работы электроприборов. Поэтому при расчетах уставок необходимо выбирать золотую середину.
Существует формула для расчёта среднего значения тока, на который реагирует электромагнитное реле :
Iс.з. > Iн. макс.,
где Iс.з. – минимальный первичный ток, на который должна реагировать защита, а Iн. макс. – предельное значение тока нагрузки.
Ток возврата реле подбирается таким образом, чтобы его хватило повторного замыкания контактов в отработавшем устройстве. Для его определения используем формулу:
Iвз = kн.×kз.×Iраб. макс.
Здесь Iвз– ток возврата, kн. – коэффициент надёжности, kз – коэффициент самозапуска, Iраб. макс. – величина максимального рабочего тока.
Для того чтобы токи возврата и срабатывания максимально приблизить, вводится коэффициент возврата, рассчитываемый по формуле:
kв = Iвз / Iс.з. с учётом которого Iс.з. = kн.×kз.×Iраб. макс. / kв
В идеальном случае kв = 1, но на практике этот коэффициент всегда меньший за единицу. Чувствительность защиты тем выше, чем выше значение kв.. Отсюда вывод: для повышения чувствительности необходимо подобрать kв в диапазоне, стремящимся к 1.
Как правильно переключить передачи на МТЗ-80
Главный принцип данных тракторов основан на понижающим редукторе. Это дает возможность удвоить все передачи, которые предусмотрены конструкцией, а таких всего 9 передних и две задних.
Это делается с помощью педали сцепления выжатой до упора. И только после этого можно использовать рычаги коробки управления.
Итак, правильное переключение передач осуществляется по следующей инструкции: • Двигатель должен быть в рабочем состоянии на холостых оборотах; • Выжимаем до упора педаль сцепления; • Включаем необходимую передачу; • Плавно нажимая на газ отпускаем педаль сцепления. Если у Вас не получилось с первой попытки и трактор отказался двигаться или заглох, то не переживайте попробуйте все сначала.
Мтз с независимой выдержкой времени
МТЗ – основная защита для воздушных линий с односторонним питанием. МТЗ оснащаются не только ЛЭП, но также и силовые трансформаторы, кабельные линии, мощные двигатели напряжением 6, 10 кВ.
Рис. 4.2.1
Расположение защиты в начале каждой линии со стороны источника питания. На рис. 4.2.1 изображено действие защит при КЗ в точке К. Выдержки времени защит подбираются по ступенчатому принципу и не зависят от величины тока, протекающего по реле.
Трехфазная схема защиты МТЗ на постоянном оперативном токе
Схема защиты представлена на рис.4.2.2: Основные реле:
- Пусковой орган – токовые реле КА.
- Орган времени – реле времени КТ.
Вспомогательные реле:
- KL – промежуточное реле;
- KH – указательное реле.
Рис. 4.2.2
Промежуточное реле устанавливается в тех случаях, когда реле времени не может замыкать цепь катушки отключения YAT из-за недостаточной мощности своих контактов. Блок-контакт выключателя SQ служит для разрыва тока, протекающего по катушке отключения, так как контакты промежуточных реле не рассчитываются на размыкание.
В тех случаях, когда МТЗ должна реагировать только при междуфазных КЗ, применяются двухфазные схемы с двумя или одним реле, как более дешевые.
Двухрелейная схема
Рис. 4.2.3
Достоинства
1. Схема реагирует на все междуфазные КЗ на линиях.
2. Экономичнее трехфазной схемы.
Недостатки
Меньшая чувствительность при 2 – фазных КЗ за трансформатором с соединением обмоток Y/–11 гр. (В два раза меньше чем у трехфазной схемы).
Рис. 4.2.4
При необходимости чувствительность можно повысить, установив третье токовое реле в общем проводе токовых цепей. Чувствительность повышается в два раза – схема становиться равноценной по чувствительности с трехфазной.
Схемы широко применяются в сетях с изолированной нейтралью, где возможны только междуфазные КЗ.
двухфазные схемы применяются в качестве защиты от междуфазных КЗ и в сетях с глухозаземленной нейтралью, при этом для защиты от однофазных КЗ устанавливается дополнительная защита, реагирующая на ток нулевой последовательности.
Одно-релейная схема МТЗ
Рис. 4.2.5
- Схема реагирует на все случаи междуфазных КЗ.
- Достоинства
- Только одно токовое реле.
- Недостатки
- Меньшая чувствительность по сравнению с 2 – релейной схемой при КЗ между фазами АВ и ВС.
- Недействие защиты при одном из трех возможных случаев 2 – фазных КЗ за трансформатором с соединением обмоток Y/–11 гр.
- Более низкая надежность – при неисправности единственного токового реле происходит отказ защиты. Схема применяется в распределительных сетях 6…10 кВ и для защиты электродвигателей.
Рис. 4.2.6
Выбор тока срабатывания защиты МТЗ
Защита должна надежно срабатывать при повреждениях, но не должна действовать при максимальных токах нагрузки и её кратковременных толчках (например, запуск двигателей).
- Слишком чувствительная защита может привести к неоправданным отключениям.
- Главная задача при выборе тока срабатывания состоит в надежной отстройке защиты от токов нагрузки.
Существуют два условия определения тока срабатывания защиты.
Первое условие. Токовые реле не должны приходить в действие от тока нагрузки:
Iс.з>Iн.макс, (4.1)
где Iс.з – ток срабатывания защиты (наименьший первичный ток в фазе линии, необходимый для действия защиты);
Iн.макс – максимальный рабочий ток нагрузки.
Второе условие. Токовые реле, сработавшие при КЗ в сети, должны надёжно возвращаться в исходное положение после отключения КЗ при оставшемся в защищаемой линии рабочем токе.
При КЗ приходят в действие реле защит I и II (рис.4.2.1). После отключения КЗ защитой I прохождение тока КЗ прекращается и токовые реле защиты II должны вернуться в исходное положение.
Ток возврата реле должен быть больше тока нагрузки линии, проходящего через защиту II после отключения КЗ.
И этот ток в первые моменты времени после отключения КЗ имеет повышенное значение из–за пусковых токов электродвигателей, которые при КЗ тормозятся вследствие понижения (при КЗ) напряжения:
Рис. 4.2.7
Iвоз>kзIн.макс . (4.2)
Увеличение Iн.макс, вызванное самозапуском двигателей, оценивается коэффициентом запуска kз.
Учет самозапуска двигателей является обязательным.
При выполнении условия (4.2) выполняется и условие (4.1), так как IвозtввI+tпI+tвI. (4.9)
- Выдержка времени защиты II может быть определена как
- tввII=tввI+tпI+tвI+tпII+tзап, (4.10)
- где tпII – погрешность в сторону снижения выдержки времени защиты II; tзап – время запаса.
- Таким образом, минимальная ступень времени t может быть вычислена как
t=tввII – tввI=tпI+tвI+tпII+tзап. (4.11)
По формуле (4.11) определяется ступень времени для защит с независимой характеристикой времени срабатывания от тока.
Рекомендуется принимать t =0,35…0,6 с.
Параметры и расчет максимальной токовой защиты
МТЗ не может совмещать в себе функцию защиты от перегрузки, так как действие МТЗ должно происходить по возможности быстрее, а защита от перегрузки должна действовать, не отключая допустимые кратковременные токи перегрузки или пусковые токи при самозапуске электродвигателей.
- То есть первое условие выбора МТЗ — отстройка от максимального рабочего тока нагрузки
- После срабатывания защиты реле должно вернуться в рабочее положения. Ток возврата должен быть больше максимального рабочего тока, с учетом самозапуска, после предотвращения нарушения снабжения
- Ток срабатывания защиты равен коэффициенту запаса отнесенный к коэффициенту возврата и умноженный на коэффициент запуска и максимальный рабочий ток
- Ток срабатывания реле зависит от коэффициента схемы (зависит от реле), тока срабатывания защиты отнесенных к коэффициенту трансформатора тока
- Чувствительность защиты определяется отношением минимального тока короткого замыкания в конце зоны защиты к току срабатывания защиты
- Ступень времени для согласования выдежек времени зависит от выдержки времени соседней защиты, погрешности замедления реле времени соседней защиты, времени отключения выключателя соседней защиты. Для защит с независимой выдержкой времени это время может быть 0,4-0,5с, для защит с зависимой — 0,6-1с
К достоинствам МТЗ относится их простота и наглядность, надежность, невысокая стоимость. К недостаткам можно отнести большие выдержки времени вблизи источников питания, хотя именно там токи короткого замыкания должны отключаться быстро.
Максимальная токовая защита является основной в сетях до 10кВ, однако, применение она нашла и в сетях выше 10кВ.
4.5. МТЗ на переменном оперативном токе
Схемы МТЗ с питанием оперативных цепей от переменного тока могут
выполняться:
1) с питанием
от трансформаторов тока – на принципе дешунтирования катушки отключения при
срабатывании защиты;
2) с питанием от блока питания;
3) с питанием от предварительно заряженных конденсаторов.
4.5.1. Схема с
дешунтированием катушки отключения выключателей
4.5.1.1. Схема защиты с
зависимой характеристикой
На рис. 4.5.1
изображена схема для привода с двумя катушками отключения. Схема выполняется на
реле РТ–85 или РТ–95, имеющими мощные переключающие контакты (до 150 А).
Рис. 4.5.1
Особенности схем с дешунтированием
1. Для их
выполнения нужны реле, контакты которых обладают необходимой мощностью для
переключения проходящего через них тока КЗ 100…200 А.
2. После
срабатывания защиты нагрузка трансформаторов тока резко возрастает за счет
подключения катушки отключения. В результате чего увеличивается погрешность
трансформаторов тока и вторичный ток, проходящий по реле, уменьшается.
Погрешность трансформаторов тока должна быть такой, чтобы вторичный ток был
достаточен для удержания в сработанном состоянии реле и надежного действия
катушки отключения выключателя.
4.5.1.2. Схема защиты с
независимой характеристикой
Схема защиты представлена на рис. 4.5.2. На схемах: TLA, TLC – промежуточные
трансформаторы реле времени; KT –
обмотка электродвигателя реле времени; KL1.3, KL2.3
– контакты, шунтирующие контакт реле времени.
Рис. 4.5.2
Пояснения к схеме.
1. Во избежания отказа реле времени при двухфазном КЗ АС цепь обмоткиTLC разрывается размыкающим
контактом КА1.2. В противном случае,
как показано на рис. 4.5.3, ток, протекающий через обмотку электродвигателя
очень мал и реле не сработает.
Рис. 4.5.3
2. После включения катушек отключения выключателей YAT ток от трансформаторов тока
уменьшается, реле КА и КТ могут разомкнуть свои контакты.
Однако благодаря самоудерживающим контактам промежуточных реле KL1.3
и KL2.3
преждевременного возврата реле KL
при этом не произойдет.
4.5.2. Схемы с питанием
оперативных цепей защиты от блоков питания
Поскольку блоки питания (БП) выдают выпрямленное напряжение, схемы
выполняются так же, как и схемы на постоянном токе.
Главный вопрос при выполнении защит на выпрямленном токе – способы
подключения БП к трансформаторам тока и трансформаторам напряжения. Для защит
от КЗ в качестве основных используют БП, подключаемые к трансформаторам тока.
БП, подключаемые к трансформаторам напряжения, обеспечивают необходимую
мощность при малых значениях тока.
Схемы
включения токовых блоков должны выбираться из условия, чтобы на выходе блока
имелось достаточное напряжение при всех возможных видах повреждения на
защищаемом элементе.
1. В сети с изолированной нейтралью для защит, не рассчитанных на
действие при КЗ за трансформатором с соединением обмоток YD, применяется включение БП на
разность токов Ia–IC (рис. 4.5.4).
Рис. 4.5.4
2. При необходимости действия защиты при КЗ за трансформаторами YD устанавливается второй БП.
Рис. 4.5.5
3. При соединении трансформаторов тока в двухфазную звезду БП
включается в нулевой провод.
Рис. 4.5.6
В сетях с
глухозаземленной нейтралью применяются аналогичные схемы.
БП, подключаемый к трансформаторам напряжения, включается на
линейное напряжение.
Рис. 4.5.7
БП могут устанавливаться на каждом присоединении или использоваться
как групповые.
Падение напряжения на выходах БП не должно быть меньше 0,8…0,9 Uном. Выполнение этого условия проверяется расчетами.
В токовых БП
принимаются специальные меры для стабилизации выходного напряжения и повышения
отдаваемой мощности.
Схема комбинированного блока питания была представлена ранее на
рис. 1.6.2. Емкость конденсатора С
подбирается так, чтобы в сочетании с индуктивностью обмотки L обеспечивались условия
феррорезонанса, наступающие при некотором токе , когда XL=XC. 5 А.
Рис. 4.5.8
4.5.3. Схема защиты с
использованием энергии заряженного конденсатора
Схема защиты представлена на рис. 4.5.9. Здесь: УЗ – зарядное устройство, питаемое от
трансформатора напряжения или трансформатора собственных нужд.
Катушка отключения выключателя YAT питается током разряда конденсатора.
Рис. 4.5.9
Виды трансформаторов тока
Данные электротехнические устройства классифицируются по нескольким характеристикам. В зависимости от назначения токовые трансформаторы могут быть:
- защитными – снижающими параметры тока для предотвращения выхода из строя потребляющих устройств;
- измерительными – через которые подключаются средства измерения, в том числе электросчётчики;
- промежуточными – устанавливаемыми в системы релейной защиты;
- лабораторными – используемыми для исследовательских целей, обладающими низкой погрешностью измерения, нередко – с несколькими коэффициентами трансформации.
Также читайте: Импульсный трансформатор Учитывая характер условий эксплуатации, различают трансформаторы:
- для наружной установки – защищённые от воздействия атмосферных факторов, которые можно использовать на открытом воздухе;
Три трансформатора тока для 3-х фаз(А, B? C)
- внутренние – применяемые внутри помещений;
ТТ для установки внутри помещений
- встроенные – расположенные внутри электрических приборов и являющиеся их составной частью(3 ТА для каждой фазы показаны стрелкой).
Встроенные ТТ
В зависимости от исполнения первичных обмоток различают устройства:
- одновиткового исполнения;
- многовитковые;
- шинные.
С учётом способа установки их подразделяют на следующие типы:
- проходной;
- опорный.
По числу ступеней изменения тока выделяют трансформаторы:
- одноступенчатого,
- двухступенчатого (каскадного) типа.
Устройства, в зависимости от величины напряжения, на которое они рассчитаны делят на предназначенные для работы в условиях более и менее 1000 В.
Для изготовления сердечника применяется специальная трансформаторная сталь. Изоляция выполняется сухой (бакелитовой, фарфоровой), обычной или бумажно-масляной.